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Abstract: 

In this paper, the Adomian decomposition method has been applied to obtain the analytical solution of 

Black-Scholes partial differential equation for European options over an asset that pays continuous 

dividends. The Analytical solution is obtained as a convergent power series in which each term is 

calculated easily. The solution is obtained without any discretization and hence the computation is 

reduced to a greater extent. 
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I. Introduction: 

 An option is a financial derivative whose value depends on the price of another asset. Thus, options are 

financial contracts that provide an option to buy or sell a certain underlying asset at a specific price and at a 

certain fixed future date. Options are divided into two categories based on their purchasing and selling. The 

right to buy an option is called a call option and the right to sell it is known as put option. The wide use of 

options has gained a lot of attention in financial markets both practically and theoretically. Options are used 

to control or account the risk caused by the movement in stock prices by creating portfolios and by hedging 

assets. Fischer Black and Myron Scholes in 1973 [1] derived a formula for pricing both European and 

American options. The Black-Scholes formula is a second order linear partial differential equation. This 

formula is popularly known as Black-Scholes model and it proved to be an effective model for pricing 

different kinds of options. The Black-Scholes option pricing model is based on certain assumptions and one 

of the key assumptions is that the underlying asset does not pay any dividends during the life time of the 

option. Merton [2] extended the Black-Scholes option pricing model to underlying assets that pay a 

continuous dividend yield during the life time of the option and derived the modified Black-Scholes 

equation and the modified Black-Scholes formulae for both European call and put options. The Black-

Scholes equation for European options paying continuous dividends is given by the equation; 

𝜕𝑓

𝜕𝑡
+
𝜎2𝑆2

2

𝜕2𝑓

𝜕𝑆2
+ (𝑟 − 𝐷)𝑆

𝜕𝑓

𝜕𝑆
− 𝑟𝑓 = 0                                   (1.1) 

Where 𝑓(𝑆, 𝑡) is the option price or option premium at asset price 𝑆 and at time 𝑡, 𝑆(𝑡) is the asset price at 

time 𝑡, 𝜎 represents the volatility, 𝑟 is the risk free interest rate and 𝐷 is the dividend yield. 

The pay off functions for European call and put options are given by; 

  𝑓𝑐(𝑆, 𝑡) = max(𝑆 − 𝐾, 0) and 𝑓𝑝(𝑆, 𝑡) = max(𝐾 − 𝑆, 0)                        (1.2)           

Where 𝐾 denotes the strike price. 

During the last few decades, many researchers have used many methods to obtain the various possible 

solutions of Black-Scholes model. The important methods include finite difference method [3,4], homotopy 
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perturbation method [5,6,7], variational iteration method [8], homotopy analysis method [9], differential 

transform method [10], Adomian decomposition method [11]. 

 

 In this article we will present the Adomian decomposition method and apply it to Black Scholes 

model for European option pricing paying continuous dividends. The Adomian decomposition technique is 

used to obtain the analytical solution of linear and non linear differential equations. In this method the 

unknown function is decomposed in an infinite series ∑ 𝑢𝑛
∞
𝑛=0  and the non linear term is also decomposed 

in another series ∑ 𝐴𝑛
∞
𝑛=0  where 𝐴𝑛′𝑠 are Adomian polynomials [12]. This method was developed by 

George Adomian in 1980’s to obtain different solutions of linear and non linear differential equations 

characterizing stochastic systems [13]. 

 

 The rest part of the paper is outlined as: in Section II, we have given the analysis of Adomian 

decomposition method. The description of Black-Scholes model and European options are given in section 

III. In Section IV, the solution of Black-Scholes equation paying continuous dividends is carried out through 

Adomian decomposition method. Finally, the conclusion is given in Section V. 

 

II. Analysis of Adomian decomposition method: 

Consider the following non linear differential equation; 

𝐿𝜏𝑢(𝑥, 𝜏) + 𝑅𝑢(𝑥, 𝜏) + 𝑁𝑢(𝑥, 𝜏) = 𝑔(𝑥, 𝜏)              (2.1) 

Where 𝐿𝜏 =
𝜕

𝜕𝜏
, 𝑅 is the linear remainder operator, 𝑁 represents a non linear operator and 𝑔 is a non 

homogenous term independent of 𝑢. 

