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Abstract:  Approximate analytical approach is used to study counter-current imbibition phenomenon in porous medium. Counter-

current imbibition phenomenon in porous media takes place during the process of secondary oil recovery. For the mathematical 

modelling, the permeability of the porous medium is considered as a function of variable. Mathematical formulation of the 

phenomenon is governed by one-dimensional non-linear partial differential equation. The solution of governing equation is 

obtained by modified variational iteration method (MVIM).   
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I. INTRODUCTION 

 

A spontaneous flow of the resident fluid from the medium occurs when a porous medium is filled with some fluid which 

preferentially wets the medium. The counter-current imbibition phenomenon is arising due to the difference in the wetting 

abilities of the fluid. Counter current imbibition is one of the most important recovery mechanisms during oil recovery.  

Various authors have investigated this phenomenon from different viewpoints analytically as well as numerically with 

different assumptions and initial and boundary conditions. Mishra, Pradhan and Mehta used Homotopy perturbation transform 

method (HPTM) with linear relative permeability [1], M.F.El-Amina, Amgad S. and Shuyu S. have discussed numerical and 

dimensional investigation of two-phase counter current imbibition in porous media [2], M.A. Patel and N. B. Desai [3] have used 

Homotopy analysis method with variable porosity and permeability in heterogeneous porous medium, S.Pathak and T.Singh [4] 

have used optimal Homotopy analysis method .  

 

II. BASICS OF MODIFIED VARIATIONAL ITERATION METHOD 

 

Many problems in applied sciences involved non-linear partial differential equations with initial and boundary conditions. 

Such problems are solved by several techniques including decomposition, variational iteration, finite difference, polynomial spline 

and Homotopy perturbation [5-7]. The motivation to develop other methods for solving these problems is that these methods 

require huge computational work. The variational iteration method (VIM) is developed by He [8-10] for solving linear and 

nonlinear initial and boundary value problems. The solution obtained by this method is given in an infinite series usually 

converging to an accurate solution [11-14]. In this paper, the solution is obtained by the modified variational iteration method 

(MVIM). It is shown that the MVIM provides the solution in a rapid convergent series with easily computable components [15].  

 

To illustrate the basic concept of the Modified variational decomposition method, consider the general differential equation [16],  
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Where L is a linear operator, N a non-linear operator and ),( txg is the source inhomogeneous term.  

Constructing a correct functional as follow; 
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Where   is a Lagrange’s multiplier which can be identified optimally via variational iteration method. The subscript n denote the 

nth approximation and 
nu~   is considered as a restricted variation i.e. 0~ nu  . 

Applying Homotopy perturbation method, 
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 Which is the modified variational iteration method (MVIM) and it is formulated by the coupling of variational iteration method 

and He’s polynomials. The comparison of like powers of 𝑝 gives solutions of various orders. 

 

III. STATEMENT OF THE PROBLEM 

 

A finite cylindrical piece of homogenous porous matrix of length L is fully saturated with a native liquid. It is completely 

surrounded by an impermeable surface except for one end is exposed to an adjacent formation of injected fluid. It is assumed that 

injected fluid is preferentially more wetting than that of native fluid and this arrangement give rise to the phenomenon of linear 

counter-current imbibition, that a spontaneous linear flow of injected fluid into the medium and a counter flow of the resident 

fluid from the medium [17]. 

 

IV. MATHEMATICAL FORMULATION 

 

From Darcy’s law, the equations of seepage velocity of flowing fluids are written as: 
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Where 
iV  and nV are seepage velocity of injected fluid and native fluid respectively, k  is the permeability of the 

homogeneous medium, ik  and nk  are relative permabilities of injected fluid and native fluid respectively, iP  and nP are the 

pressures and i  and  n  are viscosities of injected fluid and native liquid respectively. 

The equations of continuity for the flowing phase are: 
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Where   is the porosity of the medium and iS  and nS are injected fluid and native fluid saturation respectively. 

An analytic condition of governing imbibition phenomenon is given by     

          

ni VV                 (5)

inC PPP                    (6) 

 

Where 
CP   is the capillary pressure. 

The nonlinear partial differential equation describing the imbibition phenomena in homogeneous porous medium is given as  
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    [18], we may write equation (7) in the form 
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Assuming linear relative permeability for injected fluid and native liquid [19] as 

 

inii SkSk  1, ,  is any scalar          (9) 

 Capillary pressure as a function of saturation of injected fluid [20] is given by  
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Replacing   iS1  by S , from equation (11), we get 
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Using dimensionless variable
L
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Equation (13) is the governing equation for this phenomenon.  

The suitable initial and boundary conditions are given by 
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V. MATHEMATICAL SOLUTION 

 

Applying MVIM for equation (13) with initial condition (14), a correct functional is as follow; 
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Applying Homotopy perturbation method, 
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From equation (16), we get  
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Comparing co-efficient of like powers of p , we get 
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The series solution is given by 
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Numerical values of saturation of injected fluid for different distance and time is shown in the following table. 

 

T →     

X ↓ 

T = 0 T = 0.01 T = 0.02 T = 0.03 T = 0.04 T = 0.05 

iS  

0.1 0.095163 0.078781 0.062356 0.045846 0.029207 0.012396 

0.2 0.181269 0.167858 0.154418 0.140921 0.127337 0.113638 

0.3 0.259182 0.248202 0.237204 0.226166 0.202242 0.203899 

0.4 0.32968 0.320691 0.31169 0.302662 0.293596 0.284478 

0.5 0.393469 0.38611 0.378743 0.371358 0.363947 0.356501 

0.6 0.451188 0.445164 0.439133 0.433091 0.427031 0.420948 

0.7 0.503415 0.498482 0.493546 0.488601 0.483645 0.478674 

0.8 0.550671 0.546633 0.542592 0.538546 0.534491 0.530427 

0.9 0.59343 0.590124 0.586816 0.583505 0.580188 0.576864 

1 0.632121 0.629414 0.626706 0.623995 0.621281 0.618563 

 

VI. GRAPHICAL ANALYSIS 
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VII. CONCLUSION 

 

From figure-1, it is concluded that as distance increases, saturation of injected fluid increases and from figure-2, as time 

increases, saturation of injected fluid decreases. MVIM is used to obtain the solution. It may be concluded that the proposed 

method is very powerful and efficient in finding the analytical solutions for non-linear partial differential equation. The more 

series solution obtained by this method converge very rapidly in physical problems. 
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