RADIO MEAN Dd-DISTANCE NUMBER OF DEGREE SPLITTING GRAPHS

${ }^{1}$ V. VIOLA, ${ }^{2}$ T. NICHOLAS
${ }^{1}$ Research Scholar, Assistant Professor, ${ }^{2}$ Former Principal, Associate Professor (Retd), ${ }^{1}$ PG Department of Mathematics,
${ }^{1}$ St.Jude's College ,Thoothoor, Kanyakumari District, Tamil Nadu, India.
${ }^{1}$ Affiliation: Manonmaniam Sundaranar University, Abisekhapatti, Tirunelveli,Tamil Nadu, India.

Abstract

A Radio Mean Dd-distance labeling of a connected graph G is an injective map from the vertex set $V(G)$ to the \mathbb{N} such that for two distinct vertices u and v of $\mathrm{G}, D^{D d}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}^{D d}(\mathrm{G})$, where $D^{D d}(\mathrm{u}, \mathrm{v})$ denote the Dd-distance between u and v and $\operatorname{diam}^{D d}(\mathrm{G})$ denotes the Dd-diameter of G . The radio mean Dd-distance number of $\mathrm{f}, \mathrm{rmn} n^{D d}(\mathrm{f})$ is the maximum label assigned to any vertex of G . The radio mean Dd-distance number of $\mathrm{G}, r m n^{D d}(\mathrm{G})$ is the minimum value of f of G. In this paper we find the radio mean Dd-distance number of degree splitting graphs.

Keywords: Dd-distance, Radio mean Dd-distance, Radio Dd-distance number.
Subject Classification (2010): 05C78, 05C15

1. Introduction

By a graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively.

The Dd-distance was introduced by A. Anto Kinsley and P. Siva Ananthi [1]. For a connected graph G, the Dd-length of a connected $\mathrm{u}-\mathrm{v}$ path is defined as $D^{D d}(\mathrm{u}, \mathrm{v})=\mathrm{D}(\mathrm{u}, \mathrm{v})+\operatorname{deg}(\mathrm{u})+\operatorname{deg}(\mathrm{v})$. The Dd-radius, denoted by $r^{D d}(\mathrm{G})$ is the minimum Ddeccentricity among all vertices of G . That is $r^{D d}(\mathrm{G})=\min \left\{e^{D d}(\mathrm{G}): \mathrm{v} \in \mathrm{V}(\mathrm{G})\right\}$. Similarly the Dd-diameter, $D^{D d}(\mathrm{G})$ is the maximum Dd-eccentricity among all vertices of G. We observe that for any two vertices u, v of G , we have $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq D^{D d}(\mathrm{u}, \mathrm{v})$. The equality holds if and only if u, v are identical. If G is any connected graph then the Dd-distance is a metric on the set of vertices of G. We can check easily $r^{D d}(\mathrm{G}) \leq D^{D d}(\mathrm{G}) \leq 2 r^{D d}(\mathrm{G})$. The lower bound is clear from the definition and the upper bound follows from the triangular inequality.

We introduced the concept of radio mean Dd-distance colouring of a graph G. Radio mean Dd-distance coloring is a function $f: \mathrm{V}(\mathrm{G}) \rightarrow \mathbb{N}$ such that $D^{D d}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}(\mathrm{G})+1$, where $\operatorname{diam}^{D d}(\mathrm{G})$ is the Dd-distance diameter of G. A Dddistance radio coloring number of G is the maximum color assigned to any vertex of G . It is denoted by $r m n^{D d}(\mathrm{G})$.