Solving equation (2.1) for 𝐿𝜏𝑢(𝑥, 𝜏) we have 

𝐿𝜏𝑢(𝑥, 𝜏) = 𝑔(𝑥, 𝜏) − 𝑅𝑢(𝑥, 𝜏) − 𝑁𝑢(𝑥, 𝜏)                (2.2) 
Applying 𝐿𝜏

−1 on both sides of equation (2.2), as 𝐿𝜏 is invertible, we get 

  𝐿𝜏
−1𝐿𝜏𝑢(𝑥, 𝜏) = 𝐿𝜏

−1𝑔(𝑥, 𝜏) − 𝐿𝜏
−1𝑅𝑢(𝑥, 𝜏) − 𝐿𝜏

−1𝑁𝑢(𝑥, 𝜏)                (2.3) 
We get, 

 𝑢(𝑥, 𝜏) = 𝐶 + 𝐿𝜏
−1𝑔(𝑥, 𝜏) − 𝐿𝜏

−1𝑅𝑢(𝑥, 𝜏) − 𝐿𝜏
−1𝑁𝑢(𝑥, 𝜏)                      (2.4) 

Where 𝐶 is the constant of integration satisfying 𝐿𝜏𝐶 = 0 

The ADM presumes a decomposition solution in an infinite series form 𝑢(𝑥, 𝜏) given as  

   𝑢(𝑥, 𝜏) = ∑ 𝑢𝑖(𝑥, 𝜏)
∞
𝑖=0                                                              (2.5) 

The decomposition of non linear term is given as 

  𝑁𝑢(𝑥, 𝜏) = ∑ 𝐴𝑛(𝑢0, 𝑢1, … 𝑢𝑛)                                                      (2.6)
∞
𝑛=0  

Where 𝐴𝑛′𝑠 are Adomian polynomials. 

Substituting (2.5) and (2.6) in (2.4) 

∑𝑢𝑖(𝑥, 𝜏)

∞

𝑖=0

= 𝐶 + 𝐿𝜏
−1𝑔(𝑥, 𝜏) − 𝐿𝜏

−1𝑅∑𝑢𝑖(𝑥, 𝜏)

∞

𝑖=0

− 𝐿𝜏
−1∑𝐴𝑛(𝑢0, 𝑢1, … 𝑢𝑛)     (2.7)

∞

𝑛=0

 

The solution through this method is obtained as 

  𝑢0(𝜏) = 𝐶 + 𝐿𝜏
−1𝑔(𝑥, 𝜏)                                                              (2.8) 

         𝑢𝑛+1(𝜏) = −𝐿𝜏
−1𝑅𝑢𝑖(𝑥, 𝜏) − 𝐿𝜏

−1𝐴𝑛(𝑢0, 𝑢1, … 𝑢𝑛)                  (2.9) 
The approximate solution of (2.1), using (2.9) is given as; 

  𝑢(𝑥, 𝜏) = ∑ 𝑢𝑖(𝑥, 𝜏)
∞
𝑖=0                                                                   (2.10) 

A large number of linear and non linear equations have been solved through ADM [14]. This method 

requires less computation as compared to other methods [15]. This method obtains a series solution with 

easily computed terms. In general the decomposition of the series solution converges very quickly through 

this method. Hence only a few terms are required for approximation [16,17]. 

 

III. Black-Scholes model and European options: 

The Black-Scholes model for European options paying continuous dividends is given by [2]; 
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𝜕𝑓

𝜕𝑡
+
1

2
𝜎2𝑆2

𝜕2𝑓

𝜕𝑆2
+ (𝑟 − 𝐷)𝑆

𝜕𝑓

𝜕𝑆
− 𝑟𝑓 = 0                  (3.1) 

Where 𝑓(𝑆, 𝑡) is the option price or option premium at asset price 𝑆 and at time 𝑡, 𝑆(𝑡) is the asset price at 

time 𝑡, , 𝜎 represents the volatility, 𝑟 is the risk free interest rate and 𝐷 is the dividend yield. 

