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Abstract:  In the present paper, we proposed and analyzed an SEIR compartment model of Swine flu with mixing transmission. 

Determine the steady state of the model and Stability analysis is carried out. Equilibrium analysis is presented and it is found that 

in each case the equilibrium points are locally asymptotically stable under certain conditions The stability of the equilibriums are 

studied by using the Routh-Hurwitz criteria. 
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1. INTRODUCTION 

 

 

Swine flu is a respiratory virus of pigs that was first identified in 1918 and although historic diffusion to human beings has been 

sporadic, the infection rate in humans is intensifying at present. Chills, dyspnea, headache, vomiting, diarrhea, myalgia, and fatigue 

are most common symptoms of swine flu. The virus has not previously circulated in human the virus is entirely new [1]. 

 

Many mathematical model have been analyzed to understand the spread of swine flu within human and also in pig populations like 

in [5,10,11]. Kermack and McKendrick[9] were the first people that’s describe an influenza epidemic early in the 20th century. Their 

model is known as the SIR, which has been used as a basis for all subsequent influenza models. By modifying, the basic SIR model 

in a variety of ways by including seasonality influenza epidemics can be shown to have sustained cycles [7,13]. The SIR model has 

also been extended so that it can be used to represent and/or predict the spatial dynamics of an influenza epidemic. 

Most recently several investigation have concern themselves with modelling of dynamics of influenza virus [3, 4, 5, 8, 12]. 

 

In this paper, we have modified the model of Das, et al. [6] with recovery class. In the first section we present the model in which 

c is the contact rate at which the susceptible population is converted into the exposed population., S (t), E (t) I (t) and R (t) represent 

the number of susceptible, exposed, infectious, and recovered Population at the time t respectively, A is the requirement rate of the 

population, 𝜇is the natural death rate of the population, 𝛾is thenatural recovery rate of the infective individuals. In the next section, 

we obtained the disease free and the endemic equilibrium and analyzed the stability conditions for both. In the last section, numerical 

results are also provided. 

 
The transfer diagram depicted in the following figure: Figure.1 
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Fig 1: Swine Flu Model with Incident Rate 

 

2. The Mathematical Model: 

Using the symbols, notations and basic assumptions of [11,2], the model we consider for reinvestigation can be expressed as: 

 
𝑑𝑆

𝑑𝑡
= 𝐴 − 

𝑐𝑆𝐼

𝑆 + 𝐼
+ 𝑟𝐼 + 𝑑𝑅 −  𝜇𝑆 

𝑑𝐸

𝑑𝑡
=  

𝑐𝑆𝐼

𝑆 + 𝐼
− (𝜆 +  𝜇)𝐸 

𝑑𝐼

𝑑𝑡
=  𝜆𝐸 − (𝑟 +  𝛾 +  𝜇)𝐼 

𝑑𝑅

𝑑𝑡
=  𝛾𝐼 − (𝜇 + 𝑑)𝑅 

 

3. Stability Analysis. 

For the equilibrium points, the above differential equation should be equated to zero. 

𝑖. 𝑒.  
𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=
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𝑑𝑡
= 0 

 
We have two equilibrium points are given by 𝑃0 = (𝐴 𝜇⁄ , 0,0,0)is the disease free equilibrium points of the system (1.1) and the 

unique endemic equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗), where 

  

𝑆∗ =
𝑝

𝑐 − 𝑝
𝐼∗, 

𝐸∗ =
(𝑟 + 𝛾 + 𝜇)

𝜆
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𝜆
 

The basic reproduction number defined as 

𝑅0 =
𝑐𝜆

(𝜆 + 𝜇)(𝑟 + 𝛾 + 𝜇)
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3.1 Theorem. The disease free equilibrium of the system is locally asymptotically stable if 𝑅0 < 1and unstable if 𝑅0 > 1. 

