ANTI Q-FUZZY BI-IDEALS IN NEAR-RINGS

¹A.Balavickhneswari, ²V.Mahalakshmi, ¹M.Phil Scholar, ²Assistant Professor of Mathematics, ¹P.G and Research department of Mathematics, ¹A.P.C. Mahalaxmi College for Women, Thoothukudi, Tamilnadu.

Abstract:

In this paper, we introduce the notion of an anti Q-fuzzy bi-ideals in near-rings. Also we investigate some algebraic nature of an anti Q-fuzzy bi-ideals in near-rings. Further, we discuss the properties of an anti Q-fuzzy bi-ideals in near-rings.

Keywords:

Ideal, bi-ideal, fuzzy bi-ideal, anti fuzzy bi-ideal.

1. Introduction:

In 2009, T.Manikandan[6], introduced the concept of fuzzy bi-ideal in near-ring and S.K.Datta [2] introduced the concept of Anti fuzzy bi-ideals in rings and the notion of anti fuzzy subgroups and fuzzy subgroup introduced by R.Biswas [1]. In 2017, S.Usha Devi, Jeyalakshmi and T.Tamizh Chelvam [8] are introduced by Q-fuzzy bi-ideal in near-ring and some its properties. Motivated by this concept, we introduced anti Q-fuzzy bi-ideals in near-rings and some its properties.

2. Preliminaries:

In this section, we collect all basic concepts in near-rings, which are used in this paper. We also furnish certain results which are used in our work.

Definition 2.1:

A non-empty set N with two binary operations "+" (addition) and "." (multiplication) is called a right near-ring, if it satisfies the following conditions:

- (i) (N, +) is a group (not necessarily abelian)
- (ii) (N, .) is a semi group,
- (iii) For all $x, y, z \in N$, (x + y). $z = x \cdot z + y \cdot z$

Remark 2.2:

Throughout this paper, by a near-ring, we mean only a zero symmetric right near-ring. The symbol N stands for a near-ring (N, +, .) with at least two elements. 0 denotes the identity element of the group (N, +).

Definition 2.3:

A fuzzy subgroup *B* of *N* is said to be fuzzy bi-ideal if $(BNB) \cap (BN * B) \subseteq B$. In zero-symmetric if $BNB \subseteq B$.

Definition 2.4:

Let N be a near-ring. A fuzzy set μ of N is called an anti fuzzy bi-ideal of N if for all $x, y, z \in N$

(i) $\mu(x - y) \le \max\{\mu(x), \mu(y)\}\$

(ii) $\mu(xyz) \le \max\{\mu(x), \mu(y)\}.$

Definition2.5:

A mapping $\mu: X \times Q \longrightarrow [0,1]$, where X is an arbitrary non-empty set and is called a Q-fuzzy set in X.

Definition 2.6:

A family of a *Q*-fuzzy set $\{\mu_i / i \in \Omega\}$ is a near-ring *N*, the union of $\bigcup_{i \in \Omega} \mu_i$ of $\{\mu_i / i \in \Omega\}$ is defined by $\bigcup_{i \in \Omega} \mu_i (x, q) = \sup\{\mu_i(x, q) / i \in \Omega\} \forall x \in N, q \in Q.$

Definition 2.7:

A family of *Q*-fuzzy set $\{\mu_i / i \in \Omega\}$ is near-ring *N*, the intersection of $\bigcap_{i \in \Omega} \mu_i$ of $\{\mu_i / i \in \Omega\}$ is defined by $\bigcap_{i \in \Omega} \mu_i (x, q) = \inf\{\mu_i(x, q) / i \in \Omega\} \forall x \in N \text{ and } q \in Q.$

Definition 2.8:

Let f be a mapping from a set N to a set N'. Let μ and λ be a Q-fuzzy set of N and N' respectively. Then $f(\mu)$, the image of μ under f, is a subset of N' defined by

$$f(\mu)(y,q) = \begin{cases} \inf_{x \in f^{-1}(y,q)} \mu(x,q) & \text{if } f^{-1}(y,q) \neq \phi \\ 0 & \text{Otherwise} \end{cases}$$