Radio labeling can be regarded as an extension of distance-two labeling which is motivated by the channel assignment problem introduced by W. K. Hale [6]. G. Chartrand et al.[2] introduced the concept of radio labeling of graph. Also G. Chartrand et al.[3] gave the upper bound for the radio number of path. The exact value for the radio number of path and cycle was given by Liu and Zhu [10]. However G. Chartrand et al.[2] obtained different values for them. They found the lower and upper bound for the radio number of cycle. Liu [9] gave the lower bound for the radio number of Tree. The exact value for the radio number of Hypercube was given by R. Khennoufa and O. Togni [8]. M. M. Rivera et al.[21] gave the radio number of $C_{n} \times C_{n}$, the Cartesian product of C_{n}. In [4] C. Fernandez et al. found the radio number for Complete graph, Star graph, Complete Bipartite graph, Wheel graph and Gear graph. M. T. Rahim and I. Tomescu [17] investigated the radio number of Helm graph. The radio number for the generalized prism graphs were presented by Paul Martinez et al. in [11]. In this paper, we fined the radio mean Dd-distance coloring of degree splitting graphs.

2. Main Results

Theorem 2.1

The radio mean Dd-distance number of degree splitting graph of path $\mathrm{DS}\left(P_{n}\right), \operatorname{rmn}^{\mathrm{Dd}}\left(\mathrm{DS}\left(P_{n}\right)\right) \leq 2 \mathrm{n}-5, \mathrm{n} \geq 7$.

.Proof.

Let $\mathrm{V}\left(\mathrm{DS}\left(P_{n}\right)\right)=\left\{w_{1}, w_{2}, v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{DS}\left(P_{n}\right)\right)=v_{i} v_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1, v_{1} w_{2}, v_{n} w_{2}, w_{1} v_{i}$:
$2 \leq \mathrm{i} \leq \mathrm{n}-1\}$.Then $\mathrm{D}^{\mathrm{Dd}}\left(v_{1}, w_{2}\right)=\mathrm{n}+5, \mathrm{D}^{\mathrm{Dd}}\left(v_{2}, v_{3}\right)=\mathrm{n}+7, \mathrm{D}^{\mathrm{Dd}}\left(v_{2}, w_{1}\right)=2 \mathrm{n}+2$. So $\operatorname{diam}^{\mathrm{Dd}}\left(\mathrm{DS}\left(P_{n}\right)\right)=2 \mathrm{n}+2$.
Without loss of generality, Let, $\mathrm{f}\left(w_{1}\right)<\mathrm{f}\left(v_{2}\right)<\mathrm{f}\left(v_{3}\right)<\ldots<\mathrm{f}\left(v_{n}\right)<\mathrm{f}\left(v_{1}\right)<\mathrm{f}\left(w_{2}\right)$.
The radio mean Dd-distance condition is $\mathrm{D}^{\mathrm{Dd}}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}(\mathrm{G})+1$.
Now, $\quad \mathrm{D}^{\mathrm{Dd}}\left(w_{1}, v_{2}\right)+\left\lceil\frac{f\left(w_{1}\right)+f\left(v_{2}\right)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}\left(\mathrm{DS}\left(P_{n}\right)\right)+1$

$$
\mathrm{f}\left(w_{1}\right)+\mathrm{f}\left(v_{2}\right) \geq 1, \text { which implies } \mathrm{f}\left(w_{1}\right)=\mathrm{n}-6 \text { and } \mathrm{f}\left(v_{2}\right)=\mathrm{n}-5 .
$$

$\mathrm{D}^{\mathrm{Dd}}\left(v_{2}, v_{3}\right)+\left\lceil\frac{f\left(v_{2}\right)+f\left(v_{3}\right)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}\left(D S\left(P_{n}\right)\right)+1, \quad \mathrm{f}\left(v_{2}\right)+\mathrm{f}\left(v_{3}\right) \geq 2 \mathrm{n}-9$. Therefore, $\mathrm{f}\left(v_{3}\right)=\mathrm{n}-4$.

