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Abstract: Missing data imputation is a challenging issue in data mining pre-processing techniques. Most of the data mining 

algorithms cannot process a dataset with continuous missing data. The continuous missing data in a dataset can affect the 

performance of the mining process of data which leads to the difficulty of extracting information from datasets. The existing 

system’s MIAEC algorithm is not applicable to find the continuous missing data and takes much time to find the missing values 

in large datasets with continuous data loss. To overcome this problem, the proposed method is meant for continuous missing data 

imputation based on co-cluster sparse matrix learning (CCSML) model. This algorithm learns without reference class, and even 

with continuous missing rate data as high as 90%. The method works based on a tensor optimization model and labeled maximum 

block. The computational method of sparse recovery learning model is built on low-rank, co-clusters of GWAS data matrices and 

the performance is better than the existing method of missing data imputation using the Evidence Chain (MIAEC) algorithm. 

 

Keywords: Missing at Random, Missing completely at Random, Missing Not at Random, MIAEC algorithm, sparse low-

rank matrix completion, Co-clustering factorization, Maximum blocks improvement. 

 

 

I. INTRODUCTION 

Missing data is a common problem in many fields of human endeavor ranging from Social sciences to Economics and from 

Political research to the Entertainment industry. In survey conducting fields, missing data occurs when people refuse to answer 

specific questions or some people cannot be contacted. Missing data may arise from numerous different reasons. In surveys, 

missing data is typically a consequence of non-response; some questions might be irrelevant for some respondents, respondents 

may end up interrupting the survey or results of multiple different surveys with different questions may be analyzed together. In 

other contexts, missing data may be caused, for example, by equipment failure or data corruption. The existence of missing values 

is common in real-world data. If the occurrence of the missing data is completely at random, we can simply remove it. In many 

cases missing values happen when there is a human mistake when collecting the data or some information is damaged and it will 

make the data biased if we remove those missing observations. With statistical tools, the missing values can be imputed so that 

the maximum amount of information is restored while keeping the data unbiased. This work demonstrates some of the popular 

statistical methods for imputing missing values. The challenge of missing data pose to the decision-making process is more 

evident in online applications where data have to be used almost instantly after being obtained. Computational intelligence 

techniques are neural networks and other pattern recognition. In the mentioned techniques, have newly become very common 

tools in decision-making processes. In a case where some variables are not considered, it becomes hard to continue with the 

decision-making process. The major challenge is that the standard computational intelligence techniques are not able to process 

input data with missing values and hence, cannot perform classification or regression. Some of the reasons for missing data are 

sensor failures, omitted entries in databases and non response to questions in questionnaires. There have been many techniques to 

estimate the missing data for some applications. For the majority of the techniques that have been discussed in the literature, 

significant the reasons why the data are missing become very helpful in choosing the right technique to approximate missing data. 

In most applications, there is restricted time between the readings depending on how normally the sensor is sampled. In 

classification and regression tasks, all decisions concerning how to proceed must be taken during this time period. 

 

1.1 Missing at Random (MAR) 

Missing at Random requires that the cause of missing data be unconnected to the missing values themselves. However, 

the cause may be linked to other observed variables. MAR is also known as the ignorable case and occurs when cases with 
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missing data are different from the observed cases but the pattern of missing data is predictable from other observed variables. 

Separately said, the cause of the missing data is due to external effect and not to the variable itself. Suppose there are two sensors 

namely S and T. For MAR to set, the probability of datum d from a sensor S to be missing at random should be dependent on 

other measured variables in the database. Data item are not missing at random, but the probability that a value is missing depends 

on values of variables that were accurately measured. As an instance, look at a survey in which females are less likely to provide 

their private income in general (but the possibility of acknowledging is independent of her real income). If we know the sex of 

every subject and have income levels for some of the females, equitable sex-specific income estimates can be finished. That is 

because the incomes for some of the females are a random sample of all females’ incomes. 

