
© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902754 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 353

BUILDING APPLICATIONS FOR LARGE

SCALE WITH CONTAINER ORCHESTRATION

Pradeep Pai T, BEL, Jalahalli, Bangalore - 560054

N.1. ABSTRACT

Application that needs to handle large workloads

catering for millions of requests requires being

highly scalable, available, fault tolerant, easily

manageable and secure. Traditional approach in

catering for such high workloads involves

increasing capacity of individual machines hosting

such workloads which can include increasing

system RAM, utilizing a better performing CPU or

by increasing the storage capacity of the server.

This process is well known as vertical scaling. It is

common knowledge that there is a practical

limitation to the amount to which individual

systems can be vertically scaled to cater for such

higher workloads. Therefore there is a need to

address such a problem through alternate means.

An alternate approach at building systems that can

handle such large workloads would be by using

horizontal scaling; where-in the actual workload is

distributed over multiple machines. Horizontal

scaling of applications come with their own set of

challenges which include handling application

failures in certain machines, machine failures in it-

self, load balancing across the machines,

mechanism to perform large scale updates,

mechanism to scale-out applications on to more

machines on need basis and so forth. Addressing

such challenges require usage of software

infrastructure that can provide for a platform which

is configurable and also provides for a means to

perform and maintain the horizontally scaled

software application eco-system. Container

orchestration is one such means that provides a

mechanism of achieving the same.

N.2. INDEX TERMS

Containers, orchestration, Container orchestration,

Kubernetes, Docker swarm, apache mesos, master-
worker configuration, Cloud computing, Resource

allocation, virtual machines, predictive scaling,

system reliability, auto-scaling mechanism.

N.3. INTRODUCTION

Container orchestration as a concept has gained
prominence in recent times. It primarily deals with
automating, controlling and provisioning

containerized applications on large scale on

multiple machines. Container orchestration caters

for large workloads by ensuring scalability,

availability and ease of maintenance. Container

orchestration maintains and controls the complete

eco-system of horizontally scaled application.

Three prominent software platforms that provide

for container orchestration are as follows
1) Kubernetes

2) Docker Swarm

3) Apache Mesos

While Docker Swarm and Apache Mesos have

added a lot of new features in the recent times,

Kubernetes has been the clear leader over the years

in the choice for container orchestration platform.

Kubernetes over the years has grown into a robust

container orchestration platform, which is widely

accepted and used in horizontally scaling

applications. The rest of the paper focuses on

features, components and architecture of

Kubernetes.

N.4. KUBERNETES

Kubernetes is a Production-Grade Container
Orchestration platform which builds upon

containerized applications using Container
platform like Docker. Kubernetes is an open-

source system for automating deployment, scaling,
and management of containerized applications. It

groups containers that make up an application into

logical units for easy management and discovery.
Kubernetes has been in use handling production

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902754 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 354

workloads at Google for over 15 years, and has

matured into a production grade system in such
time. Kubernetes has been open-sourced and has a

very active community that makes significant
contributions in developing new features and

maintaining Kubernetes

N.4.1. KEY FEATURES OF KUBERNETES

Kubernetes has been developed to handle

deployments over potentially infinite scale without

necessarily increasing the operations team.

Kubernetes has evolved over the years through the

learning’s which have been obtained in running

humungous workloads at Google. Kubernetes over

the years has been proven to handle complex

workloads with ease. Kubernetes draws its features

from the open source community and has wide

acceptance in the open industry. Kubernetes setup

can be easily established on various kinds of cloud

infrastructure which includes public infrastructure,

hybrid infrastructure or even on-premises

infrastructure, which in turn gives a lot of

flexibility in deployment of applications, as the

same can effortlessly, can be moved around the

various infrastructures of Kubernetes.

Kubernetes has inbuilt algorithms that manage

how the workloads are distributed over machines

based on the resource requirements of applications.

Kubernetes intelligently manages resource

requirements of applications and distributes them

on hardware which can satisfy the resource

requirements, while ensuring the availability

parameters of these applications are not violated.