And pre-image of λ under f is a Q-fuzzy subset of N defined by $f^{-1}(\lambda(x,q)) = \lambda(f(x,q))$, for all $x \in N, q \in Q$ and $f^{-1}(y,q) = \{(x,q)/x \in N, q \in Q, f(x,q) = (y,q)\}$

Definition 2.9:

Let μ and λ be any two *Q*-fuzzy subsets of *N* defined by $(\mu \cap \lambda)(x, q) = \min\{\mu(x, q), \lambda(y, q)\}$ $(\mu \cup \lambda)(x, q) = \max\{\mu(x, q), \lambda(x, q)\}$

$$(\mu - \lambda)(x, q) = \begin{cases} \inf_{x=y-z} \max \{\mu(y, q), \lambda(z, q)\} & if x \text{ can be expressed as } x = y - z \\ 0 & Otherwise \end{cases}$$

$$(\mu\lambda)(x,q) = \begin{cases} \inf_{x=yz} \max\{\mu(y,q), \lambda(z,q)\} & \text{if } x \text{ can be expressed as } x = yz \\ 0 & \text{otherwise} \end{cases}$$

$$(\mu * \lambda)(x,q) = \begin{cases} \inf_{x=ac-a(b-c)} \min\{\mu(a,q), \lambda(c,q)\} & \text{if } x \text{ can be expressed as } x = ac - a(b-c) \\ 0 & \text{otherwise} \end{cases}$$

Throughout this paper, f_I is the characteristic function of the subset I of N and the characteristic function of $N \times Q$ denoted by χ , that means $\chi: N \times Q \rightarrow [0,1]$ mapping every elements of $N \times Q$ to 1.

Definition 2.10:

For any *Q*-fuzzy set μ in *X* and $t \in [0,1]$. We define two sets

 $U(\mu; t) = \{(x, q) | x \in N, q \in Q, \mu(x, q) \ge t\}$ and $L(\mu; t) = \{(x, q) | x \in N, q \in Q, \mu(x, q) \le t\}$, which are called an upper and lower t-level cut of μ respectively.

Definition 2.11:

A mapping $f: N \to N'$ is called a near-ring homomorphism if f(x + y) = f(x) + f(y) and $f(xy) = f(x)f(y), \forall x, y \in N$.

Definition 2.12:

A mapping $f: N \to N'$ is called a near-ring anti homomorphism if f(x + y) = f(y) + f(x) and f(xy) = f(y) + f(x) $f(y)f(x) \forall x, y \in N$

Definition 2.13:

A Q-fuzzy set μ of a group G is called Q-fuzzy subgroup if $\mu(x - y, q) \le \max\{\mu(x, q), \mu(y, q)\}, \forall x, y \in \mathcal{G}, q \in Q$

Definition 2.14:

A *Q*-fuzzy set μ in *N* is a *Q*-fuzzy bi-ideal of *N* if (i) $\mu(x - y, q) \ge \min\{\mu(x), \mu(y)\} \forall x, y \in N$ (ii) $\mu(xyz) \ge \min\{\mu(x), \mu(z)\} \forall x, y, z \in N$

Definition 2.15:

A *Q*-fuzzy set μ of a group *G* is called an anti *Q*-fuzzy subgroup if $\mu(x - y, q) \le \max\{\mu(x, q), \mu(y, q)\} \forall x, y \in G, q \in Q$

3.Anti Q-fuzzy bi-ideal in near-ring:

Definition 3.1:

A *Q*-fuzzy set μ in *N* is an anti *Q*-fuzzy bi-ideal if for all $x, y, z \in N$ and $q \in Q$ (i) $\mu(x - y, q) \le \max\{\mu(x, q), \mu(y, q)\}$

(ii) $\mu(xyz,q) \le \max\{\mu(x,q),\mu(z,q)\}$

Example 3.2:

Let $N = \{0, a, b, c\}$ be the Klein'	s four	group.	Define	multiplication	on in I	N as follo	ows
--	--------	--------	--------	----------------	---------	------------	-----

+	0	А	b	c			0	a	b	с
0	0	А	b	с	-	0	0	0	0	0
а	a	0	с	b		a	0	b	0	b
b	b	С	0	a		b	0	0	0	0
с	c	В	a	0		c	0	b	0	b

Then $(N, + \cdot)$ is a near-ring. Define an anti Q-fuzzy set $\mu: N \times Q \rightarrow [0,1]$ by $\mu(0,q) = 0.6$, $\mu(a,q) = 0.7, \mu(b,q) = \mu(c,q) = 0.8$. It is easy verify that μ is an anti Q-fuzzy bi-ideal of N.

