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1. Introduction 

Wu.J.L and Zhang.P introduced  bicomplex representation method for quaternion matrix is 2011[5]. The multiplication 

A B  was defined as 
0 0 1 1A B A B j  where 

0 1A A j A  , 
0 1B B j B  , 

0 0 1 1A ,B ,A ,B  are complex matrices, in the study of 

quaternion division algebra. People always except to get some relation between quaternion division algebra and real algebra or 

complex algebra. However, some conclusions on real or complex fields but not on quaternion division algebra. It makes has to 

establish in matrix theory.  

The addition and multiplication are q-k-normal matrices by using double complex representation of quaternion matrices, the 

properties and conditions for addition and multiplication are given. 

2. Some Definitions and Theorems 

Theorem 2.1 

If A and B are q-k-normal matrices with having 
0 1A A A j 

 
and 

0 1B B B j  , 
0 1 0 1 n nA ,A ,B ,B C 

 
then  A B  is q-

k-normal when 
0 0A B  and 

1 1A B are k-normal. 

Proof 

 Since A and  B are q-k-normal.  

So, we can write * *AKA K KA KA  and 
* *BKB K KB KB .   

By definition of double representation 
0 1A A A j 

 
implies that

 

* * *

0 1KA K KA K KA Kj   

Similarly  
0 1B B B j 

 
and 

* * *

0 1KB K KB K KB Kj 
   

 

 Now, 0 0 1 1(A B) (A B ) (A B )j      

So,       
* * *

0 0 1 1K(A B) K K(A B ) K K(A B ) Kj    
 

* * *

0 0 1 1 0 0 1 1(A B)K(A B) K ((A B ) (A B ) j)(K(A B ) K) K(A B ) Kj)          
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Since 
0 0 1 1AB A B A B j 

 

    
*(A B)K(A B) K 

 
*

0 0 0 0 1 1 1 1(A B )K(A B ) K (A B )K(A B ) Kj     
 

Since 
0 0A B and  

1 1A B are k-normal 

  * * *

0 0 0 0 1 1 1 1(A B)K(A B) K K(A B ) K(A B ) K(A B ) K(A B ) j         

                                                * *

0 0 1 1 0 0 1 1(K(A B ) K K(A B ) Kj)((A B ) (A B ) j)          

                                                 *

0 0 1 1 0 0 1 1K((A B ) (A B ) j) K((A B ) (A B ) j)      
 

                    *K(A B) K(A B)         

    That is * *(A B)K(A B) K K(A B) K(A B)      

Thus A B  is q-k-normal matrix. 

Hence proved. 

Theorem 2.2 

 Let A and B are q-k-normal in 
n nH   

and 
sA sB ; s 0,1  are k-normal in 

n nC   
then AB is  q-k-normal when 

* *

s s s sA KB K KB KA
 
and * *

s s s sKA KB B KA K . 

Proof 

 Since A and B  are q-k-normal * *AKA K KA KA  and * *BKB K KB KB . Since sA
 

and sB
 

are k-normal. So 

* *

s s sA KA K KA KA  and * *

s s s sB KB K KB KB . 

Now, 

* * *

0 0 1 1 0 0 1 1(AB)(K(AB) K) (A B A B j)(K(A B ) K K(A B ) Kj)  
                             

[Since 
0 0 1 1AB A B A B j  ] 

                            * *

0 0 0 0 1 1 1 1(A B )K(A B ) K (A B )K(A B ) Kj 
                 

 

               
* * * *

0 0 0 0 1 1 1 1A B KB A K A B KB A Kj   

                           
* * * *

0 0 0 0 1 1 1 1A B KB KKA K A B KB KKA Kj                                                                      [since 2K I ]                              

                           
* * * *

0 0 0 0 1 1 1 1A KB KB KA K A KB KB KA Kj                                                  [since 
0 1B ,B

 
are k-normal] 

Since 
* *

s s s sA KB K KB KA  , 
* *

s s s sKA KB B KA K
 

*(AB)(K(AB) K) * * * *

0 0 0 0 1 1 1 1KB KA KA KB KB KA KA KB j   

              
* * * *

0 0 0 0 1 1 1 1(KB K)(KA K)A B (KB K)(KA K)A B j 
                                

[Since
0A ,

1A  are k-normal]   

              
* *

0 0 0 0 1 1 1 1K(A B ) K(A B ) K(A B ) K(A B ) j   

                            
* *

0 0 1 1 0 0 1 1K((A B ) (A B ) j)K(A B A B j)    

                            
*K(AB) K(AB)  
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 Thus AB is q-k-normal 

Hence proved 

Definition 2.3 

 A double representation matrix 
n nA H 

 
is said to be q-k-unitary if * *

0 0 1 1A KA K A KA Kj I.   

Remark 2.4 

 If * *

0 0 1 1A KA K I A KA Kj 
 
and * *

1 1 0 0A KA Kj A KA K I 
 
are implied by the definition (2.3). 

Remark 2.5 

 Let A,B be double representation of complex matrices [3] there exist an q-k-unitary matrix 
0 1U U U j 

 
such 

that *B (KU K)AU .  

