Comparison of STEEL Structure and RCC Structure

Mr.Mayank B. Patel Assistant Professor Civil Engineering Department, K J INSTITUTE OF ENGINEERING & TECHNOLOGY, SAVLI, VADODARA, GUJRAT

ABSTRACT

In a modern world time and economy are very important factor for building structures. So we should try to minimize cost and time as much as possible. By selection of proper material for frame of building with considering strength and atmospheric condition. We know that both RCC and structural steel in frame of building have own advantages and disadvantages as per loading and atmospheric condition. Based on study of real-life structure we conclude that as when time is consult structural steel is batter but as economy it is not effective vice versa.

I. INTRODUCTION

The use of steel in construction industry is very low in India compared to many developing countries. Experiences of other countries of other countries indicate that this is not due to the lack of economy of steel as a construction material. There is a great potential for increasing the volume of steel in construction, especially the current development needs in India. Exploring Steel as an alternative construction material and not using it where it is economical is a heavy loss for the country. But in case of the high rise frame structure it may be economical in this project we will see merits and demerits, and the conclusion we will be on the basis of R.C.C. and Steel Structural material's comparison of cost and load carrying characteristic. We have taken a plan G+5 on rigid frame structure.

This project based on simply comparison of cost as per load carrying characteristics between same buildings with different material. But we can't estimate without safely designing a frame of this building. So, in this project we involved design part with using of software STAAD.PRO. For input file of software geometry created from transferring cad file to stand. We enter the earthquake detail as per original location of a building. After designing we get material quantity in terms of cubic meter from this data, we easily calculate the cost with knowing material property. We could not get overall cost of frame because of form work cost and erection cost also need to be include which is vary with size & location of the project. In case of cost calculation experiment of volume change of cement after curing which need to study load combination was also different in case of both material as individual IS code. Literature review about both materials said structural steel is much better for saving a time but in case of economy RCC. Steel structure is also a good solution to select material. But in the process of selecting material functional requirement, aesthetic view and atmospheric condition should be kept in mind.

In India, we know that steel and composite structure not more popular. But after complete this project we can conclude that before selection of materials possibilities of use other material also should be check. It may help in get better result.

II. MATERIAL AND METHODS

1.COMPARISON OF COST BETWEEN COMPOSITTE & R.C.C. STRUCTURE

1)Fire safety

R.C.C.: - Concrete requires no additional fireproofing treatments to meet stringent fire codes, and Above 400 °C concrete becomes weaker. Steel: - For buildings, steel should be fabricated already against fire, but in situations where temperature is scaled up till 500 °C, the yield stress drops by two-thirds and the load-carrying capacity is lost.

2.BUILDING DETAILS

- 1. Type of Building: Multi-Storey Rigid Joined Frame Structure
- 2. Number of Storey's: 6(G+5)
- 3. Floor to Floor height: 3.05m
- 4. Height of Plinth: .6 m above G.L.
- 5. External Wall: 230mm Thick Including Plaster
- 6. Internal Wall: 115mm Thick Including Plaster
- 7. Bearing Capacity of Soil: 200 kN/m^2
- 8. Imposed Load: Roof: Roof Finish: 1.5 kN/m², Live Load: 4 kN/m², Floor: Floor Finish: 1.0 kN/m²
- 9. Materials: -Concrete Grade: M30, Steel Grade: Fe415
- 10. Unit Weight of Concrete: -25 kN/m³, Unit Weight of Masonry: -20 kN/m³

Method Based on Is 456-2000 Limit State Method.

TYPICAL FLOOR PLAN (5 FLOOR)

3.ESTIMATE

ADSIFACT OF K.C.C. DUIIUIII	\triangleright	Abstract of	R.C.C.	Building
-----------------------------	------------------	-------------	--------	----------

Abstract						
Sir No.	Description	Quantity	Per	Rate Rs.	Amount(Rs.)	

© 2019 JETIR February 2019, Volume 6, Issue 2

1	EXCAVATION FOR FOUNDATION	1652.774	CUM	1200	1983329			
2	P.C.C. (1:3:6)	29.04	CUM	3200	92928			
	· · · ·							
3	Reinforcement in Footing Column, Beam, Slab, Stairs	182	TONE	50000	9084847			
4	DCC FOOTING M20	06.8	CUM	210	20228			
4	R.C.C. FOOTING MISU	90.0 61.11		210	12823			
	$\mathbf{P} \mathbf{C} \mathbf{C}$ in columns unto slob	01.11 100.421		210	21001			
	K.C.C. III columns upto stab	100.431		210	21091			
	D C C for Slob	274.995	CUM	210	162676			
		1207.084	CUM	210	274677			
		1307.904	COM		2/40//			
5	Prick Maganny unto glab	1780 602	CUM	170	20/1222			
5	Brick Masonry upto stab	1789.002	COM	170	304232			
6								
0	Inside Plastering	9924.05	SaM	190	1885570			
	Outside Plastering	1027	SqM	190	105130			
		1027	Sqivi	150	2080700			
		10751.05			2000700			
7	Flooring	5164 32	SaM	140	723005			
	Thormg	5104.52	Bqm	140	123003			
8	Coloring	10951.05	SaM	150	1642658			
0		G	rand Total of all	16186374				
9	Labour Cost							
	Mason	1696	Per Men	300	508800			
	Blenders	3060	Per Men	200	612000			
	Bhishti	1189	Per Men	200	237800			
	Women	2010	Per Women	180	361800			
	Men	3817	Per Men	200	763400			
	Fitter	2	Per Men	300	600			
-	Mistry	137	Per Men	400	54800			
	Carpenters	257	Per Men	300	77100			
	-	Total Labour Cost		2616300				
		Total Labour Cost + GT			18802674			
10	Water Charges	1.5% of G.T.			242796			
11	Contractor's Profit	10% of all (1880267					
12	Other Charges	5% of G.T.	809319					
13	Electricity Charge	5% of G.T.	809319					
			22544375					