 

Proof: We consider equations 

𝐹1 =  𝐴 − 
𝑐𝑆𝐼

𝑆+𝐼
+ 𝑟𝐼 + 𝑑𝑅 −  𝜇𝑆  

𝐹2 =
𝑐𝑆𝐼

𝑆+𝐼
− (𝜆 +  𝜇)𝐸  

𝐹3 =  𝜆𝐸 − (𝑟 +  𝛾 +  𝜇)𝐼  

𝐹4 =   𝛾𝐼 − (𝜇 + 𝑑)𝑅  

The Jacobian matrix 

𝐽0 =

[
 
 
 
 
 
 

−𝑐𝐼2

(𝑆 + 𝐼)
− 𝜇 0

−𝑐𝑆2

(𝑆 + 𝐼)2
+ 𝑟 𝑑

𝑐𝐼2

(𝑆 + 𝐼)
−(𝜆 + 𝜇)

𝑐𝑆2

(𝑆 + 𝐼)2
0

0 𝜆 −(𝑟 + 𝛾 + 𝜇) 0
0 0 𝛾 −(𝜇 + 𝑑)]

 
 
 
 
 
 

 

At equilibrium point 𝑃0 = (𝐴 𝑑⁄ , 0,0,0) the jacobian matrix becomes  

𝐽0 = [

−𝜇 0 −𝑐 + 𝑟 𝑑

0 −(𝜆 + 𝜇) 𝑐 0

0 𝜆 −(𝑟 + 𝛾 + 𝜇) 0
0 0 𝛾 −(𝜇 + 𝑑)

] 

The characteristics equation |𝐽0 − 𝜑𝐼| = 0 is given as 

||

−(𝜇 + 𝜑) 0 −𝑐 + 𝑟 𝑑

0 −(𝜆 + 𝜇 + 𝜑) 𝑐 0

0 𝜆 −(𝑟 + 𝛾 + 𝜇 + 𝜑) 0
0 0 𝛾 −(𝜇 + 𝑑 + 𝜑)

|| = 0 

⇒ (𝜇 + 𝑑 + 𝜑)2[(𝜆 + 𝜇 + 𝜑)(𝑟 + 𝛾 + 𝜇 + 𝜑) − 𝑐𝜆] = 0 
 

Clearly two Eigen values 𝜑 = −𝜇 − 𝑑,−𝜇 − 𝑑 are negative, other Eigen values are given by the quadratic equation  

𝜑2 + 𝑎1𝜑 + 𝑎2 = 0 
 

Therefore, by Routh-Hurwitz criteria the disease-free equilibrium stable if 𝑎1 > 0 𝑎𝑛𝑑 𝑎2 > 0 

If (𝜆 + 𝜇)(𝑟 + 𝛾 + 𝜇) > 𝑐𝜆, i.e 𝑅0 <1. 

 

3.2 Theorem. If 𝑅0 > 1 the endemic equilibrium  𝑃∗is locally asymptotically stable. 

 

Proof: The variation matrix at the endemic point 𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) 

𝐽1 =

[
 
 
 
 
 
 

−𝑐𝐼∗2

(𝑆∗ + 𝐼∗)2
− 𝜇 0

−𝑐𝑆∗2

(𝑆∗ + 𝐼∗)2
+ 𝑟 𝑑

𝑐𝐼∗2

(𝑆∗ + 𝐼∗)
−(𝜆 + 𝜇)

𝑐𝑆∗2

(𝑆∗ + 𝐼∗)2
0

0 𝜆 −(𝑟 + 𝛾 + 𝜇) 0
0 0 𝛾 −(𝜇 + 𝑑)]

 
 
 
 
 
 

 

Consider that 

𝑤1 =
𝑐𝐼∗2

(𝑆∗ + 𝐼∗)2
 𝑎𝑛𝑑 𝑤2 =

𝑐𝑆∗2

(𝑆∗ + 𝐼∗)2
 

 

Then 𝐽1 becomes 

𝐽1 = [

−𝑤1 − 𝜇 0 −𝑤2 + 𝑟 𝑑

𝑤1 −(𝜆 + 𝜇) 𝑤2 0

0 𝜆 −(𝑟 + 𝛾 + 𝜇) 0
0 0 𝛾 −(𝜇 + 𝑑)

] 

 

