SQUARE SUM LABELING OF MOSER SPINDLE GRAPH,GOLOMB GRAPH, SOIFER GRAPH ANDNIGH COMPLETE BIPARTITE GRAPH

${ }^{1}$ M. GANESHAN, ${ }^{2}$ M.S. PAULRAJ
${ }^{1}$ Assistant Professor, ${ }^{2}$ Associate Professor
${ }^{1}$ Department of Mathematics,
${ }^{1}$ A.M. Jain College, Chennai - 114, India

Abstract

A (p, q)-graph G is said to be square sum, if there exists a bijection $f: V(G) \rightarrow\{0,1,2, \ldots \ldots, p-1\}$ such that the induced function $f^{*}: E(G) \rightarrow N$ defined by $f^{*}(u v)=[f(u)]^{2}+[f(v)]^{2}$, for every $u v \in E(G)$, is injective. In this paper, we show that Moser spindle graph, Golomb graph, Soifer graph and Nigh complete bipartite graph $K_{n, n}+e_{1}+e_{2}, 3 \leq n \leq 10$,admits square sum labeling.

Keywords

Square sum labeling, Moser spindle graph, Almost bipartite graph, Golomb graph, Soifer graph Nigh complete bipartite graph.

AMS Subject Classification (2010):05C78.

1 Introduction

Labeledgraphs[8] are utilized in various correlated fields of engineering, technology, etc.An exceptional method of labeling looks attractive if there emerges a number of problems that lights the interest of the researchers. one among the types of labeling is square sum labeling[1][3][4][5][6]. In this paper we deal only finite, simple, connected and undirected graphs obtained through graph operations.

Definition 1.1

An almost-bipartite graph[2] is a non-bipartite graph with the property that the removal of a particular single edge renders the graph bipartite.

Definition 1.2

Let G be a (p, q)-graph. G is said to be a square sum graph if there exist a bijection
$f: V(G) \rightarrow\{0,1,2, \ldots \ldots ., p-1\}$ such that the induced function $f^{*}: E(G) \rightarrow N$ given by $f^{*}(u v)=[f(u)]^{2}+[f(v)]^{2}$, for every $u v \in E(G)$ are all distinct.
Definition 1.3
A nigh complete bipartite graph[7] or a nigh graph is a graph $K_{m, n}+e_{1}+e_{2}(m=n)$ where
$e_{i}, i=1,2$ has both ends in $V_{i}, i=1,2$ respectively such that the removal of that two edges e_{1} and e_{2} renders complete bipartite graph.

Definition 1.4

Moser spindle graph is an undirected graph with seven vertices and eleven edges. It is a unit distance graph some times called as hajos graph.

Definition 1.5

Golomb graph is a polyhedral graph with 10 vertices and 18 edges. It is a unit distance graph

Definition 1.6

The soifer graph is a planar graph with 9 -nodes and 20 edges.It is an undirected graph

2. Results

Theorem 2.1 The Moser spindle graph is square sum.

Proof:

Let G denote the moser spindle graph which contains 7 vertices and 11 edges having the vertex set $V=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ where $u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{2}$ forms the cycle C_{5} and the vertex u_{0} is adjacent to u_{2}, u_{3} and u_{4} and u_{1} is adjacent to u_{2}, u_{5} and u_{6}.
Define $f: V \rightarrow\{0,1,2, \ldots \ldots ., 6\}$ by
$f\left(u_{i}\right)=i, 0 \leq i \leq 6$
The function f induces a square sum labeling on G and the edge labels of $G, f *$ is given in table-1

Table-1: Egde labels of Moser spindle graph

S.NO	EDGE	EDGE LABEL $(f *)$
1	$u_{0} u_{2}$	4
2	$u_{0} u_{3}$	9
3	$u_{0} u_{4}$	16
4	$u_{1} u_{2}$	5
5	$u_{1} u_{6}$	37
6	$u_{1} u_{5}$	26
7	$u_{2} u_{3}$	13
8	$u_{3} u_{4}$	25
9	$u_{4} u_{5}$	41
10	$u_{5} u_{6}$	61
11	$u_{6} u_{2}$	40

Hence for any two edges of G the edge labels are distinct .
$\therefore f^{*}$ is injective. Hence G is square sum.

Figure 1: Square sum labeling of Moser spindle graph
Theorem 2.2 The Golomb graph is square sum.