> <u>Abstract of Steel Building</u>

Abstract							
Sir No.	Description	Quantity	Per	Rate Rs.	Amount(Rs.)		
1	EXCAVATION FOR FOUNDATION	1652.774	CUM	1200	1983329		
2	P.C.C. (1:3:6)	29.04	CUM	3200	92928		
	· · · · · · · · · · · · · · · · · · ·						
3	R.C.C. FOOTING M30	96.8	CUM	210	20328		
	Plinth Beam	61.11	CUM	210	12833		
		157.91			33161		
4	Steel Columns ISMC-300	52.4112	TONE	33500	1755775		
	Steel Beams ISMB-200	41.6941	TONE	31000	1292517		
	Steel Beams ISMB-300	72.5543	TONE	36000	2611955		
	Angles 50x50x6	1.9404	TONE	15000	29106		
	Angles 70x70x6	9.832788	TONE	18000	176990		
					5660247		
5	WALL	2982.498	SqM	150	447375		
6	Stairs	767.03413	CUM	250	191759		
7	Mezzanine Floor	3356.22775	CUM	350	1174680		
8	Coloring						
	Zinc Coating	10.7256	SqM	50	536		
	Painting	10.7256	SqM	50	536		
	Γ			Γ	ſ		
9	Labour Cost						
	Bleders	593	Per Men	300	177900		
	Bhishti	77	Per Men	200	15400		
	Mason	16	Per Men	200	3200		
	Men Labours	268	Per Men	200	53600		
	Women Labours	268	Per Men	180	48240		
	Skilled Labours	900	Per Men	500	450000		
					748340		
10	Welding				2830124		
		Gr	and Total		13163014		
11	Electricity Charge	5%	% of G.T.		6581507		
12	Contractor's Profit	109	% of G.T.		1316301		

13	Other Charges	Lump Sum			98723
14	Fire Safety Coat In Steel Sections	Lı	ımp Sum		65815
				Total	21225360

4.Conclusion

- I. A G+5 structure of plan dimensions 21.2 m x 34.8 m has been analyzed, and cost per unit quantities are worked out.
- II. Though the cost comparison reveals that steel structure design is more costly, reduction in direct cost of steel structure resulting from speedy erection will make steel structure economically viable. Further, under earthquake consideration because of the inherent ductility characteristics, steel-concrete structure will perform than conventional R.C.C. structure.
- III. The axial forces, bending moment and deflections in R.C.C. are somewhat more as compared to the Steel structure.
- IV. The seismic forces are also not very harmful to the Steel structure as compared to the R.C.C. structure, due to low dead weight.
- V. There is the reduction in cost of steel structure as compared to R.C.C. structure due to reduction in dimensions of elements.
- VI. As the result shows Steel structure option is better than R.C.C. Because Steel structure option for high rise building is best suited. Weight of steel structure is low as compared to R.C.C. structure which helps in reducing the foundation cost.
- VII. As the dead weight of the steel structure is less as compared to R.C.C. structure, it is subjected to fewer amounts of forces induced due to the earthquake.
- VIII. It is clear that the nodal displacements in steel structure, by both the method of seismic analysis, compared to R.C.C. structure in all the three global directions are less which is due to the higher stiffness of member in a steel structure to R.C.C. structure.
- IX. Steel structure is more economical than that of R.C.C. structure. Steel structures are the best solution for high rise structure as compared to R.C.C. structure. Speedy construction facilitates quicker return on the invested capital and benefits in terms of rent.

REFERENCES

- I. Design of Reinforcement Concrete B. M. Dutta.
- II. IS: 456, Code of practice for plain and reinforced concrete code of practice, Bureau of Indian Standards, New Delhi, 2000.
- III. IS: 875, "code of practice for design load (other than earthquake) for buildings and structures" Bureau of Indian Standards, New Delhi, 2002.
- IV. IS: 800, Code of practice for general construction in steel, Bureau of Indian Standards, New Delhi, 2007.
- V. Anamika Tedia, Dr. Savita Maru, "Cost, Analysis and Design of Steel-Concrete Steel structure R.C.C. Structure", IOSR Journal of Mechanical and Civil Engineering, Vol.11, Issue 1 Ver. II (Jan.2014)
- VI. Shashikala Koppad, Dr. S.V.Itti, "Comparative Study of R.C.C and Steel structure Multistoried Buildings", International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 5, November 2013
- VII. Mahesh Suresh Kumawat and L G Kalurkar "Analysis and Design of Multistory Building Using Steel structure", ISSN 2319 6009 Vol. 3, No. 2, May 2014

VIII. Institute for steel development & Growth, "B+G+40 Storied Residential Building With Steel-Concrete Steel structure Option" India Dec 2007

Mr. Mayank B. Patel Assistant Professor Civil Engineering Department, K J INSTITUTE OF ENGINEERING & TECHNOLOGY, SAVLI, VADODARA, GUJRAT