Theorem 3.3:

Let $f: N \to N'$ be an onto homomorphism of a near ring N.

- 1) If λ is an anti *Q*-fuzzy bi-ideal in *N*', then $f^{-1}(\lambda)$ is an anti *Q*-fuzzy bi-ideal in *N*.
- If μ is an anti Q-fuzzy bi-ideal in N, then $f(\mu)$ is an anti Q-fuzzy bi-ideal in N'. 2)

Proof:

1) Let λ be an anti *Q*-fuzzy bi-ideal of *N*'. Q

For,
$$y, z \in N$$
, $q \in$

(i)
$$f^{-1}(\lambda)(x - y, q) = \lambda(f(x - y, q))$$
$$= \lambda(f(x, q) - f(y, q))$$
$$\leq max \{\lambda f(x, q), \lambda f(y, q)\}$$
$$= max \{f^{-1}(\lambda) (x, q), f^{-1}(\lambda) (y, q)\}$$
Therefore $f^{-1}(\lambda) (x - y, q) \leq max \{f^{-1}(\lambda)(x, q), f^{-1}(\lambda) (y, q)\}$

Thus
$$f^{-1}(\lambda)$$
 is an anti Q-fuzzy subgroup.
(ii) $f^{-1}(\lambda) (xyz, q) = \lambda (f(xyz, q))$
 $\leq max \{\lambda(f(x, q)), \lambda(f(z, q))$
 $= max \{f^{-1}(\lambda) (x, q), f^{-1}(\lambda) (z, q)\}$
Therefore, $f^{-1}(\lambda) (xyz, q) \leq max \{f^{-1}(\lambda) (x, q), f^{-1}(\lambda) (z, q)\}$
Hence $f^{-1}(\lambda)$ is an anti Q-fuzzy bi-ideal in N.
2) Let μ be an anti Q-fuzzy bi-ideal in N.
Let $y_1, y_2, y_3 \in N'$ and $q \in Q$
Then we have,
 $\{(x, q)/(x, q) \in f^{-1}(y_1, y_2, q)\} \supseteq \{(x_1 - x_2, q)/(x_1, q) \in f^{-1}(y_1, q) \text{ and } (x_2, q) \in f^{-1}(y_2, q)\}$
And hence
(i) $f(\mu) (y_1 - y_2, q) = inf \{\mu(x, q)/(x, q) \in f^{-1}(y_1 - y_2, q)\}$
 $\leq inf \{max\{\mu(x_1, q), \mu(x_2, q)\}/(x_1, q) \in f^{-1}(y_1, q) \text{ and } (x_2, q) \in f^{-1}(y_2, q)\}$
 $= max \{inf\{\mu(x_1, q), \mu(x_2, q)\}/(x_1, q) \in f^{-1}(y_1, q) \text{ and } (x_2, q) \in f^{-1}(y_2, q)\}$
 $= max \{inf\{\mu(x_1, q), \mu(x_2, q)\}/(x_1, q) \in f^{-1}(y_2, q)\}$
Therefore, $f(\mu)(y_1 - y_2, q) \leq max\{f(\mu)(y_1, q), f(\mu)(y_2, q)\}$
Therefore, $f(\mu)(y_1 - y_2, q) \leq max\{f(\mu)(y_1, q), f(\mu)(y_2, q)\}$
Therefore, $f(\mu)(x_1, x_2x_3, q)/x_1 \in f^{-1}(y_1, q) \text{ and } x_3 \in f^{-1}(y_3, q)\}$
 $\leq inf\{max\{\mu(x_1, q), \mu(x_3, q)/(x_1, q) \in f^{-1}(y_1, q) \text{ and } x_3 \in f^{-1}(y_3, q)\}$
 $\leq inf\{max\{\mu(x_1, q), \mu(x_3, q)/(x_1, q) \in f^{-1}(y_1, q) \text{ and } x_3, q) \in f^{-1}(y_3, q)\}$
 $\leq inf\{max\{\mu(x_1, q), \mu(x_3, q)/(x_1, q) \in f^{-1}(y_1, q) \text{ and } x_3, q) \in f^{-1}(y_3, q)\}$
 $= max\{inf\{\mu(x_1, q), \mu(x_3, q)/(x_1, q) \in f^{-1}(y_1, q) \text{ and } x_3, q) \in f^{-1}(y_3, q)\}$
 $= max\{inf(\mu(x_1, q), \mu(x_3, q)/(x_1, q) \in f^{-1}(y_1, q) \text{ and } x_3, q) \in f^{-1}(y_3, q)\}$
 $= max\{inf(\mu(y_1, q), f(\mu)(y_3, q)\}$
Therefore, $f(\mu)(y_1, y_2, y_3, q) \leq max\{f(\mu)(y_1, q), f(\mu)(y_3, q)\}$
Therefore, $f(\mu)(y_1, y_2, y_3, q) \leq max\{f(\mu)(y_1, q), f(\mu)(y_3, q)\}$

