SOME PROPERTIES OF SYMMETRIC BI- (σ, τ) SEMI DERIVATIONS IN NEAR RINGS

C.GangiReddy ${ }^{1}$ and Dr.D.Bharathi ${ }^{2}$
${ }^{1}$ Research scholar,S.V.University,Tirupati.
${ }^{2}$ Professor, Department of mathematics, S.V.University,Tirupati.
${ }^{1}$ chavvagangireddy@gmail.com ${ }^{2}$ bharathikavali@gmail.com

Abstract

N be a 3-prime near ring with centre Z . The main results in this paper are (1) If N is a 2-torsion free and $D(N, N) \subset$ Z then N is a commutative ring. (2) If $[d(t), t]_{(\sigma, \tau)}=0$ then N is commutative with respect to addition.

Keywords: (σ, τ)-derivation, symmetric bi- derivation, symmetric bi- (σ, τ) semi derivations

1. Introduction

Maksa introduced Symmetric bi-derivation in [4]. Symmetric bi-derivation of Near-ring was introduced by Ozturk and Jun and also they studied some properties. In this paper we study some properties of symmetric bi- (σ, τ) semi derivations.

In this paper N is a zero-symmetric left near-ring with multiplicative center Z.A near-ring N is said to be 3-prime if $t N u=0 \Rightarrow t=0$ (or) $u=0 . \sigma, \tau$ are automorphisms of near-ring N . Here $[t, u]=t u-u t,[t, u]_{\sigma, \tau}=t \sigma(u)-\tau(u) t,(t, u)=t+u-t-u \forall x, y \in N$.A function D: $\mathrm{N} \times \mathrm{N} \rightarrow$ N is called symmetric if $D(t, u)=D(u, t) \forall t, u \in N$. A function $\mathrm{d}: \mathrm{N} \rightarrow \mathrm{N}$ is said to be the trace of D if $d(t)=D(t, t)$ where $\mathrm{D}: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ is a symmetric function. The trace of D satisfies the relation $d(t+u)=$ $d(t)+2 D(t, u)+d(u) \forall t, u \in N$. A symmetric bi-additive function D : $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$ is said to be symmetric bi- (σ, τ) semi derivation if $\quad D(t u, v)=D(t, v) g(\sigma(u))+\tau(t) D(u, v) \forall t, u, v \in N$.

2. Primary results

Lemma 2.1: ([4, lemma 3]). Suppose N be a 3-prime near ring.
(i) If $v \in Z-\{0\}, \Rightarrow v$ is not a zero divisor.
(ii) If $Z-\{0\}$ has an element v for which $v+v \in Z, \Rightarrow \mathrm{~N}$ is abelian with respect to addition.

Lemma 2.2: Suppose N is a 2-torsion free 3-prime near ring, D be a symmetric bi- $(\sigma, \tau)-$ semi derivation of N and d be the trace of D. if $t d(N)=0 \forall t \in N \Rightarrow t=0($ or $) D=0$.

Proof:

We know that $d(u+v)=d(u)+2 D(u, v)+d(v) \forall u, v \in N$
Multiply with t on both sides and also from the given hypothesis

$$
\begin{array}{r}
t d(u+v)=t d(u)+2 t D(u, v)+t d(v) \\
0=2 t D(u, v)
\end{array}
$$

Since N is 2-torsion free, we have

$$
\begin{equation*}
t D(u, v)=0 \tag{1}
\end{equation*}
$$

Substitute $u w$ in the place of u in the above equation then

$$
t D(u w, v)=0
$$

$t(D(u, v) g(\sigma(w))+\tau(u) D(w, v))=0 \forall t, u, v, w \in N$

$$
t D(u, v) g(\sigma(w))+t \tau(u) D(w, v)=0
$$

From equation (1) we have $t \tau(u) D(w, v)=0$ for all for all $t, u, v, w \in N$
By the automorphism τ of N , we have $t N D(w, v)=0$
By the 3-primeness of N we get $t=0$ (or) $D=0$
Lemma2.3: Suppose N is a near ring, D be a symmetric bi- (σ, τ) semi derivation of $\mathrm{N} \Leftrightarrow D(t u, v)=$ $\tau(t) D(u, v)+D(t, v) g(\sigma(u)) \forall t, u, v \in N$

