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ABSTRACT: Mohand and Laplace transforms are very useful integral transforms for solving many 

advanced problems of engineering and sciences like heat conduction problems, vibrating beams problems, 

population growth and decay problems, electric circuit problems etc. In this article, we present a 

comparative study of two integral transforms namely Mohand and Laplace transforms. In application 

section, we solve some systems of differential equations using both the transforms. Results show that both 

the transforms are closely connected.  
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1.INTRODUCTION: In advance time, integral transforms[1-12] (Laplace transform, Fourier transform, 

Hankel transform, Mellin transform, Z-transform, Wavelet transform, Elzaki transform, Kamal transform, 

Mahgoub transform, Aboodh transform, Mohand transform, Sumudu transform, Hermite transform etc.) 

have a very useful role in mathematics, physics, chemistry, social science, biology, radio physics, 

astronomy, nuclear science, electrical  and mechanical engineering for solving the advanced problems 

ofthese fields.  

Many researchers [13-33] used these transforms and solve the problems of differential equations, 

partial differential equations, integral equations, integro-differential equations, partial integro-differential 

equations, delay differential equations and population growth and decay problems. Aggarwal et al. [34] used 

Mohand transform and solved population growth and decay problems.  Aggarwal et al. [35] defined 

Mohand transform of Bessel’s functions. Kumar et al. [36] used Mohand transform for solving linear 

Volterra integral equations of first kind. 

Kumar et al. [37] used Mohand transform and solved the mechanics and electrical circuit problems. 

Solution of linear Volterra integral equations of second kind using Mohand transform was given by 

Aggarwal et al. [38]. Sathya and Rajeswari [39] used Mohand transform for solving linear partial integro-

differential equations. Application of Mohand transform for solving linear Volterra integro-differential 

equations was given by Kumar et al. [40]. Aggarwal et al. [41] apply Laplace transform for solving 

population growth and decay problems. 

In this paper, we concentrate mainly on the comparative study of Mohand and Laplace transforms 

and we solve some systems of differential equations using these transforms. 

2. DEFINITION OF MOHAND AND LAPLACE TRANSFORMS: 

2.1Definition of Mohand transforms: 

In year 2017, Mohand and Mahgoub [6] defined “Mohand transform’’ of the function 𝐹(𝑡)for  𝑡 ≥

0 as  
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𝑀{𝐹(𝑡)} = 𝜈2∫ 𝐹(𝑡)𝑒−𝜈𝑡𝑑𝑡
∞

0

= 𝑅(𝑣), 𝑘1 ≤ 𝑣 ≤ 𝑘2 

where the operator𝑀 is called the Mohand transform operator. 

2.2Definition of Laplace transforms: 

The Laplace transform of the function 𝐹(𝑡)for all 𝑡 ≥ 0 is defined as [7-11]: 

𝐿{𝐹(𝑡)} = ∫ 𝐹(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

= 𝑓(𝑠) 

where the operator 𝐿 is called the Laplace transform operator. 

The Mohand and Laplace transforms of the function𝐹(𝑡)  for 𝑡 ≥ 0  exist if 𝐹(𝑡)  is piecewise 

continuous and of exponential order. These conditions are only sufficient conditions for the existence of 

Mohand and Laplace transforms of the function𝐹(𝑡).  

3. PROPERTIES OF MOHAND AND LAPLACE TRANSFORMS: In this section, we present the 

linearity property, change of scale property, first shifting theorem, convolution theorem of both the 

transforms. 

3.1 Linearity property of Mohand and Laplace transforms: 

a. Linearity property of Mohand transforms [34-35, 38]: If Mohand transform of functions 𝐹1(𝑡) 

and 𝐹2(𝑡)are𝑅1(𝑣)and 𝑅2(𝑣) respectively then Mohand transform of [𝑎𝐹1(𝑡) + 𝑏𝐹2(𝑡)] is given by 

[𝑎𝑅1(𝑣) + 𝑏𝑅2(𝑣)], where 𝑎, 𝑏 are arbitrary constants. 

b. Linearity property of Laplace transforms [41]: If Laplace transform of functions  𝐹1(𝑡)  and 

𝐹2(𝑡) are  𝑓1(𝑠) and 𝑓2(𝑠)  respectively then Laplace transform of [𝑎𝐹1(𝑡) + 𝑏𝐹2(𝑡)]  is given by 

[𝑎𝑓1(𝑠) + 𝑏𝑓2(𝑠)], where 𝑎, 𝑏 are arbitrary constants. 