$$
\mathrm{f}\left(v_{i}\right)=\mathrm{n}+\mathrm{i}-7,2 \leq \mathrm{i} \leq \mathrm{n}-1
$$

$$
\mathrm{D}^{\mathrm{Dd}}\left(v_{n-1}, v_{n}\right)+\left\lceil\frac{f\left(v_{n-1}\right)+f\left(v_{n}\right)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}\left(D S\left(P_{n}\right)\right)+1, \mathrm{f}\left(v_{n-1}\right)+\mathrm{f}\left(v_{n}\right) \geq 2 \mathrm{n}-7, \text { which implies } \mathrm{f}\left(v_{n}\right)=2 \mathrm{n}-7
$$

$$
\mathrm{D}^{\mathrm{Dd}}\left(v_{n}, v_{1}\right)+\left\lceil\frac{f\left(v_{n}\right)+f\left(v_{1}\right)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}\left(D S\left(P_{n}\right)\right)+1, \mathrm{f}\left(v_{n}\right)+\mathrm{f}\left(v_{1}\right) \geq 2 \mathrm{n}-3, \text { which implies } \mathrm{f}\left(v_{1}\right)=2 \mathrm{n}-6
$$

$$
\mathrm{D}^{\mathrm{Dd}}\left(v_{1}, w_{2}\right)+\left\lceil\frac{f\left(v_{1}\right)+f\left(w_{2}\right)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}\left(D S\left(P_{n}\right)\right)+1, \quad \mathrm{f}\left(v_{1}\right)+\mathrm{f}\left(w_{2}\right) \geq 2 \mathrm{n}-5, \text { which implies } \mathrm{f}\left(w_{2}\right)=2 \mathrm{n}-5 .
$$

Therefore, $\operatorname{rmn}^{\mathrm{Dd}}\left(D S\left(P_{n}\right)\right) \leq 2 \mathrm{n}-5, \mathrm{n} \geq 7$.
Note: $\mathrm{mn}^{\mathrm{Dd}}\left(D S\left(P_{n}\right)\right) \leq \mathrm{n}+2,4 \leq \mathrm{n} \geq 6$.

Theorem.2.2

The radio mean Dd-distance number of degree splitting of a star graph $\operatorname{DS}\left(K_{1, n}\right)$ is
$\operatorname{rmn}^{\mathrm{Dd}}\left(\mathrm{DS}\left(K_{1, n}\right)\right) \leq 3 \mathrm{n}-7, \mathrm{n} \geq 5$.

Proof.

Let $\mathrm{V}\left(\mathrm{DS}\left(K_{1, n}\right)\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\mathrm{E}\left(\mathrm{DS}\left(K_{1, n}\right)\right)=\left\{v_{0} v_{i}, w v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Then, $\mathrm{D}^{\mathrm{Dd}}\left(v_{0}, v_{i}\right)=\mathrm{n}+5, \mathrm{D}^{\mathrm{Dd}}\left(v_{i}, w\right)=\mathrm{n}+5$ and $\mathrm{D}^{\mathrm{Dd}}\left(v_{0}, w\right)=2 \mathrm{n}+2$. So, $\operatorname{diam}^{\mathrm{Dd}}\left(\mathrm{DS}\left(K_{1, n}\right)\right)=2 \mathrm{n}+2$. Without loss of generality, Let, $\mathrm{f}\left(v_{0}\right)<\mathrm{f}(w)<\mathrm{f}\left(v_{1}\right)<\mathrm{f}\left(v_{2}\right)<\ldots<\mathrm{f}\left(v_{n}\right)$.