Hence $f(\mu)$ is an anti Q-fuzzy bi-ideal of N'.

Theorem 3.4:

Let $\{\mu_i | i \in \Omega\}$ be a family of an anti *Q*-fuzzy bi-ideal of a near-ring *N*, then $\bigcup_{i \in \Omega} \mu_i$ is also an anti *Q*-fuzzy bi-ideal of *N*, where Ω is any index set.

Proof:

Let $\{\mu_i\}_{i \in \Omega}$ be a family of an anti Q-fuzzy bi-ideals of N. Let $x, y, z \in N$ and $q \in Q$ and $\mu = \bigcup_{i \in \Omega} \mu_i$ Then, $\mu(x, q) = \bigcup_{i \in \Omega} \mu_i(x, q)$ $= \sum_{i \in \Omega}^{sup} \mu_i(x, q)$ Now, $\mu(x - y, q) = \sum_{i \in \Omega}^{sup} \mu_i(x - y, q)$ $\leq \sum_{i \in \Omega}^{sup} max\{\mu_i(x, q), \mu_i(y, q)\}$ $= max\{\sum_{i \in \Omega}^{sup} \mu_i(x, q), \sum_{i \in \Omega} \mu_i(y, q)\}$ $= max\{\bigcup_{i \in \Omega} \mu_i(x, q), \bigcup_{i \in \Omega} \mu_i(y, q)\}$ Therefore, $\mu(x - y) \leq max\{\mu(x, q), \mu(y, q)\}$ Thus μ is an anti Q-fuzzy subgroup of N. And $\mu(xyz, q) = \sum_{i \in \Omega}^{sup} \mu_i(xyz, q)$ $\leq \sum_{i \in \Omega}^{sup} max\{\mu_i(x, q), \mu_i(z, q)\}$ $= max\{\bigcup_{i \in \Omega} \mu_i(x, q), \bigcup_{i \in \Omega} \mu_i(z, q)\}$ $= max\{\bigcup_{i \in \Omega} \mu_i(x, q), (z, q)\}$ Therefore, $\mu(xyz, q) \leq max\{\mu(x, q), \mu(z, q)\}$ Hence, $\mu = \bigcup_{i \in \Omega} \mu_i$ is an anti Q-fuzzy bi-ideal of N, where Ω is any index set.

Theorem 3.5:

Let μ be an anti Q-fuzzy subgroup on N, then μ is an anti Q-fuzzy bi-ideal of N iff $\mu N \mu \supseteq \mu$.

Proof:

Assume that μ is an anti Q-fuzzy bi-ideal of N. Let $x', x, y, x_1, x_2 \in N$ and $q \in Q$ such that $x' = xy, x = x_1x_2$ Now, $(\mu N \mu)(x', q) = \lim_{x'=xy} max\{(\mu N)(x, q), \mu(y, q)\}$ $= \lim_{x'=xy} max\{x_{x=x_1x_2} max\{\mu(x_1, q), N(x_2, q)\}, \mu(y, q)\}$ $= \lim_{x'=xy} max\{x_{x=x_1x_2} max\{\mu(x_1, q), 1\}, \mu(y, q)\}$ $= \lim_{x'=x_1x_2y} max\{\mu(x, q), \mu(y, q)\}$ $\geq \lim_{x'=x_1x_2y} max\{\mu(x, q), \mu(y, q)\}$ $\geq \lim_{x'=x_1x_2y} \mu(x_1x_2y, q)$ $= \mu(x, q)$ Thus $(\mu N \mu) \supseteq \mu$ Conversely, Assume that $(\mu N \mu) \supseteq \mu$ $\mu(xyz, q) \ge (\mu N \mu)(xyz, q)$ $= \max\{(\mu N)(xy, q), \mu(z, q)\}$ $\leq \max\{(\mu N)(xy, q), \mu(z, q)\}$ $= \max\{\mu(x, q), 1, \mu(z, q)\}$ $= \max\{\mu(x, q), \mu(z, q)\}$ Thus $\mu(xyz, q) \le \max\{\mu(x, q), \mu(z, q)\}$