Kubernetes ensures optimum utilization of system

resources by scheduling workloads in effective

manner on machines. Kubernetes has capabilities

to perform regular health checkups on running

applications to ensure that they are healthy and

delivering the configured minimum availability

parameters. If containers have been found to be

unhealthy Kubernetes performs necessary action to

ensure availability by killing and restarting such

containers. Kubernetes also monitors node health,

if

nodes are to fail; Kubernetes ensures availability
by rescheduling all containers running on such

nodes onto other healthy nodes. Kubernetes also

does not expose the applications until the

containers are healthy and in ready state.
Kubernetes can scale the number of instances of

applications on nodes automatically by monitoring
system resources like the CPU, or on manual

inputs issued either through command or by using
Kubernetes dashboard. Kubernetes has

mechanisms to incrementally deliver updates to
applications; Kubernetes incrementally kills older

instances replacing them with newer versions of

the application without affecting the availability of
such applications. If the updates are to fail for any

reason Kubernetes gracefully roles-back all
changes and re-instates the older version of the

application. All such actions are performed in a
transparent manner to the consumers of such

applications. Kubernetes assigns unique IP
addresses to all containers of the application and

assigns each such container with an unique DNS

name, which can be used by other applications
without the need for explicitly knowing the IP

addresses of the containers themselves. Kubernetes
effectively manages load by distributing incoming

requests among all the available healthy instances
of the application.

UI

 C
L
I

imag
e

AP
I

 imag
e

 Kubernetes
Master

Regist

ry

 imag

e

No
de-
1

No
de-
2

No
de-
N

imag
e

Fig.1. Kubernetes high level architecture

Kubernetes allows for mounting of wide variety

of storage options available in the open world.
Kubernetes has capabilities to use storage from

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902754 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 355

local storage or from cloud providers such as GCP

or AWS or network storage systems such as NFS,
iSCSI, Gluster, Ceph, Cinder or Flocker.

Kubernetes also provides for batch execution as it
can easily manage batch and CI workloads,

replacing containers that fail, if desired.

N.4.2. KUBERNETES HIGH LEVEL

ARCHITECTURE

Fig. 1 depicts the high level architecture of

Kubernetes, which contains two primary

components, the Kubernetes master and the worker

nodes or more simply nodes. Kubernetes master is

responsible for maintaining and controlling the

entire Kubernetes infrastructure, while the nodes

host the applications. A node may be a VM or

physical machine, depending on the cluster. Each

node contains the services necessary to run pods

and is managed by the master components.

external user

Service

Deployment /Statefulset

Replica
Set

P
O
D

P
O
D

Con
tain
er

Con
tain
er

Persistence
Volume

Persistence
Volume

 Claim Claim

Storage Class

External Storage Provider

Fig.2. Kubernetes logical components

Containerized application images may be hosted
in the registries like the docker local or cloud
registries and the same may be configured with
Kubernetes. Deployment objects may refer to such

containerized application images and their versions
with tags for deployment of the applications.

Kubernetes master exposes services which can
be read and configured either by using API or User
Interface or Command Line Interface.

N.4.3. KUBERNETES LOGICAL

COMPONENTS

Fig.2. displays all the various logical components

of the Kubernetes infrastructure. Kubernetes

effectively manages a set of machines, called nodes

(as represented in fig.1.) that run containerized

applications. The set of machines is in-itself called

a cluster in Kubernetes. A cluster has several

worker nodes and at least one master node.

The smallest and simplest entity in Kubernetes is

a pod. A Pod is a typically a set of inter-related

containers. Kubernetes ensures that all containers

of a given Pod are scheduled and run on a single

node and all such containers share a common

network and storage. A pod is typically self-

sufficient in-itself and can be typically considered

to be a single instance of the application with all

necessary components. All containers of the pod

can logically discover each other over the network

by localhost, which gives the all the participating

containers of the pod as though they are co-located

on a single machine. Kubernetes supports different

types of container runtimes the prominent of such

container runtime that is widely used in the open is

Docker container runtime. Containers on the other

hand can themselves be considered to be light

weight self-sufficient atomic template images of

applications. Containers typically contain all

necessary dependencies required for their runtime

and generally perform a specific/unique

functionality. In Kubernetes pods are managed

through objects known as Deployments.