Proof:

Let G denote the golomb graph which contains 10 vertices and 18 edges having the vertex set $V=\left\{v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, w\right\}$ where v_{1}, v_{2} and v_{3} are the vertices of K_{3} and
$u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ and u_{6} are the vertices of the wheel and w is the central vertex of the wheel.
Define $f: V \rightarrow\{0,1,2, \ldots \ldots ., 9\}$ and the function f defined is shown in table-2
Table-2: Vertex labels (f) of Golomb graph

S.NO	VERTEX	VERTEX LABEL (f)
1	w	0
2	v_{1}	2
3	v_{2}	3
4	v_{3}	5
5	u_{1}	1
6	u_{2}	4
7	u_{3}	6
8	u_{4}	7
9	u_{5}	8
10	u_{6}	9

Let $E=\left\{w u_{1}, w u_{2}, w u_{3}, w u_{4}, w u_{5}, w u_{6}, u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{6}, u_{6} u_{1}, u_{1} v_{1}, u_{3} v_{2}, u_{5} v_{3} v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}\right\}$
The function f induces a square sum labeling on G and the edge labels of G, f^{*} is given in table-3

Table-3: Egde labels of Golomb graph

S.NO	EDGE	EDGE LABEL $(f *)$
1	$w u_{1}$	1
2	$w u_{2}$	16
3	$w u_{3}$	36
4	$w u_{4}$	49
5	$w u_{5}$	64
6	$w u_{6}$	81
7	$u_{1} u_{2}$	17
8	$u_{2} u_{3}$	52
9	$u_{3} u_{4}$	85
10	$u_{4} u_{5}$	113
11	$u_{5} u_{6}$	145
12	$u_{6} u_{1}$	82
13	$u_{1} v_{1}$	5
14	$u_{3} v_{2}$	45
15	$u_{5} v_{3}$	89
16	$v_{1} v_{2}$	13
17	$v_{2} v_{3}$	34
18	$v_{3} v_{1}$	29

Hence for any two edges of G the edge labels are distinct.
$\therefore f^{*}$ is injective
Hence G is square sum.

Figure 2: Square sum labeling of Golomb graph
Theorem 2.3 The Soifer graph is square sum.

Proof:

Let G denote the soifer graph which contains 9 vertices and 20 edges having the vertex set
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ where v_{1}, v_{2}, v_{3} and v_{4} are the vertices of the outer cycle C_{4} and $u_{1}, u_{2}, u_{3}, u_{4}$ and u_{5} are the vertices of the inner cycle C_{5} of G.
Define $f: V \rightarrow\{0,1,2, \ldots \ldots, 8\}$ and the function f defined is shown in table- 4

Table-4: Vertex labels (f) of Soifer graph

S.NO	VERTEX	VERTEX LABEL (f)
1	v_{1}	0
2	v_{2}	1

3	v_{3}	2
4	v_{4}	3
5	u_{1}	4
6	u_{2}	5
7	u_{3}	6
8	u_{4}	7
9	u_{5}	8

Let $E=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1, ~} u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{1}, v_{1} u_{2}, v_{1} u_{1}, v_{1} u_{5}, v_{2} u_{2}, v_{2} u_{3}, v_{3} u_{3}, v_{3} u_{4}, v_{4} u_{4}, v_{4} u_{5}, u_{1} u_{3}, u_{1} u_{4}\right\}$
The function f induces a square sum labeling on G and the edge labels of G, f^{*} is given in table-5

Table-5: Egde labels of Soifer graph

S.NO	EDGE	EDGE LABEL $(f *)$
1	$v_{1} v_{2}$	1
2	$v_{2} v_{3}$	5
3	$v_{3} v_{4}$	13
4	$v_{4} v_{1}$	9
5	$u_{1} u_{2}$	41
6	$u_{2} u_{3}$	61
7	$u_{3} u_{4}$	85
8	$u_{4} u_{5}$	113
9	$u_{5} u_{1}$	80
10	$v_{1} u_{1}$	16
11	$v_{1} u_{2}$	25
12	$v_{1} u_{5}$	64
13	$v_{2} u_{2}$	26
14	$v_{2} u_{3}$	37
15	$v_{3} u_{3}$	40
16	$v_{3} u_{4}$	53
17	$v_{4} u_{4}$	58
18	$v_{4} u_{5}$	73
19	$u_{1} u_{3}$	52
20	$u_{1} u_{4}$	65

Hence for any two edges of G the edge labels are distinct.
$\therefore f *$ is injective. Hence G is square sum.

Figure 3: Square sum labeling of Soifer graph
Theorem 2.4 :The Nigh complete bipartite graph $K_{n, n}+e_{1}+e_{2}, 3 \leq n \leq 10$ is square sum.