3.2Change of scale property of Mohand and Laplace transforms: 

a. Change of scale property of Mohand transforms [35, 38]:  If Mohand transform of function 𝐹(𝑡) 

is 𝑅(𝑣) thenMohand transform of function 𝐹(𝑎𝑡)is given by 𝑎𝑅 (
𝑣

𝑎
). 

b. Change of scale property of Laplace transforms [7-11]:  If Laplace transform of function 𝐹(𝑡) is 

𝑓(𝑠) thenLaplace transform of function 𝐹(𝑎𝑡)is given by
1

𝑎
𝑓 (

𝑠

𝑎
). 

3.3 Shifting property of Mohand and Laplace transforms:  

a. Shifting property of Mohand transforms [38]:  If Mohand transform of function 𝐹(𝑡) is 𝑅(𝑣)  

then Mohand transform of function𝑒𝑎𝑡𝐹(𝑡)is given by 
𝜈2

(𝑣−𝑎)2
𝑅(𝑣 − 𝑎). 

b. Shifting property of Laplace transforms [7-11]: If Laplace transform of function 𝐹(𝑡) is 𝑓(𝑠)  

then Laplace transform of function𝑒𝑎𝑡𝐹(𝑡)is given by 𝑓(𝑠 − 𝑎). 

3.4 Convolution theorem for Mohand and Laplace transforms: 
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a. Convolution theorem for Mohand transforms [38]: If Mohand transform of functions 𝐹1(𝑡) and 

𝐹2(𝑡)are𝑅1(𝑣)and 𝑅2(𝑣) respectively then Mohand transform of their convolution 𝐹1(𝑡) ∗ 𝐹2(𝑡) is 

given by  

𝑀 {𝐹1(𝑡) ∗ 𝐹2(𝑡)} =
1

𝑣2
𝑀{𝐹1(𝑡)}𝑀{𝐹2(𝑡)} 

⇒ 𝑀{𝐹1(𝑡) ∗ 𝐹2(𝑡)} =
1

𝑣2
𝑅1(𝑣)𝑅2(𝑣), where 𝐹1(𝑡) ∗ 𝐹2(𝑡) is defined by 

𝐹1(𝑡) ∗ 𝐹2(𝑡) = ∫ 𝐹1(𝑡 − 𝑥)
𝑡

0

𝐹2(𝑥)𝑑𝑥 = ∫ 𝐹1(𝑥)
𝑡

0

𝐹2(𝑡 − 𝑥)𝑑𝑥 

b. Convolution theorem for Laplace transforms [7-11]: If Laplace transform of functions 𝐹1(𝑡) and 

𝐹2(𝑡)are 𝑓1(𝑠)and 𝑓2(𝑠) respectively then Laplace transform of their convolution 𝐹1(𝑡) ∗ 𝐹2(𝑡) is 

given by  

𝐿{𝐹1(𝑡) ∗ 𝐹2(𝑡)} = 𝐿{𝐹1(𝑡)}𝐿{𝐹2(𝑡)} 

⇒ 𝐿{𝐹1(𝑡) ∗ 𝐹2(𝑡)} =  𝑓1(𝑠)𝑓2(𝑠), where 𝐹1(𝑡) ∗ 𝐹2(𝑡) is defined by 

𝐹1(𝑡) ∗ 𝐹2(𝑡) = ∫ 𝐹1(𝑡 − 𝑥)
𝑡

0

𝐹2(𝑥)𝑑𝑥 = ∫ 𝐹1(𝑥)
𝑡

0

𝐹2(𝑡 − 𝑥)𝑑𝑥 

4. MOHAND AND LAPLACE TRANSFORMS OF THE DERIVATIVES OF THE 

FUNCTION 𝑭(𝒕): 