Deployments are created in Kubernetes by

providing YAML files that describe the containers

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902754 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 356

that make up the pod and other related parameters

necessary for the pod to perform their

functionality. Deployments in Kubernetes are

managed by entities known as deployment

controllers. Deployment controllers are responsible

to ensure that the pods are initiated and are

provided with all necessary components necessary

for their

run and also that the pods are in the described state

as defined in deployment descriptor YAML files.

Deployment controllers are primarily responsible
in achieving the desired state from the current

state.

While deployments are more suitable for

workloads that are stateless, the same may not be

suitable for workloads that are stateful. Stateful

applications are better managed by Kubernetes

objects known as StatefulSets. StatefulSets in

Kubernetes ensure the pods are rightly ordered and

are unique. StatefulSet function in manner very

similar to deployments where-in the application

pods are specified through YAML files and are

managed by controllers known as the StatefulSet

controllers. StatefulSet controllers like the

deployment controllers ensure that pods are in the

described state as defined in deployment descriptor

YAML files, and are primarily responsible in

achieving the desired state from the current state.

StatefulSet controllers additionally ensure that all

the pods managed by StatefulSet controller have

sticky and unique identity. StatefulSet controller

ensures this uniqueness and sticky identity of pods

are retained even while it reschedules such pods on

different nodes owing to failed health check or any

such event which triggers rescheduling.

Kubernetes has capabilities to automatically scale

applications based on defined metrics through

means of an API resource known as Horizontal

Pod Autoscaler. Horizontal Pod Autoscaler or

more simply the HPA performs automatic scaling

of pods by continuously monitoring the CPU

utilization of target pods on a periodic basis. The

period at which the HPA performs probe on CPU

utilization is configurable and generally the time

interval is application dependent. HPA performs

both scale up and scale down of pods based on load

and detected CPU usage of pods. Although HPA

generally performs scaling operation based on CPU

usage it can also be configured to perform scaling

based on other resource metrics like the memory

usage and network load as well. HPA intelligently

performs scaling by considering CPU usage

statistics across all pods that are active, against the

minimum or maximum target values set.

Many of the applications depend on storage and or
retrieval of data from disks that are made available
to it. When such applications are run in containers
on Kubernetes, such dependency on on-disk files
creates a problem of loss of data, as Kubernetes
may restart or reschedule such containers on
different nodes because of health check failures or
related issue. On the other hand all running
containers of the pod may require sharing of data
among each other, which brings in the requirement
of shared storage. These issues are solved in
Kubernetes by the use of Volume abstraction.

Volumes are nothing but storage devices that can

be used to store/retrieve disk data. Kubernetes

ensures same volume is made available to all

containers of a pod, thereby all containers have

access to the same data. Also, as the lifecycle of

the volume is linked to the lifecycle of the pods

themselves, data in the volumes are persevered and

made available to containers, even if they are

restarted or rescheduled due to any reason.

Kubernetes allows defining of different kind of

volumes that can be used by containers through the

definition of StorageClass. Individual StorageClass

can define different combination of storage

parameters like the provisioner, how the volume

shall be reclaimed, mount options and so on.

Kubernetes supports various kinds of provisioners

like AWS block storage, FC, Azure disk and so on.

Kubernetes further provides another level of

abstraction to the administrators through the usage

of API resources known as PersistentVolume and

PersistentVolumeClaim. PersistentVolume differ

from volumes in terms that their lifecycle is

independent of the pods themselves and they can

effectively outlive the lifecycle of the pods. Pods

that require usage of such volume storage make a

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902754 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 357

request to Kubernetes through claims known as

PersistentVolumeClaims. The type of volume

claim request made by a pod essentially also

involves the parameter of the desired storage class

and also how such volume shall be mounted.

Volumes can be mounted in read only, read/write

mode as the need may be.

Applications running in containers that make up

a pod are exposed for external usage through
abstractions known as Service. As many instances

of application may be running on Kubernetes based
on the requirement of scaling, the request from

external user is transparently handled without the
user getting to know which pod processed the

incoming request through the abstraction of

Service. Applications/pods are exposed through IPs
and specific ports through the definition of a

service. External users access the processing of the
backend applications only through the IP address

and ports exposed through this abstraction of
Service.