Now, $\mathrm{D}^{\mathrm{Dd}}\left(v_{0}, w\right)+\left\lceil\frac{f\left(v_{0}\right)+f(w)}{2}\right\rceil \geq 2 \mathrm{n}+3, \mathrm{f}\left(v_{0}\right)+\mathrm{f}(w) \geq 1, \mathrm{f}\left(v_{0}\right)=2 \mathrm{n}-8$ and $\mathrm{f}(w)=2 \mathrm{n}-7$.
$\mathrm{D}^{\mathrm{Dd}}\left(w, v_{1}\right)+\left\lceil\frac{f(w)+f\left(v_{1}\right)}{2}\right\rceil \geq 2 \mathrm{n}+3, \mathrm{f}(w)+\mathrm{f}\left(v_{1}\right) \geq 2 \mathrm{n}-5$, which implies that $\mathrm{f}\left(v_{1}\right)=2 \mathrm{n}-6$.
$\mathrm{D}^{\mathrm{Dd}}\left(v_{1}, v_{2}\right)+\left\lceil\frac{f\left(v_{1}\right)+f\left(v_{2}\right)}{2}\right\rceil \geq 2 \mathrm{n}+3, \mathrm{f}\left(v_{1}\right)+\mathrm{f}\left(v_{2}\right) \geq 4 \mathrm{n}-11$, which implies that $\mathrm{f}\left(v_{2}\right)=2 \mathrm{n}-5$.
$\mathrm{D}^{\mathrm{Dd}}\left(v_{2}, v_{3}\right)+\left\lceil\frac{f\left(v_{2}\right)+f\left(v_{3}\right)}{2}\right\rceil \geq 2 \mathrm{n}+3, \mathrm{f}\left(v_{2}\right)+\mathrm{f}\left(v_{3}\right) \geq 4 \mathrm{n}-11$, which implies that $\mathrm{f}\left(v_{3}\right)=2 \mathrm{n}-4$.

$$
\mathrm{f}\left(v_{i}\right)=2 \mathrm{n}+\mathrm{i}-7,1 \leq \mathrm{i} \leq \mathrm{n} . \text { Hence } \mathrm{rmn}^{\mathrm{Dd}}\left(\mathrm{DS}\left(K_{1, n}\right)\right) \leq 3 \mathrm{n}-7, \mathrm{n} \geq 5
$$

Note: $\operatorname{rmn}^{\mathrm{Dd}}\left(D S\left(K_{1, n}\right)\right) \leq \mathrm{n}+2,2 \leq \mathrm{n} \leq 4$.

Theorem 2.3

The radio mean Dd-distance number of degree splitting of a bistar graph $\operatorname{DS}\left(B_{n, n}\right), \operatorname{rmn}^{\operatorname{Dd}}\left(\operatorname{DS}\left(B_{n, n}\right)\right) \leq 5 \mathrm{n}-3, \quad \mathrm{n} \geq 3$.

.Proof.

Let $\mathrm{V}\left(\mathrm{DS}\left(B_{n, n}\right)\right)=\left\{\mathrm{u}, \mathrm{v}, w_{1}, w_{2}, u_{i}, v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{DS}\left(B_{n, n}\right)\right)=\left\{\mathrm{u} u_{i}, v v_{i}, w_{1} u_{i}, w_{1} v_{i}, u v, u w_{2}, w_{2} v: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.
Then $\quad \mathrm{D}^{\mathrm{Dd}}(u, v)=2 \mathrm{n}+8, \mathrm{D}^{\mathrm{Dd}}\left(u, w_{1}\right)=3 \mathrm{n}+6, \mathrm{D}^{\mathrm{Dd}}\left(w_{1}, w_{2}\right)=2 \mathrm{n}+6$

$$
\begin{aligned}
& \mathrm{D}^{\mathrm{Dd}}\left(u, w_{2}\right)=\mathrm{D}^{\mathrm{Dd}}\left(w_{2}, v\right)=\mathrm{D}^{\mathrm{Dd}}\left(u, u_{i}\right)=\mathrm{D}^{\mathrm{Dd}}\left(v, v_{i}\right)=\mathrm{n}+9,1 \leq \mathrm{i} \leq \mathrm{n}, \quad \mathrm{D}^{\mathrm{Dd}}\left(v_{i}, v_{j}\right)=\mathrm{D}^{\mathrm{Dd}}\left(u_{i}, u_{j}\right)=10, \mathrm{i} \neq \mathrm{j} \\
& \mathrm{D}^{\mathrm{Dd}}\left(w_{1}, u_{i}\right)=\mathrm{D}^{\mathrm{Dd}}\left(w_{1}, v_{i}\right)=2 \mathrm{n}+7,1 \leq \mathrm{i} \leq \mathrm{n} . \operatorname{Sodiam}^{\mathrm{Dd}}\left(\mathrm{DS}\left(B_{n, n}\right)\right)=3 \mathrm{n}+6
\end{aligned}
$$

