
© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902072 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 541

FPGA Implementation of Low Power Secure Hashing

Algorithm (SHA-2) using VHDL.

Ms Shreshtha Garg

Deptt of Electronics and Communication

Nri institute of information science and technology

Prof. Rishi jha

Deptt of Electronics and Communication

Nri institute of information sciene and technology

Abstract— Hash functions play an important role in

modern cryptography. They are widely used to provide

services of data integrity and authentication. The hash

algorithms are based on performing a number of

complex operations on the input data that require a

significant amount of computing resources especially

when the input data are huge. Thus, hardware

implementation is far more suitable, for security and

performances execution issues, compared to the

corresponding software implementations. Hash

functions perform internal operations in an iterative

fashion, which open the possibility of exploring several

implementation strategies.

Cryptography plays an important role in the security of

data. Even though the data is encrypted it can be altered

while transmitting on the network so data should be

verified using a digital signature. Hashing algorithms

are used to create these digital signatures for

verification of the data received. Hashing algorithm

like Secure Hash Algorithm-2 (SHA-2(224/256)) is

designed which has a fixed output length of 512-bits.

Fig. 1 Data Encryption

To improve on power a low-power technique such as

latch based clock gating technique is used. After

applying these techniques all the designs are compared

in terms of power, delay and frequency.

INTRODUCTION

Secure Hashing Algorithm specifications were

published in federal information standard (FIPS)

PUB180 in 1993 and revised version was issued as

FIPS PUB 180-1 in 1995[2], FIPS PUB 180-2 in

2002[3], FIPS PUB 180-3

in 2008 [4] by the National Institute of Standard

Technology (NIST). Like SHA-1, SHA-2 is also a one-

way and collision-resistant cryptographic hash function

with variable digest length [1] and used in cryptographic

primitives for security applications and protocols such

as TLS, SSL, PGP, SSH, S/MIME and IPsec. SHA-2

hashing functions were introduced to provide additional

level of security in security application and protocols.

SHA-2 hashing algorithm is a set of four cryptographic

hash functions, SHA-224, SHA-256, SHA-384 and

SHA-512. All of these SHA-2 hashing algorithms are

meant to provide N/2 bits of security against collision

attack.

Considering the flexibility, physical security,

performance and ease to upgrade on hardware

implementation, FPGAs (Field Programmable Gate

Arrays) is an appealing alternative for the

implementation of cryptographic hash (SHA)

algorithms.

Hardware implementations of SHA-2 present higher

throughput than software, thus being more adaptable

for high speed applications which may need

accelerators for hashing. Moreover, hashing functions

in hardware are uninterruptible contrary to software

implementations. Based on the analysis of the SHA-2

algorithm and also from known publications [5] [6] [7]

[8] [9] [10], SHA-2 computational path is more

complex with higher data dependency and achieving

high pipeline frequency and throughput is too critical.

Simplified architecture of the SHA-2 hashing algorithm

is shown in Fig.

Figure 2: Simplified architecture of the SHA-2 algorithm

SHA-2 architecture uses four basic building blocks viz.

padder unit, message scheduler, compression function

and control unit. The critical path of the hashing

function is tightly coupled with compression function.

Proposed design uses Round Pipelined Technique

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902072 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 542

(RPT) for implementing the hashing functions and

achieves more throughput per slice.

PREVIOUS

WORK

1) Design and Optimized Implementation of

the SHA-2(256, 384, 512) Hash Algorithms.

Wanzhong Sun, Hongpeng Guo, Huilei He, Zibin

Dai, Institute of Electronic Technology, Information

Engineering University, Zhengzhou 450004, China.

1-4244-1132-7/07-2007 IEEE.

In this paper, the proposed system architecture of SHA-

2 hash family can support efficiently the security needs

of modern communication applications such as

WLANs, VPNs and firewall. Compared with previous

published implementations, its achieved performance in

the term of throughput / resources is higher. Therefore,

it could substitute the implementations of the existing

SHA-1 standard or MD5, in all types of applications,

with better achieved performance and higher supported

security level.

2) Incorporating sha-2 256 with OFB to realize

a novel encryption method.

Raaed K. Ibrahim, 2 Roula AJ. Kadhim, 3 Ali SH.

Alkhalid Computer Engineering, Electrical and

Electronics Technical Engineerig College, Middle

Technical University, Baghdad, Iraq. 2015 IEEE.

Hash function is built in LabVIEW 2012 and the

execution of all steps in SHA-2 256 with OFB is tested

using different types of plaintext such as English

,Arabic

,symbols ,and numbers to produce fixed 256 bits hash

code. After generating the 160 bits hash code, these bits

are entered to OFB block as a key to give a very strong

code which is very difficult to be breakable. The

encrypted hash code gives the confidentiality to the

system in addition to the integrity and authentication

that obtained from SHA-2 256 itself.