The characteristics equation |𝐽1 − 𝜑𝐼| = 0  is given as 
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||

−(𝑤1 + 𝜇 + 𝜑) 0 −𝑤2 + 𝑟 𝑑

𝑤1 −(𝜆 + 𝜇 + 𝜑) 𝑤2 0

0 𝜆 −(𝑟 + 𝛾 + 𝜇 + 𝜑) 0
0 0 𝛾 −(𝜇 + 𝑑 + 𝜑)

|| = 0 

 

⇒ (𝜇 + 𝑑 + 𝜑)[(𝑤1 + 𝜇 + 𝜑)(𝜆 + 𝜇 + 𝜑)(𝑟 + 𝛾 + 𝜇 + 𝜑) − (𝑤1 + 𝜇 + 𝜑)𝑤2𝜆 + (𝑤2 − 𝑟)𝑤1𝜆] = 0 

 

Clearly one Eigen value is negative 𝜑 = −(𝜇 + 𝑑) and other Eigen values are given by the cubic equation. 

𝜑3 + 𝑎1𝜑
2 + 𝑎2𝜑 + 𝑎3=0 

Where 

𝑎1 = 3𝜇 + 𝜆 + 𝑤1 + 𝑟 + 𝛾  

𝑎2 = [(𝜆 + 𝜇)(𝑤1 + 𝜇)+(𝑤1 + 2𝜇 + 𝜆)(𝑟 + 𝛾 + 𝜇) − 𝑤2𝜆] 
𝑎3 = (𝜆 + 𝜇)(𝑤1 + 𝜇)(𝑟 + 𝛾 + 𝜇) − (𝜇𝑤2 + 𝑟𝑤1)𝜆  

By Routh-Hurwitz criteria, the system (2.1) is locally asymptotically stable if𝑎1 > 0, 𝑎3 > 0 𝑎𝑛𝑑𝑎1𝑎2 > 𝑎3. Thus,  𝑃∗is locally 

asymptotically stable. 

 

 

 

4. Numerical Simulation  

4.1 Numerical Simulation for Disease free Equilibrium 

From the numerical values of the parameters as𝐴 = 1, 𝑐 = 0.003, 𝑟 = 0.1, 𝜇 = 0.02, 𝜆 = 0.1𝑎𝑛𝑑 𝛾 = 0.01 Then the calculated 

disease free equilibrium point and basic reproductive number are 𝑃0(𝑆, 0,0,0) = (60,0,0,0)and  𝑅0 = 0.192307 < 1. Fig. 2 shows 

that S(t) goes to its steady state, while E(t), I(t) and R(t) goes to zero with respect to time. Hence, the disease dies out. 

 

 
 

Figure 2: Above figure shows that the disease free equilibrium is locally stable for the choice of parameter values. 
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Figure 3: Above figure shows that the endemic equilibrium point is stable for the choice of parameter values. 

 

4.2. Numerical Simulation for Endemic Equilibrium 

We change the value of 𝑐 = 0.3 and all other parameters are as above. Then, we obtain  𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) =
(4.053324,4.863989,3.74153,0.47619)and 𝑅0 = 1.92307 > 1 . Therefore, the endemic equilibrium  𝑃∗is locally asymptotically 

stable. Fig. 3 shows that S, E,I and R goes to their steady state values. Hence, the disease becomes endemic 

    

 

 

 

 

 

 

 

5. Conclusion: 
In this paper, we analyzed an SEIR compartment model of Swine flu, the results are helpful to predict the developing tendency of 

disease and recovery. We analyzed the Steady state and stability of the equilibrium points. The model equations were solved 

analytically. We can conclude that the basic reproduction number 𝑅0 <1 then the disease free equilibrium 𝑃0is locally 

asymptotically stable and if 𝑅0 >1 the endemic equilibrium  𝑃∗is locally asymptotically stable. 

Numerical simulations were presented graphically. We have also observed that contact rate 𝑐 plays an important role in stability; 

the basic reproduction number 𝑅0 will be decrease if the contact rate 𝑐 decreases when disease is endemic.  
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