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Abstract 

  
Dufour and Soret effects on flow in a fluid-saturated anisotropic porous media are studied in this 

paper.  A two dimensional Darcy model without time derivative is employed for the momentum equation.  

Walls of the channels heated and salted from below in the presence of Soret and DuFour effects, is studied 

using linear stability analysis.  The effects of anisotropy parameter, solute Rayleigh number and Soret and 

DuFour effects on onset of convection are discussed. 
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1.1 Introduction 

 
The double diffusive convection in porous media has become important in recent years because of 

its many applications in geophysics, particularly in saline geothermal fields where hot brines remain beneath 

less saline, cooler ground water. In a system where two diffusing properties are present, instabilities can 

occur only if one of the components are destabilizing.  When heat and mass transfer occur simultaneously in 

a moving fluid, the relation between the fluxes and the driving potentials are of more intricate in nature. It 

has been found that an energy flux can be generated not only by temperature gradient but also by 

composition gradients as well. The energy flux caused by a composition gradient is called the Dufour or 

diffusion-thermo effect. On the other hand, mass fluxes can also be created by temperature gradients and 

this is the Soret or thermal- diffusion effect.  If the cross-diffusion terms are included in the species 

transport equations, then the situation will be quite different.  Due to cross-diffusion effects, each property 

gradient has a significant influence on the flux of the other property. 

There are many studies available on the effect of cross diffusions on the onset of double diffusive 

convection in a porous medium. 

 Heat and mass transfer by natural convection at a stagnation point in a porous medium considering 

Soret and DuFour effects, recently studied by Adrain Postelnicu (2010).  Ahmed and Afify (2007) have 

investigated effects of temperature-dependent viscosity with soret and dufour numbers on non-darcy MHD 
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free convective heat and mass transfer past a vertical surface embedded in a porous medium. Alam et al., 

(2006) have investigated by Dufour and Soret effects on steady free convection and mass transfer flow past 

a semi-Infinite vertical porous plate in a porous medium. Gaikwad et.al.,(2009) discussed linear and non-

linear double diffusive convection in a fluid-saturated anisotropic porous layer with cross diffusion effects 

(2009).  Hassan (2009) have studied Soret and DuFour effects on natural convection flow past a vertical 

surface in a porous medium with variable surface temperature.  Mojtabi A.  Charrier-Mojtabi  M.C. (2000 & 

2005) discussed double diffusive convection in porous media. The book available on the effects of cross 

diffusions on the onset of double diffusive convection in a porous medium by Nield and Bejan (2006). 

Nilesen T. and Storesletton L. (1990) studied an analytical study of natural convection in isotropic and  

anisotropic porous channels.  Balagondar P.M and Pranesha Setty A., (2012).discussed a study of natural 

convection in anisotropic porous rectangular channels using a thermal non-equilibrium model. The double 

diffusive convection in a porous medium in the presence of Soret and DuFour coefficients has been 

analyzed by Rudraiah and Malashetty (1996) extended to weak non-linear analysis by Rudraiah and 

siddheshwar (1998).  Trevisan O.V.., Bejan A. (1999). Have studied Combined heat and mass transfer by 

natural convection in a  porous media.   A study of convective instability in a fluid mixture heated from 

above with negative separation ratio (Soret coefficient) was performed experimentally by La Porta and 

Surko (1998).  J. Wang., etal (2014), investigated onset of double-diffusive convection in horizontal cavity 

with Soret and Dufour effects.  A. Lagra., etal, discussed (2015) Double diffusive convection in  a shallow 

horizontal binary fluid in the presence of Soret and Dufour effects. 

 

1.2 Mathematical Formulation 
 

      We consider two-dimensional free convection in a horizontal porous media heated and salted 

from below is considered (see figure 1).  A constant gradient of temperature T  and salinity S  is 

maintained between the boundaries. The Darcy model without time derivative is employed for the 

momentum equation and the both the cross-diffusion terms are included in the temperature and 

concentration equations.  The channel is rectangular with height h and width a, we choose a cartesian co-

ordinate system with z-axis is in the vertical direction and x-axis is the horizontal direction perpendicular to 

the channel axis.  The horizontal channel walls are z = 0 and z = h and the vertical walls at 
2

a
x   

and
2

a
x  .  On assuming that the Prandtl-Darcy number is large, so that inertia term may be neglected and 

invoking Boussinesq approximation, the governing equations are 
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 .)()(1 000 SSTT sT   ,                          (1.2.6) 

 

where u and v are the Darceian velocity vector, p the pressure, g the acceleration due to gravity .T the 

temperature, S the concentration ,   the porosity, zx and  are the anisotropic permeability 

tensor,
fpmp cc )()(    with 

fpspmp ccc )()()1()(   , Tzx kk  ,,,,, and s  denote the 

permeability horizontal direction, permeability in z direction, density , viscosity , specific heat ratio, thermal 

and solute expansion coefficients  respectively, 11 thermal diffusivity 
12 cross diffusion due to S 

component, 21  cross diffusion due to T component and  22  is the mass diffusivity. 