Without loss of generality, Let, $\mathrm{f}\left(w_{1}\right)<\mathrm{f}(u)<\mathrm{f}(v)<\mathrm{f}\left(v_{1}\right)<\ldots<\mathrm{f}\left(v_{n}\right)<\mathrm{f}\left(u_{1}\right)<\ldots<\mathrm{f}\left(u_{n}\right)<\mathrm{f}\left(w_{2}\right)$.
Now, $\quad \mathrm{D}^{\mathrm{Dd}}\left(w_{1}, u\right)+\left\lceil\frac{f\left(w_{1}\right)+f(u)}{2}\right\rceil \geq \operatorname{diam}^{\operatorname{Dd}}\left(\mathrm{DS}\left(B_{n, n}\right)\right)+1, \mathrm{f}\left(w_{1}\right)+\mathrm{f}(u) \geq 1$, which implies $\mathrm{f}\left(w_{1}\right)=3 \mathrm{n}-6$ and $\mathrm{f}(u)=3 \mathrm{n}-5$.
Now, $\quad \mathrm{D}^{\mathrm{Dd}}(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}\left(\mathrm{DS}\left(B_{n, n}\right)\right)+1, \mathrm{f}(u)+\mathrm{f}(v) \geq 1$, which implies $\mathrm{f}(v)=3 \mathrm{n}-4$.

$$
\begin{aligned}
& \mathrm{D}^{\mathrm{Dd}}\left(v, v_{1}\right)+\left\lceil\frac{f(v)+f\left(v_{1}\right)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}\left(D S\left(B_{n, n}\right)\right)+1, \mathrm{f}(v)+\mathrm{f}\left(v_{1}\right) \geq 4 \mathrm{n}-5, \text { which implies } \mathrm{f}\left(v_{1}\right)=3 \mathrm{n}-3 . \\
& \mathrm{D}^{\mathrm{Dd}}\left(v_{1}, v_{2}\right)+\left\lceil\frac{f\left(v_{1}\right)+f\left(v_{2}\right)}{2}\right\rceil \geq \operatorname{diam}^{\operatorname{Dd}}\left(D S\left(B_{n, n}\right)\right)+1, \mathrm{f}\left(v_{1}\right)+\mathrm{f}\left(v_{2}\right) \geq 6 \mathrm{n}-7 \text {, which implies } \mathrm{f}\left(v_{2}\right)=3 \mathrm{n}-2 . \\
& \mathrm{D}^{\mathrm{Dd}}\left(v_{2}, v_{3}\right)+\left\lceil\frac{f\left(v_{2}\right)+f\left(v_{3}\right)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{Dd}}\left(D S\left(B_{n, n}\right)\right)+1, \mathrm{f}\left(v_{2}\right)+\mathrm{f}\left(v_{3}\right) \geq 6 \mathrm{n}-7 \text { which implies that } \mathrm{f}\left(v_{3}\right)=3 \mathrm{n}-1 . \\
& \text { so } \mathrm{f}\left(v_{i}\right)=3 \mathrm{n}+\mathrm{i}-4,1 \leq i \leq \mathrm{n} . \\
& \mathrm{D}^{\mathrm{Dd}}\left(v_{n}, u_{1}\right)+\left\lceil\frac{f\left(v_{n}\right)+f\left(u_{1}\right)}{2}\right\rceil \geq 3 \mathrm{n}+7, \mathrm{f}\left(v_{n}\right)+\mathrm{f}\left(u_{1}\right) \geq 6 \mathrm{n}-7 \text {, which implies that } \mathrm{f}\left(u_{1}\right)=4 \mathrm{n}-3 \\
& \mathrm{D}^{\mathrm{Dd}}\left(u_{1}, u_{2}\right)+\left\lceil\frac{f\left(u_{1}\right)+f\left(u_{2}\right)}{2}\right\rceil \geq 3 \mathrm{n}+7, \mathrm{f}\left(u_{1}\right)+\mathrm{f}\left(u_{2}\right) \geq 6 \mathrm{n}-7 \text {, which implies that } \mathrm{f}\left(u_{2}\right)=4 \mathrm{n}-2 . \\
& \text { so } \quad \mathrm{f}\left(u_{i}\right)=4 \mathrm{n}+\mathrm{i}-4,1 \leq i \leq \mathrm{n} . \\
& \mathrm{D}^{\mathrm{Dd}}\left(u_{n}, w_{2}\right)+\left\lceil\frac{f\left(u_{n}\right)+f\left(w_{2}\right)}{2}\right\rceil \geq 3 \mathrm{n}+7, \mathrm{f}\left(u_{n}\right)+\mathrm{f}\left(w_{2}\right) \geq 6 \mathrm{n}-3 \text {, which implies that } \mathrm{f}\left(w_{2}\right)=5 \mathrm{n}-3 . \\
& \text { Hence, } \mathrm{rmn}^{\mathrm{Dd}}\left(D S\left(B_{n, n}\right)\right) \leq 5 \mathrm{n}-3, \mathrm{n} \geq 3 .
\end{aligned}
$$