Theorem 3.6:

Let N and N' be two near rings. A mapping $f: N \to N'$ be a homomorphism if μ is an anti Q-fuzzy bi-ideal of N' and $L(\mu; t)$ is a bi-ideal of N' then $L(f^{-1}(\mu); t)$ is a bi-ideal of N.

Proof:

A mapping $f: N \to N'$ be a homomorphism if μ is an anti Q-fuzzy bi-ideal of N and $L(\mu; t)$ is a bi-ideal of N'. Let $x, y \in L(f^{-1}(\mu); t)$ $\Rightarrow f^{-1}(\mu)(x,q) \le t$ and $f^{-1}(\mu)(y,q) \le t$

 $\Rightarrow \mu(f(x,q)) \leq t \text{ and } \mu(f(y,q)) \leq t$ $\Rightarrow \mu(f(x,q)) \leq t \text{ and } \mu(f(y,q)) \leq t$ Now, $f^{-1}(\mu)(x - y,q) = \mu(f(x - y,q))$ $= \mu(f(x,q) - f(y,q))$ $\leq \max\{\mu(f(x,q)), \mu(f(y,q))\}$ = tTherefore, $f^{-1}(\mu)(x - y,q) \leq t$ Hence $L(f^{-1}(\mu), t)$ is an anti Q-fuzzy subgroup of N'. Let $x, z \in L(f^{-1}(\mu), t)$ and $y \in N$ Then $f^{-1}(\mu)(x,q) \leq t$ and $f^{-1}(\mu)(z,q) \leq t$ $\Rightarrow \mu(f(x,q)) \leq t \text{ and } \mu(f(z,q)) \leq t$ Now, $f^{-1}(\mu)(xyz,q) = \mu(f(xyz,q))$ $= \mu(f(x,q)f(y,q)f(z,q))$ = tTherefore, $f^{-1}(\mu)(xyz,q) \leq t$ We get $xyz \in L(f^{-1}(\mu); t)$ Hence $L(f^{-1}(\mu); t)$ is a bi-ideal of N.

References:

- [1] R.Biswas, Fuzzy subgroups and anti fuzzy subgroup, Fuzzy Sets and Systems, 35 (1990) 121-124.
- [2] S.K.Datta, On Anti-fuzzy bi-ideals in rings, *International Journal of Pure and Applied Mathematics*, **51** (3) (2009) 375-382.
- [3] K.A.Dib, On fuzzy spaces and fuzzy group theory, Inform. Sci., 80 (1994) 253-282.
- [4] S.M.Hong, Y.B.Jun and H.S.Kim. Fuzzy ideals in near-rings, *Bulletin Korean Mathematical Society*, **35** (1998) 343-348.
- [5] K.H.Kim and Y.B.Jun and Y.H.Yon, On anti fuzzy ideals in near-rings, *Iranian Journal of Fuzzy System*, 2 (2) (2005) 71-80.

[6]T.Manikandan, Fuzzy Bi-ideals of Near-ring, The Journal of Fuzzy Mathematics Vol. 17, No. 3,2009

- [7] T.Tamil Chelvam and N.Ganesan, On bi-ideals of near-rings, *Indian J.Pure and Appl.Math.*, 18 (11) (1987) 1002-1005.
- [8] S.Usha Devi, S.Jeyalakshmi, T.Tamizh Chelvam, Q-fuzzy bi-ideals and Q-fuzzy strong bi-ideals of near-rings, *International Journal of Current Research*, **9**, (08), 55552-55555.
- [9] L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.