 

1.2 Missing Completely at Random (MCAR) 

Missing completely at Random refers to a condition where the possibility of data missing is distinct to the values of any 

other variables, whether missing or observed. In this mechanism, cases with entire data are impossible to differentiate from cases 

with incomplete data. In this case, the probability of sensor N values missing is independent of any experiential data and the 

missing value is not dependent on the prior state of the sensor or any reading from any other sensor.Data elements are missing for 

reasons that are unrelated to any characteristics or responses for the subject, including the value of the missing data, where it to be 

known. Examples contain missing laboratory measurements because of a dropped test tube (if it was not dropped because of 

knowledge of any measurements) and a review in which a subject omitted its response to a question for reasons unrelated to the 

response, the subject would have made or to any other of her characteristics. 

 

1.3 Missing Not at Random (MNAR) 

Missing not at random (MNAR) indicates that the missing data method is related to the missing values. An example of 

data missing not at random can result from a position where two databases from different cities where merged. Assume one 

database lacks some features that have been considered on the other database. In this condition, why a few data are missing can be 

explained. However, this explanation is only dependent on the same variables that are missing and cannot be explained in terms 

of any other variables in the database. Another case of MNAR will be when a sensor excursion if the value read, is above a 

certain threshold. In this case, the probability of L missing is reliant on L itself. MNAR is also referred to as the non-ignorable 

case as the missing observation is dependent on the outcome of interest. In this case, the measuring from S might be missing only 

because sensor T is not working. Elements are more likely to be missing if their true values of the variable in question are 

scientifically higher or lower. In a discussion, this situation can be given as an example of not missing at random mechanism 

when subjects with lower income levels or very high incomes are less likely to provide their personal income. These distinctions 

of mechanisms are important because when missing data mechanism is MCAR unbiased estimates will be produced even with 

rather primitive analysis methods. When missing data mechanism is MAR, unbiased measures will be created if a model and 

estimation technique is used that renders the missing value mechanism ignorable. When missing data mechanism is MNAR, an 

analysis method must be used that includes both a model for the observed data and a model for the missing value mechanism. For 

missing data that are MCAR or MAR, common modeling software is available, that produces balanced using all the available 

information. There are no easy solutions for missing data in MNAR. It is impossible to remove completely missing data. The 

requirement is to use missing data estimation methods which base estimation on the observed (non-rectangular) data only. 

 

II. RESEARCH METHODOLOGY 

 

2.1 MIAEC ALGORITHM 

Most existing missing data imputation methods can be divided into two categories based on the probability of statistical 

analysis and data mining. The existing algorithm MIAEC obtains all relevant evidence of missing data in each tuple of missing 

data by mining, which is further combined to form a chain of evidence to estimate the missing attribute value. Finally, the value 

of the missing data is estimated by the chain of evidence. It does not need to master the distribution of data in the dataset, domain 

knowledge, and does not need to train the dataset estimation model for the imputation to reduce time cost. Most existing 

algorithms are designed to deal with small datasets on a single machine, but now with the development of information 

technology, the rapid growth of data, large-scale data processing on a single machine is clearly inappropriate. In MIAEC, Map-

Reduce programming model is used to implement the proposed MIAEC algorithm for imputation of large-scale datasets on 

distributed platforms. 

 

MIAEC is based on the set of associated attribute value combinations of missing data as a chain of evidence to estimate 

the value of missing data. According to the idea of data mining, there is a certain relationship between data attribute values in 

large-scale datasets. In the imputation process, the algorithm will first estimate the missing value of the imputation value, the 

algorithm scans each data tuple in the entire dataset, marking tuples with missing values `?' as incomplete data tuples, and 
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combine the different associated attribute values of the missing data in the incomplete data tuple as evidence of the estimated 

missing value. So that a large number of combinations of the relevant attributes for missing data in the incomplete tuple constitute 

the estimated missing data value of the chain of evidence. The algorithm scans the entire dataset again and counts the combination 

of attribute values in all data tuples, and uses the relevant theorem in the prerequisite knowledge to calculate the value of the 

missing data. The core task of the algorithm is to calculate the reliability of each estimated missing value in the chain of evidence. 