From this, we have 

 * *

0 1 0 1 0 1 0 1B B j (KU K KU Kj)(A A j)(U U j)      

* *

0 0 0 1 1 1(KU K)A U (KU K)A U j   

 Equating left hand and right hand sides 
*

0 0 0 0B (KU K)A U  and 
*

1 1 1 1B (KU K)A U   

Example 2.6 

 
1 i 2i

A
3 2i 3

 
  

 
 

 and 
2 2i 2 3i

B
2 2i 3 2i

  
  

    
 

if we take 

i 1

2 2
U

1 i

2 2

 
 
 
 
 
 

 are simply verified that 
*

0 0 0 0B (KU K)A U
 

and *

1 1 1 1B (KU K)A U  . 

Theorem 2.7 

 Let
 0 1 n nA A A j H    . If A is q-k-unitarily equivalent to a diagonal matrix 

0 1D D D j 
 
where

0 1 n nD ,D C  , then 

0A  and 
1A
 
are k-normal. 

Proof  

 Since
0 1 n nA A A j H    . If we assume that A is q-k-unitarily equivalent to a diagonal

0 1D D D j  . 

Therefore, there exist an q-k-unitary matrix 0 1P P P j 
 
such that

*(KP K)AP D . 

 That is 
*

0 1 0 1 0 1 0 1K(P P j) K(A A j)(P P j) (D D j)      

   
* *

0 0 0 1 1 1 0 1(KP K)A P (KP K)A P j D D j     

 This equation is pre and post multiplied by P and *KP K on both sides respectively.  

We have, 
* * * *

0 0 0 0 0 1 1 1 1 1P (KP K)A P (KP K) P (KP K)A P (KP K) j * *

0 0 0 1 1 1P D (KP K) P D (KP K) j   

Equating the component wise.  

We have 
* * *

0 0 0 0 0 0 0 0P (KP K)A P (KP K) P D (KP K)
 
and  
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                  * * *

1 1 1 1 1 1 1 1P (KP K)A P (KP K) P D (KP K)                               

This implies that  

            *

0 0 0 0A P D (KP K)  as *

0 0P KP K I      

                         * * *

0 0 0 0A [P D (KP K)]  

                               * *

0 0 0KP KD P  

Now,  * * * *

0 0 0 0 0 0 0 0A (KA K) (P D KP K)K(KP KD P )K  

  * * *

0 0 0 0 0 0P D KP KP KD P K                                         [since 2K I ] 

  * * *

0 0 0 0 0 0P D (KP KP )(KD P K)  

  * *

0 0 0 0P D KD P K               [since *

0 0(KP K)P ) I ] 

  
* *

0 0 0 0P D (KD K)(KP K)                                          [since 2K I ] 

           * * * *

0 0 0 0 0 0 0 0(KA K)A K(KP KD P )K(P D KP K)  

   * * *

0 0 0 0 0 0P KD P KP D KP K
 

   
* * *

0 0 0 0 0 0P (KD K)(KP K)P D (KP K)
                        

                                                     [since 2K I ] 

   
* * *

0 0 0 0 0 0P (KD K)(KP KP )D (KP K)
                         

 

   
* *

0 0 0 0P (KD K)D (KP K)                                              [since
*

0 0KP KP I ] 

Therefore, 
0D
 
and *

0KD K
 
are each diagonal. So, * *

0 0 0 0D (KD K) (KD K)D
 
and hence * *

0 0 0 0A (KA K) (KA K)A .  

So, 
0A

 
is k-normal. 

Similarly we may prove that 
1A is k-normal.

 
 

Remark 2.8 

 From the above theorem (2.7) we can prove that A is q-k-normal by using the theorem  

That is
 0A and

 1A are k-normal then
 0 1A A A j 

 
is k-normal.

 

Theorem 2.9 

 
If A is q-k-Hermitian and

 0A
 
and 

1A
 
are also k-Hermitian then

 
1 *A (KA K) 4I.  

 

Proof 

Since
 0 1A A A j 

 
So

 
* * *

0 1A A A j 
 
and

1 1 1

0 1A A A j   
.  

Now,
 

1 * 1 * *A (KA K)K(A KA K) K 

 

  
1 1 * * 1 1 * * *

0 1 0 1 0 1 0 1(A A j)(KA K KA Kj)K[(A A j)(KA K KA Kj)] K       
 

1 * 1 * 1 1 *

0 0 1 1 0 1 0 1(A KA K A KA Kj)K[(A A j)(A A j)] K      
 

 
Since

 0A
 
and

 1A
 
k-Hermitian
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1 * 1 * 1 1 *

0 0 1 1 0 0 1 1(A KA K A KA Kj)K(A A A A j) K     
    

1 * 1 * *

0 0 1 1(A KA K A KA Kj)K2I jK  
                                

[Since
 

1

0 0A A I  ]
 

1 * 1 *

0 0 1 12(A KA K A KA Kj) jI  
 

1 1

0 0 1 12(A A A A j) jI  
 

              
2 2(j.j) 

 

              4I   

Hence proved. 

Remark 2.10 

 
From the theorem (2.9) we can get the another theorem that if A is q-k-normal, 

0A and 
1A
 

are
 
k-normal then

 
1 *A [KA K] 4I   .

 

Remark 2.11 

 
We combine theorem (2.9) and the remark (2.10) , whether the A is q-k-Hermitian or

 
q-k-normal the 

1 *A KA K
is 

identity with multiple of -4.    
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