Proof:

Suppose D is a symmetric bi- (σ, τ) semi derivation of $\mathrm{N}, \forall t, u, v \in N, \sigma$ is an automorphism we have $D(t(u+u), v)=D(t, v) g(\sigma(u+u))+\tau(t) D(u+u, v)$
$D(t(u+u), v)=D(t, v) g(\sigma(u))+D(t, v) g(\sigma(u))+\tau(t) D(u, v)+\tau(t) D(u, v) \quad$ Equation(2)
And also $D(t(u+u), v)=D(t u, v)+D(t u, v)$

$$
D(t(u+u), v)=D(t, v) g(\sigma(u))+\tau(t) D(u, v)+D(t, v) g(\sigma(u))+\tau(t) D(u, v) \quad \text { Equation(3) }
$$

From equations (2) and (3) we will get

$$
D(t, v) g(\sigma(u))+\tau(t) D(u, v)=\tau(t) D(u, v)+D(t, v) g(\sigma(u))
$$

$D(t u, v)=\tau(t) D(u, v)+D(t, v) g(\sigma(u)) \forall t, u, v \in N$
Similarly we can prove converse.
Lemma 2.4: Suppose N is a near ring, D be a symmetric bi- (σ, τ) semi derivation of N and d be the trace of D , then $\forall t, u, v, w \in N$.
(i) $[D(t, v) g(\sigma(u))+\tau(t) D(u, v)] w=D(t, v) g(\sigma(u)) w+\tau(t) D(u, v) w$.
(ii) $[\tau(t) D(u, v)+D(t, v) g(\sigma(u))] w=\tau(t) D(u, v) w+D(t, v) g(\sigma(u)) w$.

Proof:

(i) Suppose we have
$D(t u, v)=D(t, v) g(\sigma(u))+\tau(t) D(u, v) \forall t, u, v \in N$
$D((t u) w, v)=D(t u, v) g(\sigma(w))+\tau(t u) D(w, v)$
$D((t u) w, v)=(D(t, v) g(\sigma(u))+\tau(t) D(u, v)) g(\sigma(w))+\tau(t) \tau(u) D(w, v) \quad$ Equation(4)
And also
$\begin{aligned} D(t(u w), v) & =D(t, v) g(\sigma(u w))+\tau(t) D(u w, v) \\ & =D(t, v) g(\sigma(u) \sigma(w))+\tau(t)(D(u, v) g(\sigma(w))+\tau(u) D(w, v))\end{aligned}$
$D(t(u w), v)=D(t, v) g(\sigma(u)) g(\sigma(w))+\tau(t) D(u, v) g(\sigma(w))+\tau(t) \tau(u) D(w, v)$ Equation(5)
From equations (4) and (5) we have
$(D(t, v) g(\sigma(u))+\tau(t) D(u, v)) g(\sigma(w))=D(t, v) g(\sigma(u)) g(\sigma(w))+\tau(t) D(u, v) g(\sigma(w))$
Since g is onto and σ, τ are automorphisms
$(D(t, v) g(\sigma(u))+\tau(t) D(u, v)) w=D(t, v) g(\sigma(u)) w+\tau(t) D(u, v) w$.
(ii) Suppose $D(t u, v)=\tau(t) D(u, v)+D(t, v) g(\sigma(u)) \forall t, u, v \in N$