Thus, gives the sum of the confidence of all the evidence for the estimated missing data, the maximum estimate of the sum of the 

confidence values is selected as the imputation value. 

 

2.2 DISADVANTAGES OF EXISTING SYSTEM 

 The missing attributes tuple, nor performs imputation of the missing value, directly in the missing data in the dataset 

analysis and mining. 

 The parameter convergence is very slow and time-consuming. 

 Large percentage of missing data, MIAEC filling accuracy will be greatly reduced. 

 The linear regression for imputing missing values is extremely poor.  

 The estimations of parametric method may be very biased and the optimal control factor settings may be miscalculated. 

 Leads to a loss of helpful characteristics in case of the continuous missing attributes.  

 May not be sufficient to non-parametrically estimate the relationship during continuous missing attributes in the cell. 

 

III. PROPOSED SYSTEM 

 

The current approaches for haplotype inference (i.e., the details that are not directly available from the high-throughput 

genotyping platform) and missing data imputation usually process the genotype data, and each sample is phased and modeled as 

mosaic of those haplotypes of the reference panel. The proposed approach could conduct imputation for both haplotype and 

genotype data matrices from different cohorts using different genotyping chips. The missing valued matrices of the genotype data 

is provided with SNPs or the phased haplotype data. The imputation problem is to impute the missing data entries of the data 

matrices. The illustrative formats of the data matrices are given with the diploid genotype data and the corresponding phased 

haplotype data. For the data matrices, each row corresponds to one individual sample and each column corresponds to one SNP. 

 

 The natural and flexible modeling framework which utilizes information across multiple reference panels and study 

panels which achieves high recovery accuracy even when the data matrices have high percentages of missing entries. Proposed 

approach combines the multiple chosen reference panels and the different panels together as a large whole data matrix with 

missing entries. 

 
Figure 1.1 Genotype data matrix with missing value 

 

The idea of proposed approach is based on the following observation: although the large genotype data matrix, which 

usually has missing entries and which may be contaminated by noises and errors from experimental samples and sequencing 

technologies, appear to be very complex, the underlying structure of the data matrix contains essential “sparse” information. By 

“sparse”, it means the data matrix has the mathematical property of low-rank or low number of co-clusters. The sparse property 

using large genotype data matrices and the testing results show the matrices are usually low-ranked.  

 

3.1 DATASET 

The dataset of chr22 setup information is detailed as follows. The dataset 1KG_chr22 was prepared to represent 

imputing SNPs from a reference panel typed on a different chip. This dataset consists of haplotypes for 1092 individuals, which 

split into a study and reference panel by assigning half of the individuals to each such that the distribution of ethnicities was 

preserved across both groups. For the study panel 60,000 SNPs is chosen from a randomly selected region on chromosome 22 and 

masked genotypes of all SNPs. 
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The panel consists of 85.3% systematically missing data for 546 individuals. For MIAEC and CCSML, there are two 

different models for the same target: matrix completion. Usually if it has a good estimation of the rank of the matrix, then it can 

decide the size of matrices  and thus CCSML is preferred because it also provides the clustering information of 

individual samples and SNPs. 

 

3.2 SPARSE LOW-RANK MATRIX COMPLETION 

The sparse low-rank matrix completion model aims to fill in missing data values of a matrix based on the priori 

information that the matrix under consideration is of low rank. The low-rank matrix completion model can be formulated as the 

following optimization problem: 

 
Where rank(X) denotes the rank of matrix X, and Ω denotes the index set of the known entries of M. That is, it is given a set of 

known entries of M, and wants to fill in the missing entries such that the completed matrix is of low rank. In the genotype missing 

data imputation problem, each row of the matrix M represents a patient sample, and each column of the matrix M corresponds to 

a SNP. That is,  represents the  allele of the  patient sample. It is usually believed that patients can be classified into 

different categories and patients in the same category should have similar genetic patterns. Therefore, believe that the matrix M is 

low-rank, or at least numerically low-rank. 