Note. If $\mathrm{n}=2$, then, $\operatorname{rmn}^{\operatorname{Dd}}\left(D S\left(B_{n, n}\right)\right)=8$.

Theorem.2.4

The radio mean Dd-distance number of degree splitting of wheel graph $\operatorname{DS}\left(W_{n}\right)$ is
$\operatorname{rmn}^{\mathrm{Dd}}\left(\mathrm{DS}\left(W_{n}\right)\right) \leq 3 \mathrm{n}-7, \mathrm{n} \geq 6$.

Proof.

Let $\mathrm{V}\left(\mathrm{DS}\left(W_{n}\right)\right)=\left\{u, v, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\mathrm{E}\left(\mathrm{DS}\left(W_{n}\right)\right)=\left\{u v_{i}, v v_{i}, v_{i} v_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Then $\quad \mathrm{D}^{\mathrm{Dd}}(u, v)=3 \mathrm{n}+1, \mathrm{D}^{\mathrm{Dd}}\left(v_{1}, v_{2}\right)=\mathrm{n}+8, \mathrm{D}^{\mathrm{Dd}}\left(u, v_{i}\right)=\mathrm{D}^{\mathrm{Dd}}\left(v, v_{i}\right)=2 \mathrm{n}+5,1 \leq \mathrm{i} \leq \mathrm{n}$
So, $\operatorname{diam}^{\mathrm{Dd}}\left(\mathrm{DS}\left(W_{n}\right)\right)=3 \mathrm{n}+1$. Without loss of generality, Let, $\mathrm{f}(u)<\mathrm{f}(v)<\mathrm{f}\left(v_{1}\right)<\ldots<\mathrm{f}\left(v_{n}\right)$.
Now, $\quad D^{D d}(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 3 n+2, f(u)+f(v) \geq 1$, which implies that $\mathrm{f}(u)=2 \mathrm{n}-8$ and $\mathrm{f}(v)=2 \mathrm{n}-7$
$\mathrm{D}^{\mathrm{Dd}}\left(v, v_{1}\right)+\left\lceil\frac{f(v)+f\left(v_{1}\right)}{2}\right\rceil \geq 3 \mathrm{n}+2, \mathrm{f}(v)+\mathrm{f}\left(v_{1}\right) \geq 2 \mathrm{n}-7$, which implies that $\mathrm{f}\left(v_{1}\right)=2 \mathrm{n}-6$.
$\mathrm{D}^{\mathrm{Dd}}\left(v_{1}, v_{2}\right)+\left\lceil\frac{f\left(v_{1}\right)+f\left(v_{2}\right)}{2}\right\rceil \geq 3 \mathrm{n}+2, \mathrm{f}\left(v_{1}\right)+\mathrm{f}\left(v_{2}\right) \geq 4 \mathrm{n}-13$, which implies that $\mathrm{f}\left(v_{2}\right)=2 \mathrm{n}-5$.
$\mathrm{D}^{\mathrm{Dd}}\left(v_{2}, v_{3}\right)+\left\lceil\frac{f\left(v_{2}\right)+f\left(v_{3}\right)}{2}\right\rceil \geq 3 \mathrm{n}+2, \mathrm{f}\left(v_{2}\right)+\mathrm{f}\left(v_{3}\right) \geq 4 \mathrm{n}-13$, which implies that $\mathrm{f}\left(v_{3}\right)=2 \mathrm{n}-4$
so $\quad \mathrm{f}\left(v_{i}\right)=2 \mathrm{n}+\mathrm{i}-7,1 \leq \mathrm{i} \leq \mathrm{n}$. Hence, $\mathrm{rmn}^{\mathrm{Dd}}\left(\mathrm{DS}\left(W_{n}\right)\right) \leq 3 \mathrm{n}-7, \mathrm{n} \geq 6$.