From the associative law, we have
$D((t u) w, v)=\tau(t u) D(w, v)+D(t u, v) g(\sigma(w))$
$D((t u) w, v)=\tau(t) \tau(u) D(w, v)+(\tau(t) D(u, v)+D(t, v) g(\sigma(u))) g(\sigma(w))$
Since g is onto and σ is an automorphism then
$D((t u) w, v)=\tau(t) \tau(u) D(w, v)+(\tau(t) D(u, v)+D(t, v) g(\sigma(u))) w$
Equation(6)
And also
$D(t(u w), v)=\tau(t) D(u w, v)+D(t, v) g(\sigma(u w))$
$D(t(u w), v)=\tau(t)(\tau(u) D(w, v)+D(u, v) g(\sigma(w)))+D(t, v) g(\sigma(u)) g(\sigma(w))$
$D(t(u w), v)=\tau(t) \tau(u) D(w, v)+\tau(t) D(u, v) g(\sigma(w))+D(t, v) g(\sigma(u)) g(\sigma(w))$
Since g is onto and σ is an automorphism then
$D(t(u w), v)=\tau(t) \tau(u) D(w, v)+\tau(t) D(u, v) w+D(t, v) g(\sigma(u)) w$
Equation(7)
From equations (6) and (7) we have
$(\tau(t) D(u, v)+D(t, v) g(\sigma(u))) w=\tau(t) D(u, v) w+D(t, v) g(\sigma(u)) w$
Lemma 2.5: Suppose N is a 3-prime near ring, D be a non-zero symmetric bi- $(\sigma, \tau)-$ semi derivation of N. if $D(N, N) t=0 \forall t \in N \Rightarrow t=0$ and if $t D(N, N)=0 \forall t \in N \Rightarrow t=0$.

Proof:

Let us consider $D(u, v) t=0 \forall t, u, v \in N$.
Now replace u with $u w$ and from lemma 2.4 (i),

$$
\begin{gathered}
D(u w, v) t=0 \\
(D(u, v) g(\sigma(w))+\tau(u) D(w, v)) t=0 \\
D(u, v) g(\sigma(w)) t+\tau(u) D(w, v) t=0 \\
D(u, v) g(\sigma(w)) t=0
\end{gathered}
$$

Since g is onto and by the automorphism σ of N we have

$$
D(u, v) N t=0 \forall t, u, v \in N .
$$

By the 3-primeness of N and D is non-zero,then we have $t=0$.
If $t D(N, N)=0$,
Then $\forall t, u, v \in N, t D(u, v)=0$
Now replace u with $u w$ in the above and from lemma 2.4 (i)

$$
\begin{aligned}
& t D(u w, v)=0 \forall t, u, v, w \in N \\
& t(D(u, v) g(\sigma(w))+\tau(u) D(w, v))=0 \\
& t D(u, v) g(\sigma(w))+t \tau(u) D(w, v)=0 \\
& t \tau(u) D(w, v)=0
\end{aligned}
$$

Since τ is an automorphism then we have

$$
t N D(w, v)=0 \forall t, u, v, w \in N
$$

Since N is a 3-prime near ring and D is non-zero, we get $t=0$

3. Main Results

Theorem 3.1: Let N be a 3-prime near ring, D be a non-zero symmetric bi- $(\sigma, \tau)-$ semi derivation of N . if N is a 2-torsion free and $D(N, N) \subset Z$ then N is a commutative ring.

Proof:

Let $D(N, N) \subset Z$ and D is a non trivial, then there exists non zero elements $t, u \in N$
such that $D(t, u) \in Z-\{0\}$, then

$$
D(t, u+u)=D(t, u)+D(t, u) \in Z
$$

And by lemma $2.1, \mathrm{~N}$ is abelian with respect to addition.
$D(t, u+u) \in Z$ for all $t, u \in N$ implies that

$$
v D(t, u)=D(t, u) v \text { for all } v \in N
$$

Substitute $v w$ in the place of v then we have

$$
\begin{gathered}
v D(t w, u)=D(t w, u) v \\
v(D(t, u) g(\sigma(w))+\tau(t) D(w, u))=(D(t, u) g(\sigma(w))+\tau(t) D(w, u)) v
\end{gathered}
$$

From lemma 2.4(i) and $D(N, N) \subset Z$ we have

$$
D(t, u) v g(\sigma(w))+D(w, u) v \tau(t)=D(t, u) g(\sigma(w)) v+\tau(t) D(w, u) v
$$