 

The sparse low-rank matrix model has been widely used in online recommendation, collaborative filtering, and computer 

vision and so on. Under certain randomness hypothesis, the model (1) is equivalent to the following convex optimization problem 

with high probability: 

 
Where ||X||* is called the nuclear norm of matrix X and is defined as the sum of singular values of X. The nuclear norm 

minimization problem (NNM) is numerically easier to solve than the propose model because it is a convex problem. Many 

efficient numerical algorithms have been suggested to solve the NNM model, use the fixed-point continuation method (FPCA) 

proposed. 

 

The proposed imputation method implements Nesterov’s accelerated proximal gradient method (APG) to solve (2), 

while FPCA can be seen as the ordinary version of proximal gradient method for solving (2). Theoretically, APG is faster than 

FPCA for solving LRMC, because the former attains an -optimal solution in  iterations, while the latter one attains an -

optimal solution in  iterations. Mendel-Impute also implements two important techniques to further accelerate the speed of 

APG: the sliding window scheme to better balance the trade-offs between accuracy and running time, and the line search 

technique to find an appropriate step size for the proximal gradient step. From these experiments, it is found that the sliding 

window scheme is quite helpful for missing data imputation. Thus it is incorporated the sliding window scheme to LRMC, 

denoted as LRMC-s.  

 

3.3 CO-CLUSTERING FACTORIZATION 

In this proposed approach imputation is done based on matrix co-clustering (simultaneous clustering approach for each 

row) factorization. Co-clustering model for two-dimensional and higher-dimensional matrix co-clustering is based on a tensor 

optimization model and an optimization method termed Maximum Block Improvement (MBI) Inspired by the idea of matrix co-

clustering for imputation, a basic model is developed as follows. 

 

 
 

Where  

 In (3), the Frobenius norm of a matrix X is defined as  imputation approach, based on the matrix co-

clustering factorization, aims to complete matrix M by using a low-rank matrix factorization model. In our framework, A is the 

data matrix with missing entries; and  is the artificial row assignment matrix and the artificial column assignment matrix, 

respectively, and X is the artificial central-point matrix. Note that A is also an unknown decision variable in (3), because only a 
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subset of its entries is known. Moreover, note that (3) requires the input of , which are closely related to the rank of the matrix 

to be completed. Therefore, in practice, if it has good estimation to the rank of the matrix, then (3) is a better model to use than 

(2), because it also provides the clustering information of individual samples and SNPs. 

 

 3.4 MAXIMUM BLOCK IMPROVEMENT 

The proposed model is non-convex; it has some natural block-structure that can be utilized to adopt an efficient solution 

method. To solve the model (3) using a block coordinates update (BCU) procedure. There are four block variables in the model 

(3), namely A, X,  and . The basic idea of BCU is, at iteration to minimize the function f with respect to one block variable 

while the other three blocks are fixed at the current known values. This idea is effective because it is observed that minimizing f 

for only one block variable among A, X,  and  is always relatively easy. A naive implementation of the BCU idea is to 

minimize f in the order of A →  → X → , and in each step only one block variable is updated with the other three blocks 

being fixed. The proposed model, the matrix X actually plays a more important role than the other three blocks. As a result, it is 

beneficial if it is possible to update the X block more frequently than the other three blocks. Therefore, implemented the following 

four different algorithms based on the BCU idea. 

“MBI-BL”: This is an alternative of the MBI algorithm MBI-BL applies MBI algorithm in ref. 15 to minimize f with four blocks 

variables: X, (  − X), (  − X) and (A − X). In each block, for example, (A − X), alternating block minimization scheme is used to 

minimize f with respect to A and X alternating, until the function value ceases to change. After having attempted all four block 

variables, the block variable with maximum improvement is updated. 