Proof:

Case-1: $K_{n, n}+e_{1}+e_{2}, 3 \leq n \leq 7$
Consider the graph $G=K_{n, n}+e_{1}+e_{2}, 3 \leq n \leq 7$. Let V_{1} and V_{2} be the bipartition of $V(G)$, where $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and
$V_{2}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Suppose $e_{1}=v_{1} v_{2}$ and $e_{2}=u_{1} u_{2}$
we note that $|E(G)|=n^{2}+2$.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, 2 n-1\}$ by
$f\left(v_{1}\right)=0, f\left(u_{1}\right)=1, f\left(v_{2}\right)=2, f\left(u_{2}\right)=3, f\left(u_{3}\right)=4, f\left(v_{3}\right)=5, f\left(v_{4}\right)=6, f\left(u_{4}\right)=7$,
$f\left(u_{5}\right)=8, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . f\left(v_{n}\right)=2 n-1$, if n is odd.
$f\left(v_{1}\right)=0, f\left(u_{1}\right)=1, f\left(v_{2}\right)=2, f\left(u_{2}\right)=3, f\left(u_{3}\right)=4, f\left(v_{3}\right)=5, f\left(v_{4}\right)=6, f\left(u_{4}\right)=7, f\left(u_{5}\right)=8$ $f\left(u_{n}\right)=2 n-1$, if n is even.
The function f induces a square sum labeling on G.
For, if $e_{1}=u_{1} v_{1}$ and $e_{2}=u_{2} v_{2}$ then
(i) $u_{1}=u_{2} \Rightarrow f\left(v_{1}\right)<f\left(v_{2}\right) \operatorname{or} f\left(v_{1}\right)>f\left(v_{2}\right)$,
then $f^{*}\left(e_{1}\right)=\left[f\left(u_{1}\right)\right]^{2}+\left[f\left(v_{1}\right)\right]^{2} \neq\left[f\left(u_{2}\right)\right]^{2}+\left[f\left(v_{2}\right)\right]^{2}=f^{*}\left(e_{2}\right)$.
(ii)If $u_{1} \neq u_{2}$, then $f\left(u_{1}\right)<f\left(u_{2}\right) \Rightarrow f\left(v_{1}\right)<f\left(v_{2}\right)$.

Hence $f^{*}\left(e_{1}\right)=\left[f\left(u_{1}\right)\right]^{2}+\left[f\left(v_{1}\right)\right]^{2} \neq\left[f\left(u_{2}\right)\right]^{2}+\left[f\left(v_{2}\right)\right]^{2}=f^{*}\left(e_{2}\right)$.
so that f^{*} admits square sum labeling of $K_{n, n}+e_{1}+e_{2}, 3 \leq n \leq 7$
Hence G is square sum.

Figure 4: Square sum labeling of nigh complete bipartite graph $K_{7,7}+e_{1}+e_{2}$.

Figure 5: Square sum labeling of nigh complete bipartite graph $K_{6,6}+e_{1}+e_{2}$.
Case-2 : $K_{8,8}+e_{1}+e_{2}$
Consider the graph $\mathrm{G}=K_{8,8}+e_{1}+e_{2}$. Let V_{1} and V_{2} be the bipartition of $V(G)$, where $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{2}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.
Suppose Suppose $e_{1}=v_{1} v_{2}$ and $e_{2}=u_{1} u_{2}$
we note that $|E(G)|=n^{2}+2$.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, 2 n-1\}$ by
$f\left(v_{1}\right)=0, f\left(v_{2}\right)=1, f\left(u_{1}\right)=2, f\left(u_{2}\right)=3, f\left(u_{3}\right)=4, f\left(v_{3}\right)=5, f\left(u_{4}\right)=6, f\left(u_{5}\right)=7$,
$f\left(v_{4}\right)=8, f\left(u_{6}\right)=9, f\left(v_{5}\right)=10, f\left(u_{7}\right)=11, f\left(v_{6}\right)=12, f\left(u_{8}\right)=13, f\left(v_{7}\right)=14, f\left(v_{8}\right)=15$.
The function f induces a square sum labeling on G.
clearly for any two edges of G the edge labels are distinct .Hence f^{*} is injective
So f^{*} admits square sum labeling for $K_{8,8}+e_{1}+e_{2}$
Hence G is square sum.