The final condition for call options is 

                                    𝑓(𝑆, 𝑡) = max(𝑆 − 𝐾, 0)                                                   (3.2) 

And the final condition for put options is 

                                     𝑉(𝑆, 𝑡) = max(𝐾 − 𝑆, 0)                                                  (3.3) 

Where 𝐾 denotes the strike price. 

By changing certain variables, the Black-Scholes equation gets transformed into a standard boundary value 

problem for the heat equation.  

Put,   𝑆 = 𝑒𝑥, 𝑡 = 𝑇 −
2𝜏

𝜎2
 , 𝑓(𝑆, 𝑡) = 𝜐(𝑥, 𝜏) = 𝜐(log 𝑆,

𝜎2

2
(𝑇 − 𝑡)) 

The partial derivatives of 𝑓 with respect to 𝑆 and 𝑡 expressed in terms of partial derivatives of 𝑣 in terms of 

𝑥 and 𝜏 are: 

    
𝜕𝑓

𝜕𝑡
= −

𝜎2

2

𝜕𝑣

𝜕𝜏
 

    
𝜕𝑓

𝜕𝑆
=

1

𝑆

𝜕𝑣

𝜕𝑥
 

    
𝜕2𝑓

𝜕𝑆2
= −

1

𝑆2
𝜕𝑣

𝜕𝑥
+

1

𝑆2
𝜕2𝑣

𝜕𝑥2
 

Putting above three expressions in equation (3.1) we get 

   
𝜕𝜐

𝜕𝜏
=

𝜕2𝜐

𝜕𝑥2
+ (𝑘2 − 1)

𝜕𝜐

𝜕𝑥
− 𝑘1𝜐                     (3.4) 

where,                           𝑘1 =
2𝑟

𝜎2
  𝑎𝑛𝑑 𝑘2 =

2(𝑟 − 𝐷)

𝜎2
 

The final condition becomes 

 𝜐(𝑥, 0) = {
max (𝑒𝑥 − 1,0),    𝑓𝑜𝑟 𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛𝑠

max(1 − 𝑒𝑥, 0) ,   𝑓𝑜𝑟 𝑝𝑢𝑡 𝑜𝑝𝑡𝑖𝑜𝑛𝑠
                 (3.5)          

 

IV. Solution of Black-Scholes equation through ADM: 

Consider equation (3.4) 

   
𝜕𝜐

𝜕𝜏
=

𝜕2𝜐

𝜕𝑥2
+ (𝑘2 − 1)

𝜕𝜐

𝜕𝑥
− 𝑘1𝜐                                            (4.1) 

Subject to                     𝑣(𝑥, 0) = max (𝑒𝑥 − 1,0)                                                (4.2)         
To solve equation (4.1) and (4.2) through Adomian decomposition method we have; 

 𝜐(𝑥, 𝜏) = max (𝑒𝑥 − 1,0) − ∫ −
𝜕2𝜐

𝜕𝑥2
− (𝑘2 − 1)

𝜕𝜐

𝜕𝑥
+ 𝑘1𝜐

𝜏

0
𝑑𝜏              (4.3) 

The solution by Adomian decomposition method is given in the following way; 

  𝜐0 = max (𝑒
𝑥 − 1,0)                                                                         (4.4) 

  𝜐𝑛+1 = −∫ 𝐴𝑛(𝜐0, 𝜐1, 𝜐2, … 𝜐𝑛)𝑑𝜏        𝑛 = 0,1,2,3, …              (4.5)
𝜏

0
 

To find 𝐴𝑛′𝑠 let 𝑣𝜆 = ∑ 𝜆𝑛𝑣𝑛  
∞
𝑛=0 and computing 

  𝑁(𝑣) = −
𝜕2𝜐

𝜕𝑥2
− (𝑘2 − 1)

𝜕𝜐

𝜕𝑥
+ 𝑘1𝜐                                                (4.6) 

  

{
 
 

 
 𝐴0(𝜐0) = −

𝜕2𝜐0

𝜕𝑥2
− (𝑘2 − 1)