N.4.4. KUBERNETES MASTER

ARCHITECTURE

API UI CLI

Kub
ern
ete
s

M
a
s
t
e
r

 Kube-
Kube-
API

Kube-
Controlle

r

Sched
uler Server manager

Etcd

Fig. 3. Kubernetes master architecture

Fig. 3 depicts the architecture of Kubernetes
master. The Kubernetes master acts as a primary

node that hosts the api server, scheduler and the

controller and acts as the primary interface for
deployment and management of applications.

Kube-apiserver component on the master acts

as the primary interface between the Kubernetes

master and the Kubernetes nodes, all

communication directed towards the master

from the Kubernetes nodes/ pods is handled by

the Kube-apiserver. Kube-apiserver has

capability to scale horizontally by design.

Kube-scheduler component on the master

plays a major role in watching for any freshly

created nodes and is primarily responsible in

ensuring that the pods are scheduled on nodes

that meet the constraints specified in the YAML

file descriptor of the pod. Kube-scheduler takes

into consideration like the resource requirement

specified in the descriptor and tries to find a

node in the cluster that has such resource

available and schedules the pod to run on such

node. Kube-scheduler also considers the affinity

factors in scheduling the pods, ensuring that

pods are scheduled on nodes labeled with

affinity label avoiding nodes labeled in anit-

affinity labels.

Kube-controller-manager is the component

on the master that is responsible to create and

manage controllers. Controllers are like

watchdogs that run continuously and monitor

the current state of the cluster runs controllers.

There are three prominent controllers namely

Node controller, Replication Controller,

Endpoints Controller and the Service Account

& Token Controller. Each controller makes is

made aware of the desired state if the cluster

and these controllers are primarily responsible

in the transition of the cluster state from current

to the desired state. Although these controllers

run independently as separate processes, for

ease of management they are generally bundled

together.

The Node controller continuously monitors

the health of every individual node of the

cluster. The interval at which such health check

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902754 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 358

probe is made is configurable. If the node

controller determines any node to be unhealthy,

it initiates actions to address loss of

functionality due to outage on node. The

Replication Controller is made available the

number of containers that are to be available at

any given point in time through the pod spec,

hence this controller continuously monitors the

number of replicas of the containers/pods that

are available and also ensures that the descried

numbers of pods/containers are created and are

running in a healthy state. The Endpoints

Controller is primarily responsible in joining

services with the pods in accordance with the

Endpoints object. The Service Account &

Token Controllers are primarily responsible in

ensuring authentication and authorization of

various components of the cluster. The Service

Account & Token Controllers ensures the

availability of default accounts and API access

tokens for all namespaces.

All these components on the master make use
of a consistent highly-available key value store
known as Etcd. Etcd is used as Kubernetes’
backing store for all cluster data. It is advisable to
maintain a backup plan for etcd’s data for the
Kubernetes cluster.

N.4.5. KUBERNETES NODE

ARCHITECTURE

Kubernetes Master

2-way communication

Kubernetes
Node

ima
ge

Ku
bel
et

P
o
d

P
o
d

ima
ge

DNS

 Regi
stry

 P
o
d

 P
o
d

 Addo
ns

ima
ge

Ku
be-

UI

 Container
Runtime

 pro

xy

ima
ge

Fig. 4. Kubernetes node architecture

Fig.4. depicts the architecture of Kubernetes
node. Kubernetes Node components run on every
node, maintaining running pods and providing the
Kubernetes runtime environment. Major

components that make up a node include Kubelet,
Kube-proxy, container runtime and any add-ons, as

necessary.

Container Runtime is the software that is

responsible for running containers. Kubernetes

supports several runtimes: Docker, rkt, runc and

any OCI runtime-spec implementation. The most

prominent container runtime used in the open

industry is docker container runtime and hence

most of the container specs in Kuberenetes find

great similarity in the docker world.