 

Algorithm: Maximum Block Improvement 

Given initial iterates , and initial values . 

For run the following until  

 

1) Block Improvement: 

 
 

 
 

 
 

 
 

2) Compute the corresponding objective values: 

 

 
 

 
 

 
 

 
 

3) Maximum Improvement: Compare  pick up the smallest value to update the corresponding block variables: 

 

 If is the smallest, then 
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 If is the smallest, then 

 

 

 If is the smallest, then 

 

 

 If is the smallest, then 

 

 
 

All the algorithms are terminated when the objective value in the (k + 1)-th iteration does not decrease significantly from that in 

the k-th iteration. 

 

IV. RESULT AND DISCUSSION 

 

The results consists the combination of two types of imputation methods. They are CCSML (Co-cluster Sparse matrix 

Learning model) and MIAEC (Missing data imputation using the Evidence Chain). 

 

4.1. Error rate 

 
Figure 4.1 Comparison of Error rate estimation of missing genotypes for Chr22. 

 

The above graph shows the error rate estimation between MIAEC and CCSML. The missing rate is calculated from 5% 

to 90%. In the graph X-axis shows missing rate and the Y-axis shows error rate. From the graph it is understood that the CCSML 

has lower error rate compare to MIAEC algorithm. In chr22 data, error rate are calculated based on the percentage of positive 

results returned that are relevant. 

The formula for calculating percentage error is simple: [(|Approximate Value - Exact Value|) / Exact Value] x 100. 

 

 
 

 

4.2. CPU Time 
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Figure 4.2 Comparison of CPU time for Chr22. 

 

The above graph shows the computation time estimation between MIAEC and CCSML imputations. The missing rate is 

calculated from 5% to 90%. In the graph X-axis shows missing rate and the Y-axis shows CPU time. From the graph it is easily 

understood that the CCSML algorithm works faster than the existing MIAEC algorithm as the CPU time of proposed system is 

lower than the existing system. 

The formula of the runtime is, 

 

 
 

4.3. Imputation Accuracy 

 

 
Figure 4.3 Imputation Accuracy of missing genotypes for Chr22 

 

The above graph indicates the comparison of imputation accuracy of proposed (CCSML) algorithm with the existing 

(MIAEC) algorithm. In this graph X-axis shows the missing rate and Y-axis shows the imputation accuracy. From the graph it is 

understood that the CCSML algorithm imputation is higher accuracy while compared to MIAEC algorithm imputation. The 

following formula is used to calculate the accuracy, 

 

 
 

(TP- True Positive, TN- True Negative, FP- False Positive, FN- False Negative) 

 

 

V. CONCLUSION AND FUTURE ENHANCEMENT 

The proposed system sparse recovery is meant for imputing missing genetic data in genome-wide association studies. 

Co-cluster sparse matrix learning (CCSML) models of sparse matrix are designed based on the sparse properties of low-rank and 

low numbers of co-clusters of the large, noisy, genetic datasets of matrices with missing data. The model would like to point out 

that the low-rank matrix completion model is similar to Mendel-Impute, but the matrix co-clustering factorization model is 

completely new. The proposed approach is able to effectively find patterns for imputation within study data, both with and 

without reference panels, and even with data missing rate as high as 90%. The performance of this approach with several other 
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mainstream approaches for genotype imputation, sparse matrix is easy to use for metadata analysis, and it requires very simple, 

easy-to-process input file format and easy-to-interpret output result files. It has better or comparable performance compared to 

current state-of-the-art methods, especially for handling large sample size data with very different sets of SNPs and no reference 

panels. 

 

In future work plan it can be further explored with including the extensive experiments of CCSML on more data sets, 

and further improvement of CCSML for reducing the time complexity. 
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