𝜕𝜐0

𝜕𝑥
+ 𝑘1𝜐0  

𝐴1(𝜐0, 𝑣1) = −
𝜕2𝜐1

𝜕𝑥2
− (𝑘2 − 1)

𝜕𝜐1

𝜕𝑥
+ 𝑘1𝜐1 

⋮                                                        ⋮

𝐴𝑛(𝜐0, 𝑣1, … 𝑣𝑛) = −
𝜕2𝜐𝑛

𝜕𝑥2
− (𝑘2 − 1)

𝜕𝜐𝑛

𝜕𝑥
+ 𝑘1𝜐𝑛

                 (4.7) 

In this way        
 𝜐0(𝑥, 𝜏) = max (𝑒

𝑥 − 1,0)                                                                             (4.8) 

 𝜐1(𝑥, 𝜏) = −∫ 𝐴0(𝜐0)𝑑𝜏       
𝜏

0
                                                                        (4.9) 

 ⇒ 𝜐1(𝑥, 𝜏) = −𝐴0(𝜐0)𝜏 
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 ⇒ 𝜐1(𝑥, 𝜏) = [max (𝑒𝑥, 0) + (𝑘2 − 1)max (𝑒
𝑥, 0) − 𝑘1max (𝑒

𝑥 − 1,0)]𝜏   

 ⇒ 𝜐1(𝑥, 𝜏) = 𝑘2𝜏max (𝑒
𝑥, 0) − 𝑘1𝜏max (𝑒

𝑥 − 1,0)                              (4.10) 

 
𝜕

𝜕𝑥
𝜐1(𝑥, 𝜏) = (𝑘2𝜏 − 𝑘1𝜏)max (𝑒

𝑥, 0)                                                         (4.11)      

 𝜐2(𝑥, 𝜏) = −∫ 𝐴1(𝜐0, 𝜐1)𝑑𝜏       
𝜏

0
                                                                   (4.12) 

 ⇒ 𝜐2(𝑥, 𝜏) = −∫ (−
𝜕2𝜐1

𝜕𝑥2
− (𝑘2 − 1)

𝜕𝜐1

𝜕𝑥
+ 𝑘1𝜐1)𝑑𝜏

𝜏

0
  

 ⇒ 𝜐2(𝑥, 𝜏) = ∫ (
𝜕2𝜐1

𝜕𝑥2
+ (𝑘2 − 1)

𝜕𝜐1

𝜕𝑥
− 𝑘1𝜐1)𝑑𝜏

𝜏

0
 

⇒ 𝜐2(𝑥, 𝜏) = [𝑘2
2max(𝑒𝑥, 0) − 2𝑘1𝑘2max(𝑒

𝑥, 0) + 𝑘1
2
max(𝑒𝑥 − 1,0)]∫ 𝜏𝑑𝜏

𝜏

0

 

⇒ 𝜐2(𝑥, 𝜏) =
𝑘2
2𝜏2

2
max(𝑒𝑥, 0) − 2𝑘1𝑘2

𝜏2

2
max(𝑒𝑥, 0) +

𝑘1
2𝜏2

2
max(𝑒𝑥 − 1,0)         (4.13)  

The derivative of 𝜐2(𝑥, 𝜏) is given by  

𝜕

𝜕𝑥
𝜐2(𝑥, 𝜏) =

𝑘2
2𝜏2

2
max(𝑒𝑥 , 0) − 𝑘1𝑘2 𝜏

2max(𝑒𝑥, 0) +
𝑘1
2𝜏2

2
max(𝑒𝑥, 0)              (4.14) 

𝜕

𝜕𝑥
𝜐2(𝑥, 𝜏) =

(𝑘2𝜏 − 𝑘1𝜏)
2

2
max(𝑒𝑥, 0)                                                                            (4.15) 

 𝜐3(𝑥, 𝜏) = −∫ 𝐴2(𝜐0, 𝜐1, 𝑣2)𝑑𝜏                                                                                        (4.16)      
𝜏