1.2.1. Basic State 

 

The basic state of the fluid is assumed to be quiescent and is given by 

 

,)(,)(,)(TT,(z)p  p,)0,0,0(),,( bb zzSSzwvu bb                        (1.2.7)  

using the equation (1.2.7) in (1.2.1) – (1.2.6)  we get 
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1.2.2. Perturbed State 

 
Applying a small perturbations in the form  
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       (1.2.9) 
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Where / indicate perturbations. Introducing (1.2.9) in equations (1.2.1)-(1.2.6) and using the basic state 

(1.2.8), we get 
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Since the flow is two dimensional, we introduce stream function   in the form: 
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Eliminating pressure from (1.2.2)-(1.2.3), applying stream functions and non dimensionalsing using 

following non-dimensional parameters in (1.2.1) – (1.2.5) 
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where  
 

 

 

The asterisks have been dropped and setting 1 to restrict the number of parameters. 

 
 

 

 

 

1.3 Linear Stability analysis and numerical solution 

 

The linearised forms of the governing equations are 
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The boundary conditions used are  
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Where nnnnn HGFDC ,,,, and nI   are function of x only and   is growth rate.  The boundary conditions 

(1.3.4) are satisfied if  0 nnn HFC  for all x.  Comparing the znsin  terms for  , and , for 

marginal stability 0 , with single-mode component then the above equations is reduces in the form 
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These satisfy the boundary conditions (1.3.4) on the horizontal boundary. 
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By eliminating D(x) and I(x) from (1.3.1) – (1.3.3) we get sixth order differential equation in the form: 
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The general solution of equation (6.3.12) is 

 
xmxmxmxmxmxm

ececececececxG 654321

654321)(   ,                     (1.3.15)   

dx

d
DxGSSSSSRa

SRaRaRaDSSSS

SSSRaSRaRaRaDSS

S

TTS

STTS







.0)(])()2

2()2

2()[(

21

6

21

4

2

2

1

224244

21

4

21

2

21

2

21

246

21







http://www.jetir.org/


© 2019 JETIR  February 2019, Volume 6, Issue 2                                   www.jetir.org  (ISSN-2349-5162) 

 

JETIR1902240 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 296 

 

where ic ’s are arbitrary constants and im ’s roots of the auxiliary equation of (1.3.12).  Since the auxiliary 

equation involves cubic in 2D , put ,,, 563412 mmmmmm   
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For a non-trivial solution of the system of equations (3.8), (4.0) and (4.1), we require:  
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The left hand side of (1.3.20) may be viewed as a function of ,Ra  say )(
c

Raf , with 
c

Ra depending on 

SrRa
s
, and Du   hence equation (1.3.20) can be written as 0)( 

c
Raf .  Using Newton-Raphson 

method for various values of ,,SrRas uD and cRa can be calculated numerically. 
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1.4 Results and Discussion  
 

 The variation of small critical Rayleigh number cRa  with solute Rayleigh number sRa  for different 

values of mechanical anisotropy parameter   and for fixed values of 03.0,0.1  DuSr and  9.0  is 

shown in figure 1.  We observe that critical Rayleigh number decreases with increasing anisotropy 

parameter    indicating that the effect of increasing  is to advance the onset of convection.  The effect of 

increasing   on the Rayleigh number diminishes as    becomes large.   

 

 Figure 2 shows the variation of the critical Rayleigh number cRa  with solute Rayleigh number  sRa  

for different values of Soret parameter and for fixed values of 03.0,2.0  Du and  9.0 .  We find that 

as the Soret parameter increases positively, the critical Rayleigh number decreases.  However, we find that 

the effect of increasing negative Soret number is to increase the Rayleigh number.  This is due to fact that, 

for negative Soret number, the heavier component migrate towards the hotter region, thus counteracting the 

density gradient caused by temperature. 

 

 The effect of DuFour parameter on the critical Rayleigh number for fixed values of 

2.0,0.1  Sr and  9.0  is shown in figure 3.  We observe from this figure that for small values of 

solute Rayleigh number, the effect of increasing DuFour parameter is to decrease the critical Rayleigh 

number.   

 

 In figure 4 the effect of diffusivity ratio on the critical Rayleigh number for fixed value of 

03.0,2.0  Du and 0.1Sr . We observe that when sRa  small, an increase in   increases the critical 

Rayleigh number, indicating that the effect of increasing   is to stabilize the system.  However, for large 

value of the solute Rayleigh number, the trend reverses. 
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                   Figure1. Variation of critical Rayleigh number cRa  with solutal Rayleigh number     

                                sRa for different values of  mechanical anisotropy parameter  . 
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                    Figure 2. Variation of critical Rayleigh number cRa with solutal Rayleigh number sRa      

                                   for different values of  Soret  parameter Sr 
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1.5 Conclusion 
                  

 The cross-diffusion effect on double diffusive convection in a horizontal rectangular channel 

saturated anisotropic porous media which is heated and salted below, is studied numerically.  The effect of 

anisotropy parameter, solute Rayleigh number, Soret and DuFour parameters are shown graphically and the 

conclusions are the positive Soret parameter destabilizes the system, while the negative Soret parameter 

stabilizes the sysytem.  The DuFour parameter destabilizes the system in stationary modes.  The ratio of 

diffusivity stabilizes the system for small values of sRa  and it destabilizes for large sRa .  
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