(or) N is abelian with respect to addition for all $t, u, v, w \in N$

$$
D(t, u)[v, g(\sigma(w))]=D(w, u)[v, \tau(t)]
$$

Since g is onto

$$
D(t, u)[v, \sigma(w)]=D(w, u)[v, \tau(t)] .
$$

Substitute $D(x, y)$ in the place of $\sigma(w)$ for all $x, y \in N$ and since $D(x, y) \in Z$ we have
$D(D(x, y), u)[v, \tau(t)]=0$ for all $x, y, t, u, v \in N$
Since D is non zero we have $[v, \tau(t)]=0$ for all $t, v \in N$
Since τ is an automorphism
Therefore N is a commutative ring.

Theorem 3.2: Let N be a 3-prime near ring, D be a non-zero symmetric bi- $(\sigma, \tau)-$ semi derivation of N and d be the trace of D . If $[d(t), t]_{(\sigma, \tau)}=0$ then N is commutative with respect to addition.

Proof:

Let D is a non-zero symmetric bi- $(\sigma, \tau)-$ semi derivation then
$D(t(t+u), t)=D(t, t) g(\sigma(t+u))+\tau(t) D(t+u, t)$
$D(t(t+u), t)=d(t) g(\sigma(t))+d(t) g(\sigma(u))+\tau(t) D(t, t)+\tau(t) D(u, t)$
$D(t(t+u), t)=d(t) g(\sigma(t))+d(t) g(\sigma(u))+\tau(t) d(t)+\tau(t) D(u, t)$
Equation(8)
And also $D(t(t+u), t)=D\left(t^{2}+t u, t\right)=D\left(t^{2}, t\right)+D(t u, t)$
$D(t(t+u), t)=D(t t, t)+D(t u, t)$
$D(t(t+u), t)=D(t, t) g(\sigma(t))+\tau(t) D(t, t)+D(t, t) g(\sigma(u))+\tau(t) D(u, t)$
$D(t(t+u), t)=d(t) g(\sigma(t))+\tau(t) d(t)+d(t) g(\sigma(u))+\tau(t) D(u, t)$
Equation(9)
From equations (8) and (9) we have

$$
d(t) g(\sigma(u))+\tau(t) d(t)=\tau(t) d(t)+d(t) g(\sigma(u))
$$

Since g is onto $\operatorname{and}[d(t), t]_{(\sigma, \tau)}=0$

$$
\begin{gathered}
d(t) \sigma(u)+\tau(t) d(t)=\tau(t) d(t)+d(t) \sigma(u) \\
d(t) \sigma(u)+d(t) \sigma(t)-d(t) \sigma(u)-d(t) \sigma(t)=0 \\
d(t)(\sigma(u)+\sigma(t)-\sigma(u)-\sigma(t))=0
\end{gathered}
$$

$d(t)(\sigma(t), \sigma(u))=0$ for all $t, u \in N$
Since σ is an automorphism and from lemma 2.2 we have N is abelian with respect to addition.

References

[1]. Y.Ceven and M.A.Ozturk, Some properties of symmetric bi- (σ, τ) derivations in near rings,.Korean Math.Soc.22(2007) no.4, 487-491.
[2].M.Ashraf,A.Ali and S.Ali, (σ, τ) derivations on prime near-rings,Archivum Mathematicum(BRNO),Tomus 40 (2004),281-286.
[3] O.Golbasi,Some properties of prime near-rings with (σ, τ) derivations,Siberian Mathematical Journal 46 (2005), no 2, 270-275.
[4].G.Maksa,On the trace of symmetric bi-derivations,C.R.Math.Rep.Sci.Canada 9(1987),303-307.
[5].M.A.Ozturk and Y.B.Jun,On generalized symmetric bi-derivations in prime rings, East asian Math.J.15(1999),NO.2,165-176.
[6].M.A.Ozturk and Y.B.Jun, On the trace of symmetric bi-derivations in near-rings, International journal of pure and applied mathematics 17 (2004), no.1, 95-102.