4.1 Mohand transforms of the derivatives of the function 𝑭(𝒕) [34-35]: 

If 𝑀{𝐹(𝑡)} = 𝑅(𝑣) then  

a) 𝑀{𝐹′(𝑡)} = 𝑣𝑅(𝑣) − 𝑣2𝐹(0) 
b) 𝑀{𝐹′′(𝑡)} = 𝑣2𝑅(𝑣) − 𝑣3𝐹(0) − 𝑣2𝐹′(0) 

c) 𝑀{𝐹(𝑛)(𝑡)} = 𝑣𝑛𝑅(𝑣) − 𝑣𝑛+1𝐹(0) − 𝑣𝑛𝐹′(0) − ⋯…− 𝑣2𝐹(𝑛−1)(0) 
 

4.2 Laplace transforms of the derivatives of the function 𝑭(𝒕) [7-11, 41]: 

If 𝐿{𝐹(𝑡)} = 𝑓(𝑠)then  

a) 𝐿{𝐹′(𝑡)} = 𝑠𝑓(𝑠) − 𝐹(0) 
b) 𝐿{𝐹′′(𝑡)} = 𝑠2𝑓(𝑠) − 𝑠𝐹(0) − 𝐹′(0) 

c) 𝐿{𝐹(𝑛)(𝑡)} = 𝑠𝑛𝑓(𝑠) − 𝑠𝑛−1𝐹(0) − 𝑠𝑛−2𝐹′(0) − ⋯…− 𝐹(𝑛−1)(0) 
 

5. MOHAND AND LAPLACE TRANSFORMS OF INTEGRAL OF A FUNCTION 𝑭(𝒕): 

5.1 Mohand transforms of integral of a function 𝑭(𝒕): 

If 𝑀{𝐹(𝑡)} = 𝑅(𝑣) then 𝑀{∫ 𝐹(𝑡)𝑑𝑡
𝑡

0
} =

1

𝑣
𝑅(𝑣) 

5.2 Laplace transforms of integral of a function 𝑭(𝒕) [7-11]: 

If 𝐿{𝐹(𝑡)} = 𝑓(𝑠)then 𝐿 {∫ 𝐹(𝑡)𝑑𝑡
𝑡

0
} =

1

𝑠
𝑓(𝑠) 

6. MOHAND AND LAPLACE TRANSFORMS OF FUNCTION 𝒕𝑭(𝒕): 
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6.1 Mohand transforms of function 𝒕𝑭(𝒕): 

If 𝑀{𝐹(𝑡)} = 𝑅(𝑣) then 𝑀{𝑡𝐹(𝑡)} = [
2

𝑣
−

𝑑

𝑑𝑣
] 𝑅(𝑣) 

6.2 Laplace transforms of function  𝒕𝑭(𝒕)[7-11]: 

If 𝐿{𝐹(𝑡)} = 𝑓(𝑠) then 𝐿{𝑡𝐹(𝑡)} = (−1)
𝑑

𝑑𝑠
𝑓(𝑠) 

7. MOHAND AND LAPLACE TRANSFORMS OF FREQUENTLY USED FUNCTIONS [6-11, 34-

41]: 

Table: 1 

S.N. 𝐹(𝑡) 𝑀{𝐹(𝑡)} = 𝑅(𝑣) 𝐿{𝐹(𝑡)} = 𝑓(𝑠) 

1. 1 𝑣 1

𝑠
 

2. 𝑡 1 1

𝑠2
 

3. 𝑡2 2!

𝑣
 

2!

𝑠3
 

4. 𝑡𝑛 , 𝑛 ∈ 𝑁 𝑛!

𝑣𝑛−1
 

𝑛!

𝑠𝑛+1
 

5. 𝑡𝑛, 𝑛 > −1 Γ(𝑛 + 1)

𝑣𝑛−1
 

Γ(𝑛 + 1)

sn+1
 

6. 𝑒𝑎𝑡 𝑣2

𝑣 − 𝑎
 

1

𝑠 − 𝑎
 

7. 𝑠𝑖𝑛𝑎𝑡 𝑎𝑣2

(𝑣2 + 𝑎2)
 

𝑎

𝑠2 + 𝑎2
 

8. 𝑐𝑜𝑠𝑎𝑡 𝑣3

(𝑣2 + 𝑎2)
 