Theorem.2.5

The radio mean Dd-distance number of degree splitting of $K_{2}+\mathrm{m} K_{1}$ is $\left.r m n^{D d}\left(\mathrm{DS}\left(K_{2}+\mathrm{m} K_{1}\right)\right)\right) \leq 3 \mathrm{~m}-3, \mathrm{~m} \geq 4$

Proof.

Let $\mathrm{V}\left(D S\left(K_{2}+\mathrm{m} K_{1}\right)\right)=\left\{u, v, w_{1}, w_{2}, v_{1}, v_{2}, \ldots, v_{m}\right\}$,and $\mathrm{E}\left(D S\left(K_{2}+\mathrm{m} K_{1}\right)\right)=\left\{u v, u w_{2}, v w_{2}, u v_{i}, v v_{i}, w_{1} v_{i}: 1 \leq \mathrm{i} \leq \mathrm{m}\right.$ \}.

Then $D^{D d}(\mathrm{u}, \mathrm{v})=2 \mathrm{~m}+8, D^{D d}\left(v, v_{1}\right)=\mathrm{m}+10, D^{D d}\left(v_{1}, v_{2}\right)=12, D^{D d}\left(v_{m}, w_{1}\right)=\mathrm{m}+8, D^{D d}\left(w_{1}, w_{2}\right)=\mathrm{m}+7$
So, $\operatorname{diam}^{\operatorname{Dd}}\left(D S\left(K_{2}+\mathrm{m} K_{1}\right)\right)=2 \mathrm{~m}+8$. Without loss of generality, Let, $\mathrm{f}(u)<\mathrm{f}(v)<\mathrm{f}\left(v_{1}\right)<\ldots<\mathrm{f}\left(v_{n}\right)<\mathrm{f}\left(w_{1}\right)<\mathrm{f}\left(w_{2}\right)$.
Now, $\quad \mathrm{D}^{\mathrm{Dd}}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 2 \mathrm{~m}+9, \mathrm{f}(u)+\mathrm{f}(v) \geq 1$, which implies $\mathrm{f}(u)=2 \mathrm{~m}-6, \mathrm{f}(v)=2 \mathrm{~m}-5$.
$\mathrm{D}^{\mathrm{Dd}}\left(v, v_{1}\right)+\left\lceil\frac{f(v)+f\left(v_{1}\right)}{2}\right\rceil \geq 2 \mathrm{~m}+9, \mathrm{f}(v)+\mathrm{f}\left(v_{1}\right) \geq 2 \mathrm{~m}-3$, which implies that $\mathrm{f}\left(v_{1}\right)=2 \mathrm{~m}-4$.
$\mathrm{D}^{\mathrm{Dd}}\left(v_{1}, v_{2}\right)+\left\lceil\frac{f\left(v_{1}\right)+f\left(v_{2}\right)}{2}\right\rceil \geq 2 \mathrm{~m}+9, \mathrm{f}\left(v_{1}\right)+\mathrm{f}\left(v_{2}\right) \geq 4 \mathrm{~m}-7$, which implies that $\mathrm{f}\left(v_{2}\right)=2 \mathrm{~m}-3$.
$\mathrm{D}^{\mathrm{Dd}}\left(v_{2}, v_{3}\right)+\left\lceil\frac{f\left(v_{2}\right)+f\left(v_{3}\right)}{2}\right\rceil \geq 2 \mathrm{~m}+9, \mathrm{f}\left(v_{2}\right)+\mathrm{f}\left(v_{3}\right) \geq 4 \mathrm{~m}-7$, which implies that $\mathrm{f}\left(v_{3}\right)=2 \mathrm{~m}-2$.