3) SHA-2 Hardware core for Virtex-5 FPGA,

Anane Mohamed, Anane Nadjia, ESI (Ecole

nationale Supérieure d’Informatique), BP 68M

Oued Smar. CDTA (Centre de

Développement des Technologies Avancées), BP

17, Baba Hassen. Algiers, Algeria. 12th

International Multi-Conference on Systems, Signals

& Devices 2015.

In this paper, we have presented an efficient and

compact hardware core for SHA-256 hash function.

This last is based on the optimization of the two critical

paths to speed-up the SHA-2 iteration by using two

dedicated components namely compressors 7:2 and 6:2.

These components were optimized at the lowest level

(LUT) which allows performing a seven operands

addition in only 5.016 ns. In order to fully use the slices

during the synthesis process of our architecture on

FPGA, a special effort was made in the design at the

Vhdl description level. The resulting hardware core is

compact with good performances. This core can be

easily adapted to others variants of SHA-2 by only

adjusting the data path of the operands to the word

length specified in each standard.

4) High Performance SHA-2 core using the

Round Pipelined Technique.

Manoj D Rote, Vijendran N, David Selvakumar

Secure Hardware and VLSI Design Center for

Development of Advanced Computing Bangalore,

560038, INDIA. 978-1-4799-9985-9/15 ©2015

IEEE.

In this research paper several hardware optimization

techniques for the SHA-2 hashing functions were

explored. A new architecture i.e., Round Pipelined

Technique was proposed for the SHA-2 core, which

eliminates the data dependency between iteration using

data forwarding to improve the throughput per area.

The fully iterative and Round Pipelined Techniques

were investigated and developed using HDL. A

comparison with other published results depicts 57%

improvement in throughput per slice for SHA-256 and

17% improvement in throughput per slice for SHA-512.

Implementation results indicate that the Round

Pipelined technique can help to achieve good tradeoff

between throughput and area. As future work,

implementations of the SHA-2 core may be attempted

by adopting various other design techniques like a

design optimized for area using better resource sharing

or loop unrolling techniques. Another optimization

effort could be to increase the depth of the pipeline

stages to increase the throughput.

PROJECT CHOICES

The idea is to create a component as simple as possible

to use, to pass the message a chunk (portion) at a time

without waiting for any synchronization signal. Upon

reaching the end of the message, monitor an output

signal waiting for the hash. Everything without

worrying about "preparing" the message through

manual padding (in networked documents this step is

always left to the user's process).

Initially, after studying the specifications of NIST, I

thought I could create a 512-bit interface to which to

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902072 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 543

pass an entire block every clock cycle and process it in

real time. So I would get the result with a single delay

clock cycle from the end of the message. The problem

of compression (non-parallelizable) however forced

me to abandon the single clock strategy in favor of that

one "one step each clock cycle", subject to the

explosion of the number of components to be used and

consequent blocking of the synthesis tool .

There were three possibilities: Pass the entire message

to the component and save it in a buffer with

subsequent processing and waiting for the result. Easy

but with obvious limits on message length far below the

algorithm capability (264 bits).

Secondly, introducing a wait time between the passage

of two consecutive blocks, i.e. after providing 512 bits,

block the user process for several clock cycles (or a

ready signal) awaiting partial partial digestion, and then

proceed With the next bit train. No limit or memory, or

any other type, but falls on the main idea, ease of use.

The way I have chosen involves processing a block at

the same time as reading the next, in a sort of pipeline

between phases, using a 512-bit scroll buffer to store

the data to be processed and new ones Just read.

Instructions for the user so do not change, just pass the

message without interruption and wait for the final

result.

There is an intrinsic limit to this type of architecture,

phase synchronization, or at least a number of read

cycles equal to or greater than the necessary internal

phases, a condition necessary to keep the buffer size

fixed so as not to have Memory constraints (and

therefore message lengths) and not to force the user to

pause between one block and another.

Through some redundancies (signals a_2-h_2) I have

been able to "embed" the final processing of the digest

in the compression phase, so the number of read cycle

cycles must be equal to only those needed for

compression which are respectively 64 and 80 For

SHA- 224/256 and SHA-384/512.

PROPOSED DESIGN

The aim of the project is to implement VHDL of the

Hash Algorithm version 2 (SHA-2) hashing cryogenic

algorithm, which will only provide partial and useful

information to understand my work.

From an arbitrary length message (<264), the algorithm

generates a fixed length hash, equal to the number

present in the name of the four variants of the SHA-

224, SHA-256, SHA-384, SHA-512 algorithm.

A preprocessing (or padding) phase is provided in

which the message is bit 1 and so many bits 0 to its

length to a value divided by 512 for the rest 448 (i.e.,

512 to 64) and then accodated The length of the

original message (64 bits).

The message is divided into 512-bit blocks and the

algorithm is applied sequentially to cascade on the

blocks, using the result obtained from the previous

block as the input data for the next calculation. Each

block passes through three phases: data expansion,

compression cycle, and hash processing (or intermediate

digestion).