Figure 6: Square sum labeling of nigh complete bipartite graph $K_{8,8}+e_{1}+e_{2}$
Case-3: $K_{9,9}+e_{1}+e_{2}$
Consider the graph $\mathrm{G}=K_{9,9}+e_{1}+e_{2}$
Let V_{1} and V_{2} be the bipartition of $V(G)$, where $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{2}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Suppose $e_{1}=v_{1} v_{2}$ and $e_{2}=u_{1} u_{2}$ we note that $|E(G)|=n^{2}+2$.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, 2 n-1\}$ by
$f\left(v_{1}\right)=0, f\left(v_{2}\right)=1, f\left(u_{1}\right)=2, f\left(u_{2}\right)=3, f\left(u_{3}\right)=4, f\left(v_{3}\right)=5, f\left(u_{4}\right)=6, f\left(u_{5}\right)=7$,
$f\left(v_{4}\right)=8, f\left(u_{6}\right)=9, f\left(v_{5}\right)=10, f\left(u_{7}\right)=11, f\left(v_{6}\right)=12, f\left(u_{8}\right)=13, f\left(v_{7}\right)=14$,
$f\left(v_{8}\right)=15, f\left(u_{9}\right)=16, f\left(v_{9}\right)=17$.
The function f induces a square sum labeling on G.
clearly for any two edges of G the edge labels are distinct .Hence f^{*} is injective
So f^{*} admits square sum labeling for $K_{9,9}+e_{1}+e_{2}$
Hence G is square sum.

Figure 7: Square sum labeling of nigh complete bipartite graph $K_{9,9}+e_{1}+e_{2}$
Case-4 : $K_{10,10}+e_{1}+e_{2}$
Consider the graph $\mathrm{G}=K_{10,10}+e_{1}+e_{2}$
Let V_{1} and V_{2} be the bipartition of $V(G)$, where $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{2}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Suppose $e_{1}=v_{1} v_{2}$ and $e_{2}=u_{1} u_{2}$, we note that $|E(G)|=n^{2}+2$.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, 2 n-1\}$ by
$f\left(v_{1}\right)=0, f\left(v_{2}\right)=1, f\left(u_{1}\right)=2, f\left(u_{2}\right)=3, f\left(u_{3}\right)=4, f\left(v_{3}\right)=5, f\left(u_{4}\right)=6, f\left(u_{5}\right)=7$,
$f\left(v_{4}\right)=8, f\left(u_{6}\right)=9, f\left(v_{5}\right)=10, f\left(u_{7}\right)=11, f\left(v_{6}\right)=12, f\left(u_{8}\right)=13, f\left(v_{7}\right)=14$,
$f\left(v_{8}\right)=15, f\left(u_{9}\right)=16, f\left(v_{9}\right)=17, f\left(v_{10}\right)=18, f\left(u_{10}\right)=19$.
The function f induces a square sum labeling on G.
clearly for any two edges of G the edge labels are distinct .Hence f^{*} is injective
So f^{*} is a square sum labeling of $K_{10,10}+e_{1}+e_{2}$
Hence G is square sum.

Figure 8: Square sum labeling of nigh complete bipartite graph $K_{10,10}+e_{1}+e_{2}$

3Conclusion

It is very interesting to study graphs which admit square sum labeling. Here we have examined and verified that moser spindle graph, golomb graph, soifer graph is square sum, also we examined another special case of almost bipartite graph,the nigh complete bipartite graph $K_{\mathrm{n}, \mathrm{n}}+e_{1}+e_{2}$ and we proved it to be square sum for certain cases. To examine equivalent results for different types of graphs is an open area of research.

References

[1] Ajitha V, Studies in Graph Theory-Labeling of Graphs, Ph D thesis(2007), KannurUniversity, Kannur.
[2] R.C. Bunge, S.I. El-Zanati, and C. Vanden Eynden, On γ-labelings of 2-regular almost-bipartite graphs, in preparation.
[3] M. Ganeshan, M.S. Paulraj, Square Sum Labeling of almost Bipartite Graph and Mongolian Tent, International Journal for Research in Engineering Application \& Management
(IJREAM), ISSN : 2454-9150 Vol-04, Issue-08, Nov 2018.
[4] M. Ganeshan, M.S. Paulraj, "Square Sum Labeling of a Class of Almost Complete Bipartite Graph", International Journal of Scientific Research in Mathematical and StatisticalSciences, Vol.5, Issue.6, pp.83-85,Dec- 2018.
[5] M. Ganeshan, M.S. Paulraj, "Square Sum Labeling Of Sierpinski Gasket Graphs And Corona Graph", IJRAR International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.6,Issue 1, Page No pp.840-844, January 2019
[6] S.A. Shirali, To find four distinct positive integers such that the sum of any two is a square, 18 September 2009.International Journal of Pure and Applied Mathematics, Volume 106 No. 8 2016, 1-6ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (online version).
[7] R. Sreenivasan, M.S. Paulraj, "VertexAntimagicEdge Labeling Of A NighCompleteBipartite Graph", IJRAR - International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume 5,Issue 4, Page No pp.217-219, December 2018
[8] Wallis W.D., Labeling, A Beginner's Guide to Graph Theory(2007).