𝑠

𝑠2 + 𝑎2
 

9. 𝑠𝑖𝑛ℎ𝑎𝑡 𝑎𝑣2

(𝑣2 − 𝑎2)
 

𝑎

𝑠2 − 𝑎2
 

10. 𝑐𝑜𝑠ℎ𝑎𝑡 𝑣3

(𝑣2 − 𝑎2)
 

𝑠

𝑠2 − 𝑎2
 

11. 𝐽0(𝑡) 𝑣2

√(1 + 𝑣2)
 

1

√(1 + 𝑠2)
 

12. 𝐽1(𝑡) 
𝑣2 −

𝑣3

√(1 + 𝑣2)
 1 −

𝑠

√(1 + 𝑠2)
 

 

8. INVERSE MOHANDAND LAPLACE TRANSFORMS: 

8.1 Inverse Mohand transforms [34, 38]: If 𝑅(𝑣)is the Mohand transform of 𝐹(𝑡)then 𝐹(𝑡)is called the 

inverse Mohand transform of 𝑅(𝑣)and in mathematical terms, it can be expressed as 

𝐹(𝑡) = 𝑀−1{𝑅(𝑣)}, where 𝑀−1 is an operator and it is called as inverse Mohand transform operator. 

8.2 Inverse Laplace transforms [7-11]: If 𝑓(𝑠) is the Laplace transforms of 𝐹(𝑡)then 𝐹(𝑡)is called the 

inverse Laplace transform of 𝑓(𝑠)and in mathematical terms, it can be expressed as 
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𝐹(𝑡) = 𝐿−1{𝑓(𝑠)}, where 𝐿−1 is an operator and it is called as inverse Laplace transform operator. 

9. INVERSE MOHAND AND LAPLACE TRANSFORMS OF FREQUENTLY USED FUNCTIONS 

[7-11, 34]: 

Table: 2 

S.N. 𝑅(𝑣) 𝐹(𝑡) = 𝑀−1{𝑅(𝑣)} = 𝐿−1{𝑓(𝑠)} 𝑓(𝑠) 

1. 𝑣 1 1

𝑠
 

2. 1 𝑡 1

𝑠2
 

3. 1

𝑣
 

𝑡2

2
 

1

𝑠3
 

4. 1

𝑣𝑛−1
 

𝑡𝑛

𝑛!
, 𝑛 ∈ 𝑁 

1

𝑠𝑛+1
 

5. 1

𝑣𝑛−1
 

𝑡𝑛

Γ(𝑛 + 1)
, 𝑛 > −1 

1

sn+1
 

6. 𝑣2

𝑣 − 𝑎
 

𝑒𝑎𝑡 1

𝑠 − 𝑎
 

7. 𝑣2

(𝑣2 + 𝑎2)
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

1

𝑠2 + 𝑎2
 

8. 𝑣3

(𝑣2 + 𝑎2)
 

𝑐𝑜𝑠𝑎𝑡 𝑠

𝑠2 + 𝑎2
 

9. 𝑣2

(𝑣2 − 𝑎2)
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

1

𝑠2 − 𝑎2
 

10. 𝑣3

(𝑣2 − 𝑎2)
 

𝑐𝑜𝑠ℎ𝑎𝑡 𝑠

𝑠2 − 𝑎2
 

11. 𝑣2

√(1 + 𝑣2)
 

𝐽0(𝑡) 1

√(1 + 𝑠2)
 

12. 
𝑣2 −

𝑣3

√(1 + 𝑣2)
 

𝐽1(𝑡) 1 −
𝑠

√(1 + 𝑠2)
 

 

10. APPLICATIONS OF MOHAND AND LAPLACE TRANSFORMS FOR SOLVING SYSTEM 

OF DIFFERENTIAL EQUATIONS:  

In this section some numerical applications are give to solve the systems of differential equations 

using Mohand and Laplace transforms. 