The most critical step for implementation is

compression that consists of a 64-step loop (80 for

SHA-384/512) that is dependent on each other and

therefore not parallelizable. Even expansion in the

official drafting of the algorithm is a loop, however, it

can be carried out without loosing clock cycles while

loading the block through a buffer and a pointer over it.

I will look for other modifications and optimizations

(rescheduling, pipelines between the stages of the

different blocks, redundancies) to reduce the total

delay, some of the many documents available on the

net, the main ones in the bibliography (2) (3), others

introduced by Tailored to my design. I have examined

and discarded many other possibilities (unrolling,

quasi- pipeline, special additions) because they are not

suitable for my architecture.

RESULT SUMMERY

To test the correct functioning of the component we

create a test bench directly in the VHDL project that

simulates the user process.

Using the VHDL development tool, we can have both

automatic and visual feedback.

In the test bench I give a number of test vectors with the

corresponding length and control hashes pre-calculated

by me with generators found on the web (8) (9). Just

choose which test (be careful only include the package

of constants for sha-256 or sha-224 in the project) and

run the simulation.

Manual / visual control can be done by creating a

waveform and adding useful signals (as in the figures in

the previous section).

In addition, an automatic control is performed, and a

confirmation message is displayed in the output

console (or cyclically if the do Loop option is

activated) if the result is equivalent to the pre-

calculated hash or error otherwise.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902072 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 544

CONCLUSION

In this paper several hardware optimization techniques

for the SHA-2 hashing functions were explored. A

new architecture i.e., Round Pipelined Technique was

proposed for the SHA-2 core, which eliminates the data

dependency between iteration using data forwarding to

improve the throughput per area. The fully iterative and

Round Pipelined Techniques were investigated and

developed using HDL. A comparison with other

published results depicts 57% improvement in

throughput per slice for SHA-256 and 17%

improvement in throughput per slice for SHA-512.

Implementation results indicate that the Round

Pipelined technique can help to achieve good tradeoff

between throughput and area. As future work,

implementations of the SHA-2 core may be attempted

by adopting various other design techniques like a

design optimized for area using better resource sharing

or loop unrolling techniques. Another optimization

effort could be to increase the depth of the pipeline

stages to increase the throughput.

REFERENCE

S

[1.] William Stallings, “Cryptography and Network

Security,Principles and Practices” Fourth Edition,

2005.

[2.] NIST “SECURE HASH STANDARD”, Federal

Information Processing Standards Publication 180-

1, August 1995.

[3.] NIST “SECURE HASH STANDARD”, Federal

Information Processing Standards Publication 180-

2, August 2002.

[4.] NIST “SECURE HASH STANDARD”, Federal

Information Processing Standards Publication 180-

3, August 2008.

[5.] Harris E. Michail, Athanasios S. Milidonis, “A

Top- Down Design Methodology for Ultrahigh-

Performance Hashing Cores” IEEE transaction on

Dependable and Secure computing, vol. 6, No. 4,

October-December 2009.

[6.] N. Skluvos, G. Dimitroulakos, and O.

Koufopavlou,“An Ultra HighSpeed Architecture for

VLSI Implementation of HashFunctions”,

Electronics, Circuits and Systems, 2003.

[7.] Marco Macchetti, Luigi Dadda, “Quasi-Pipelined

Hash Circuits”, Proceedings of the 17th IEEE

Symposium on Computer Arithmetic 2005.

[8.] Robert P. McEvoy, Francis M. Crowe, Colin C.

Murphy and William P. Marnane, “Optimisation of

the SHA-2 Family of Hash Functions on FPGAs”,

IEEE Computer Society Annual Symposium

onEmerging VLSI Technologies and Architectures,

2006.

[9.] Hoang Anh Tuan, Katsuhiro Yamazaki, Shigeru

Oyanagi,“Three-stage Pipeline Implementation for

SHA-2 using data forwarding”, International

Conference on Field Programmable Logic and

Applications, 2008.

[10.] Ricardo Chaves,Georgi Kuzmanov,Leonel

Sousa,Stamatis Vassiliadis,“Cost-Efficient SHA

Hardware Accelerators”, IEEE Transaction onVery

Large Scale Integration (VLSI) systems, Vol. 16,

No. 8, Aug 2008.

[11.] M. McLoone, J. V. McCanny, “Efficient Single-

Chip Implementation of SHA-384 &SHA-512”,

IEEE International Conference on Field-

Programmable Technology, 2002.

[12.] Shay Gueron, Vlad Krasnov, “Parallelizing

message schedules to accelerate the computations

of hash functions”, Journal of Cryptographic

Engineering, Volume 2, Issue 4, pp 241-

253,November 2012.

[13.] Helion Technology Ltd.

(http://www.heliontech.com) [14.] Chanjuan Li1,

Qingguo Zhou2, Yuli Liu2, Qi, “Costefficient Data

Cryptographic Engine Based on FPGA”,Fourth

International Conference on Ubi-

Media 2011.

http://www.jetir.org/
http://www.heliontech.com/