0
 

⇒ 𝜐3(𝑥, 𝜏) = −∫ (−
𝜕2𝜐2
𝜕𝑥2

− (𝑘2 − 1)
𝜕𝜐2
𝜕𝑥

+ 𝑘1𝜐2)𝑑𝜏
𝜏

0

 

⇒ 𝜐3(𝑥, 𝜏) = ∫ (
𝜕2𝜐2
𝜕𝑥2

+ (𝑘2 − 1)
𝜕𝜐2
𝜕𝑥

− 𝑘1𝜐2)𝑑𝜏
𝜏

0

 

⇒ 𝜐3(𝑥, 𝜏) = [(
𝑘2

3

2
+
3𝑘1

2𝑘2
2

−
3𝑘2

2𝑘1
2

)max(𝑒𝑥 , 0) −
𝑘1

3

2
max(𝑒𝑥 − 1,0)]∫ 𝜏2𝑑𝜏

𝜏

0

 

⇒ 𝜐3(𝑥, 𝜏) = [(
𝑘2

3

6
+
3𝑘1

2𝑘2
6

−
3𝑘2

2𝑘1
6

) 𝜏3max(𝑒𝑥, 0) −
𝑘1

3

6
𝜏3max(𝑒𝑥 − 1,0)] 

The derivative of 𝜐3(𝑥, 𝜏) is given by  

𝜕

𝜕𝑥
𝜐3(𝑥, 𝜏) = [(

𝑘2
3

6
+
3𝑘1

2𝑘2
6

−
3𝑘2

2𝑘1
6

−
𝑘1

3

6
) 𝜏3max(𝑒𝑥, 0)] 

⇒
𝜕

𝜕𝑥
𝜐3(𝑥, 𝜏) =

(𝑘2𝜏 − 𝑘1𝜏)
3

6
max(𝑒𝑥, 0)                                                             (4.17) 

Working in this way we get, 
𝜕

𝜕𝑥
𝜐𝑛(𝑥, 𝜏) =

(𝑘2𝜏 − 𝑘1𝜏)
𝑛

𝑛!
max(𝑒𝑥, 0)                                                                  (4.18) 

Hence the solution of the problem is given by 

 𝜐(𝑥, 𝜏) = max (𝑒𝑥 − 1,0) − ∫−
𝜕2𝜐

𝜕𝑥2
− (𝑘2 − 1)

𝜕𝜐

𝜕𝑥
+ 𝑘1𝜐

𝜏

0

𝑑𝜏                         (4.19) 

 ⇒ 𝜐(𝑥, 𝜏) = max (𝑒𝑥 − 1,0) + ∑ 𝜐𝑛(𝑥, 𝜏)                                           (4.20)
∞
𝑛=1  

When differentiating equation (4.20) partially with respect to 𝑥, we have 

 
𝜕

𝜕𝑥
𝑣(𝑥, 𝜏) = max (𝑒𝑥, 0) + ∑

𝜕

𝜕𝑥
𝜐𝑛(𝑥, 𝜏)                                              (4.21)

∞
𝑛=1  

 
𝜕

𝜕𝑥
𝑣(𝑥, 𝜏) = max (𝑒𝑥, 0) + ∑

(𝑘2𝜏−𝑘1𝜏)
𝑛

𝑛!
 max(𝑒𝑥, 0)                         (4.22)∞

𝑛=1  

On integrating equation (4.22) with respect to 𝑥 we have, 

 𝜐(𝑥, 𝜏) = max (𝑒𝑥, 0) + ∑
(𝑘2𝜏−𝑘1𝜏)

𝑛

𝑛!
 max(𝑒𝑥, 0)                              (4.23)∞

𝑛=1  

Hence, equation (4.23) is the exact solution of equation(4.1). 
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V. Conclusion 

The Black-Scholes model is one of the important and useful models for the pricing of options in financial 

markets. In this article we have given a brief discussion of Adomian decomposition method and applied this 

method to obtain the exact solution of Black-Scholes equation for European options paying continuous 

dividends. The results obtained here prove the efficiency and efficacy of the proposed method. Therefore 

this method can be used and applied successfully to other linear and non linear differential equations arising 

in financial mathematics. The same algorithm can be applied to put options also. 
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