10.1 Consider a system of linear ordinary differential equations  

𝑑2𝑥

𝑑𝑡2
+ 3𝑥 − 2𝑦 = 0

𝑑2𝑥

𝑑𝑡2
+
𝑑2𝑦

𝑑𝑡2
− 3𝑥 + 5𝑦 = 0}

 

 
                                                                                                                       (1) 

with 𝑥(0) = 0, 𝑦(0) = 0, 𝑥′(0) = 3, 𝑦′(0) = 2                                                                                               (2) 

Solution using Mohand transforms: 
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Taking Mohand transform of system (1), we have 

𝑀{
𝑑2𝑥

𝑑𝑡2
} + 3𝑀{𝑥} − 2𝑀{𝑦} = 0

𝑀 {
𝑑2𝑥

𝑑𝑡2
} + 𝑀 {

𝑑2𝑦

𝑑𝑡2
} − 3𝑀{𝑥} + 5𝑀{𝑦} = 0

}
 
 

 
 

                                                                                     (3) 

Now using the property, Mohand transform of the derivatives of the function, in (3), we have 

𝑣2𝑀{𝑥} − 𝑣3𝑥(0) − 𝑣2𝑥′(0) + 3𝑀{𝑥} − 2𝑀{𝑦} = 0

𝑣2𝑀{𝑥} − 𝑣3𝑥(0) − 𝑣2𝑥′(0) + 𝑣2𝑀{𝑦} − 𝑣3𝑦(0) − 𝑣2𝑦′(0) − 3𝑀{𝑥} + 5𝑀{𝑦} = 0
}          (4) 

Using (2) in (4), we have 

(𝑣2 + 3)𝑀{𝑥} − 2𝑀{𝑦} = 3𝑣2

(𝑣2 − 3)𝑀{𝑥} + (𝑣2 + 5)𝑀{𝑦} = 5𝑣2
}                                                                                                   (5) 

Solving the system (5) for 𝑀{𝑥}and 𝑀{𝑦}, we have 

𝑀{𝑥} =
11

4
[

𝑣2

(𝑣2 + 1)
] +

1

4
[

𝑣2

(𝑣2 + 9)
]

𝑀{𝑦} =
11

4
[

𝑣2

(𝑣2 + 1)
] −

3

4
[

𝑣2

(𝑣2 + 9)
]
}
 
 

 
 

                                                                                                   (6)  

Now taking inverse Mohand transform of system (6), we have 

𝑥 =
11

4
𝑠𝑖𝑛𝑡 +

1

12
𝑠𝑖𝑛3𝑡

𝑦 =
11

4
𝑠𝑖𝑛𝑡 −

1

4
𝑠𝑖𝑛3𝑡

}                                                                                                                             (7) 

which is the required solution of (1) with (2). 

Solution using Laplace transforms: 

Taking Laplace transform of system (1), we have 

𝐿 {
𝑑2𝑥

𝑑𝑡2
} + 3𝐿{𝑥} − 2𝐿{𝑦} = 0

𝐿 {
𝑑2𝑥

𝑑𝑡2
} + 𝐿 {

𝑑2𝑦

𝑑𝑡2
} − 3𝐿{𝑥} + 5𝐿{𝑦} = 0

}
 
 

 
 

                                                                                           (8) 

Now using the property, Laplace transform of the derivatives of the function, in (8), we have 

𝑠2𝐿{𝑥} − 𝑠𝑥(0) − 𝑥′(0) + 3𝐿{𝑥} − 2𝐿{𝑦} = 0

𝑠2𝐿{𝑥} − 𝑠𝑥(0) − 𝑥′(0) + 𝑠2𝐿{𝑦} − 𝑠𝑦(0) − 𝑦′(0) − 3𝐿{𝑥} + 5𝐿{𝑦} = 0
}                                 (9) 

Using (2) in (9), we have 

(𝑠2 + 3)𝐿{𝑥} − 2𝐿{𝑦} = 3

(𝑠2 − 3)𝐿{𝑥} + (𝑠2 + 5)𝐿{𝑦} = 5
}                                                                                                          (10) 
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Solving the system (10) for 𝐿{𝑥}and 𝐿{𝑦}, we have 

𝐿{𝑥} =
11

4
[

1

(𝑠2 + 1)
] +

1

4
[

1

(𝑠2 + 9)
]

𝐿{𝑦} =
11

4
[

1

(𝑠2 + 1)
] −

3

4
[

1

(𝑠2 + 9)
]
}
 

 

                                                                                                      (11)  

Now taking inverse Laplace transform of system (11), we have 

𝑥 =
11

4
𝑠𝑖𝑛𝑡 +

1

12
𝑠𝑖𝑛3𝑡

𝑦 =
11

4
𝑠𝑖𝑛𝑡 −

1

4
𝑠𝑖𝑛3𝑡

}                                                                                                                               (12) 

which is the required solution of (1) with (2). 