Kubelet is the primary agent available on all

of the Kubernetes nodes and is responsible in

ensuring containers provided in the descriptor

YAML files of the pod are running on the node.

The Kubelet interacts with the container runtime

available on the node and manages containers

through the container runtime. Container

runtime on the node may host other containers

apart from the the ones managed by the kubelet.

Kube-proxy, as the name indicates acts as a

proxy for communications between the node and

the master. It is primarily responsible in

enforcing network rules and ensuring the

communication reaches the right components on

the node and vice-versa.

In Kubernetes Add-ons are themselves

deployed as pods and Services. These add-ons

implement certain cluster features of which

some may be considered to be very essential and

others to enhance ease of use. The Add-on pods

have a lifecycle similar to that of any normal

pod residing on Kubernetes and are hence

generally managed by Deployments, Replication

Controllers.

Some of the prominent add-ons are DNS add-

on and the Web UI dashboard add-on. While

other add-ons are not strictly required, all

Kubernetes clusters should have cluster DNS.

Cluster DNS is essentially a DNS server, which

enables search through DNS names and

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902754 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 359

generally many deployments rely on availability

of such DNS
access. Kubernetes service also relies on the

availability of such DNS services. Containers

started by Kubernetes automatically include this

DNS server in their DNS searches. The Web UI

Dashboard is an aesthetic addition to the

Kubernetes environment and provides for a web

based UI, which can be used to monitor the

Kubernetes cluster. The Dashboard also allows

for creation/deletion/modification of most of the

Kubernetes objects.

N.4.6. KUBERNETES COMMUNICATION

As depicted in Fig.4 Kubernetes works by two
way communications between the master and the
cluster of nodes.

N.4.6.1. CLUSTER TO MASTER

COMMUNICATION

Apiserver component of the master plays a major

role in communication between the cluster and the

master as all communication originating from the

cluster end at the apiserver. None of the other

components are designed to handle

communication. In order to ensure maximum

security all communication between cluster and

master are encrypted over the network by the use

of HTTPS and also clients are required to

authenticate themselves with the apiserver in order

for them to initiate communication with the

Apiserver. Apiserver also has functionality to

enable authorization checks and it is advisable to

enable the same for maximum security.

Nodes are generally provisioned with X.509

certificates and also client credentials are

provisioned. Nodes in this scenario are required to

produce their certificated along with client

credentials in order to authenticate themselves and

initiate a communication channel with the master.

Pods that need to communicate with the

Kubernetes masters apiserver perform such

communication securely by leveraging a service

account so that Kubernetes will automatically

inject the public root certificate and a valid bearer

token into the pod when it is instantiated. The

Kubernetes service in all namespaces is configured

with a virtual IP address that is redirected via the

kube-proxy to the HTTPS endpoint on the

apiserver.

N.4.6.2. MASTER TO CLUSTER

COMMUNICATION

There are two primary communication paths
from the master (apiserver) to the cluster. The first

is from the apiserver to the kubelet process which

runs on each node in the cluster.

The second is from the apiserver to any node,
pod, or service through the apiserver’s proxy

functionality. The connections from the apiserver

to the kubelet are used for fetching logs of pods,
attaching (through kubectl) to running pods and for
providing the kubelet’s port-forwarding

functionality. These connections terminate at the

kubelet’s HTTPS endpoint. By default, the

apiserver does not verify the kubelet’s serving

certificate, which makes the connection subject to

man-in-the-middle attacks, and unsafe to run over

untrusted and/or public networks. The same can be

overcome in a manner similar to cluster to master

communication, by the use of certificates.

N.4.7. HIGH-AVAILABILITY KUBERNETES

MASTERS

In Kubernetes, most of the interaction and

administration is done through the Kubernetes

master. Therefore a cluster with single instance

of Kubernetes master can be visualized to be

vulnerable to single point of failure. To

overcome the same, Kubernetes provides

mechanisms for deploying multiple masters in

different zones, where-in the load between the

masters can be load balanced through an

external load balancer and the data is

synchronized among all the masters by ensuring

deployment of clustered etcd.
It is recommended to deploy a master replica

containing at least three masters in three
different zones to ensure high-availability.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902754 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 360

N.5. CONCLUSION

Kubernetes container orchestration platform

provides for building robust production grade

highly scalable systems by using techniques to

scale applications horizontally across multiple

machines. Kubernetes is widely used in the

industry for scaling of applications. Kubernetes

is open source and largely community driven

and the platform can also be established on an

on-premises cloud.