10.2 Consider a system of linear ordinary differential equations  

𝑑𝑥

𝑑𝑡
+ 𝑦 = 2𝑐𝑜𝑠𝑡

𝑥 +
𝑑𝑦

𝑑𝑡
= 0

}                                                                                                                                            (13) 

with 𝑥(0) = 0, 𝑦(0) = 1                                                                                                                                        (14) 

Solution using Mohand transforms: 

Taking Mohand transform of system (13), we have 

𝑀 {
𝑑𝑥

𝑑𝑡
} + 𝑀{𝑦} = 2𝑀{𝑐𝑜𝑠𝑡}

𝑀{𝑥} + 𝑀 {
𝑑𝑦

𝑑𝑡
} = 0

}                                                                                                                      (15) 

Now using the property, Mohand transform of the derivatives of the function, in (15), we have 

𝑣𝑀{𝑥} − 𝑣2𝑥(0) + 𝑀{𝑦} =
2𝑣3

(𝑣2 + 1)

𝑀{𝑥} + 𝑣𝑀{𝑦} − 𝑣2𝑦(0) = 0

}                                                                                                      (16) 

Using (14) in (16), we have 

𝑣𝑀{𝑥} +𝑀{𝑦} =
2𝑣3

(𝑣2 + 1)

𝑀{𝑥} + 𝑣𝑀{𝑦} = 𝑣2
}                                                                                                                         (17) 

Solving the system (17) for 𝑀{𝑥}and 𝑀{𝑦}, we have 

𝑀{𝑥} = [
𝑣2

(𝑣2 + 1)
]

𝑀{𝑦} = [
𝑣3

(𝑣2 + 1)
]
}
 
 

 
 

                                                                                                                                       (18)  
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Now taking inverse Mohand transform of system (18), we have 

𝑥 = 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

}                                                                                                                                                          (19) 

which is the required solution of (13) with (14). 

Solution using Laplace transforms: 

Taking Laplace transform of system (13), we have 

𝐿 {
𝑑𝑥

𝑑𝑡
} + 𝐿{𝑦} = 2𝐿{𝑐𝑜𝑠𝑡}

𝐿{𝑥} + 𝐿 {
𝑑𝑦

𝑑𝑡
} = 0

}                                                                                                                         (20) 

Now using the property, Laplace transform of the derivatives of the function, in (20), we have 

𝑠𝐿{𝑥} − 𝑥(0) + 𝐿{𝑦} =
2𝑠

(𝑠2 + 1)

𝐿{𝑥} + 𝑠𝐿{𝑦} − 𝑦(0) = 0

}                                                                                                             (21) 

Using (14) in (21), we have 

𝑠𝐿{𝑥} + 𝐿{𝑦} =
2𝑠

(𝑠2 + 1)

𝐿{𝑥} + 𝑠𝐿{𝑦} = 1

}                                                                                                                          (22) 

Solving the system (22) for 𝐿{𝑥}and 𝐿{𝑦}, we have 

𝐿{𝑥} = [
1

(𝑠2 + 1)
]

𝐿{𝑦} = [
𝑠

(𝑠2 + 1)
]
}
 

 
                                                                                                                                       (23)  

Now taking inverse Laplace transform of system (23), we have 

𝑥 = 𝑠𝑖𝑛𝑡
𝑦 = 𝑐𝑜𝑠𝑡

}                                                                                                                                                       (24) 

which is the required solution of (13) with (14). 

11. CONCLUSIONS:  

In this paper, we have successfully discussed the comparative study of Mohand and Laplace 

transforms. In application section, we solve systems of differential equations comparatively using both the 

transforms. The given numerical applications in application section show that both the transforms (Mohand 

and Laplace transforms) are closely connected to each other. 
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