Kubernetes application configurations

necessary for deployment of applications on the

Kubernetes platform is flexible - as the same

configuration can be seamlessly used on any

Kubernetes platform which could be an on-

premises cloud or SAAS exposed by cloud

providers like Google or Amazon, thus

providing for abundance of deployment

options.

N.6. ACKNOWLEDGMENT

I would like to express my gratitude to Ms.

Durga G K (AGM), Mr. Kodandarama K (AGM),

Mr. Paraneetharan S (Sr. DGM) and Ms.

Shashikala K L (DGM) from C-D&E Software,

BEL for providing sufficient infrastructure and

support for this work.

N.7. REFERENCES

[1] Kubernetes, October 2018, [online] Available:
https://www.kubernetes.io/.

[2] Docker, October 2018, [online] Available:
https://www.docker.com/.

[3] P E. Casalicchio, L. Silvestri, "Architectures
for autonomic service management in cloud-
based systems", Computers and
Communications (ISCC) 2011 IEEE
Symposium on, pp. 161-166, June 2011.

[4] Docker Swarm, October 2018, [online]

Available:

https://docs.docker.com/engine/swarm/.

[5] Apache Mesos , October 2018, [online]

Available:
http://mesos.apache.org/.

[6] Edureka blog on Kubernetes architecture
[online]
Available:
https://www.edureka.co/blog/kubernetes-
architecture/

[7] Kublr blog on Kubernetes architecture [online]

Available: https://kublr.com/blog/under-the-

hood-an-introduction-to-kubernetes-
architecture/

[8] Tothenew blog blog on Kubernetes architecture

and setup [online]
Available:

http://www.tothenew.com/blog/understanding-

kubernetes-architecture-and-setting-up-a-cluster-

on-ubuntu/

[9] Aquasec blog on Kubernetes architecture
[online]
Available:

https://www.aquasec.com/wiki/display/contain

e

rs/Kubernetes+Architecture+101

[10] Wikipedia information on
Kubernetes[online] Available:
https://en.wikipedia.org/wiki/Kubernetes

[11] Github Kubernetes repository [online] Available:

https://github.com/kubernetes/kubernetes

http://www.jetir.org/
https://www.kubernetes.io/
https://www.docker.com/
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
https://www.edureka.co/blog/kubernetes-architecture/
https://www.edureka.co/blog/kubernetes-architecture/
https://www.edureka.co/blog/kubernetes-architecture/
https://kublr.com/blog/under-the-hood-an-introduction-to-kubernetes-architecture/
https://kublr.com/blog/under-the-hood-an-introduction-to-kubernetes-architecture/
https://kublr.com/blog/under-the-hood-an-introduction-to-kubernetes-architecture/
https://kublr.com/blog/under-the-hood-an-introduction-to-kubernetes-architecture/
http://www.tothenew.com/blog/understanding-kubernetes-architecture-and-setting-up-a-cluster-on-ubuntu/
http://www.tothenew.com/blog/understanding-kubernetes-architecture-and-setting-up-a-cluster-on-ubuntu/
http://www.tothenew.com/blog/understanding-kubernetes-architecture-and-setting-up-a-cluster-on-ubuntu/
http://www.tothenew.com/blog/understanding-kubernetes-architecture-and-setting-up-a-cluster-on-ubuntu/
http://www.tothenew.com/blog/understanding-kubernetes-architecture-and-setting-up-a-cluster-on-ubuntu/
https://www.aquasec.com/wiki/display/containers/Kubernetes+Architecture+101
https://www.aquasec.com/wiki/display/containers/Kubernetes+Architecture+101
https://www.aquasec.com/wiki/display/containers/Kubernetes+Architecture+101
https://en.wikipedia.org/wiki/Kubernetes
https://github.com/kubernetes/kubernetes