$$
\text { so } \mathrm{f}\left(v_{i}\right)=2 \mathrm{~m}+\mathrm{i}-5,1 \leq \mathrm{i} \leq \mathrm{m} .
$$

$\mathrm{D}^{\mathrm{Dd}}\left(v_{m}, w_{1}\right)+\left\lceil\frac{f\left(v_{m}\right)+f\left(w_{1}\right)}{2}\right\rceil \geq 2 \mathrm{~m}+9, \mathrm{f}\left(v_{m}\right)+\mathrm{f}\left(w_{1}\right) \geq 2 \mathrm{~m}+1$, which implies that $\mathrm{f}\left(w_{1}\right)=3 \mathrm{~m}-4$.
$\mathrm{D}^{\mathrm{Dd}}\left(w_{1}, w_{2}\right)+\left\lceil\frac{f\left(w_{1}\right)+f\left(w_{2}\right)}{2}\right\rceil \geq 2 \mathrm{~m}+9, \mathrm{f}\left(w_{1}\right)+\mathrm{f}\left(w_{2}\right) \geq 2 \mathrm{~m}+3$, which implies that $\mathrm{f}\left(w_{2}\right)=3 \mathrm{~m}-3$.
Hence, $\mathrm{rmn}^{\mathrm{Dd}}\left(D S\left(K_{2}+\mathrm{m} K_{1}\right) \leq 3 \mathrm{~m}-3, \mathrm{~m} \geq 4\right.$.
Note. $\operatorname{rmn}^{\mathrm{Dd}}\left(D S\left(K_{2}+\mathrm{m} K_{1}\right)\right) \leq \mathrm{m}+4, \mathrm{~m}=2,3$.

Reference

[1] Anto Kinsley. A and P. Siva Ananthi, " Dd-Distance in Graphs", Imperial Journal of Issue-2 2017 ISSN: 2454-1362.
[2] F. Buckley and F. Harary, Distance in Graphs,Addition- Wesley, Redwood City, CA, 1990.
[3] G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labeling of graphs," Bulletin of the Institute of Combinatories and Its Applications, vol. 33,pp. 77-85, 2001.
[4] G. Chartrand, D. Erwinn, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl., 43, 43-57(2005).
[5] C. Fernandaz, A.Flores, M.Tomova, and C.Wyels, " The Radio Number of Gear graphs," arXiv:0809. 2623, September 15, (2008).
[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J.Combin. 19(2012)"£Ds6.
[7] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), pp. 1497-1514.
[8] F.Harary, Graph Theory, Addition Wesley,New Delhi(1969).
[9] R. Khennoufa and O. Togni, "The Radio Antipodal and Radio Numbers of the Hypercube", accepted in 2008 publication in ArsCombinatoria.
[10] D. Liu, X. Zhu, "Radio number for trees", Discrete Math.308(7)(2008) 1153-1164.
[11] D. Liu,. X.Zhu, Multilevel distance labeling for paths and cycles, SIAM J. Discrete Math. 19(3)(2005) 610-621.
[12] P. Murtinez, J. OrtiZ, M. Tomova, and C. Wyles, "Radio Numbers For Generalized Prism Graphs, Kodai Math. J. , 22, 131139(1999).
[13] T. Nicholas, K. John Bosco, Radio D-distance Number of some graphs,IJESR , vol. 5 Issue 2, Feb.2017.
[14] T. Nicholas, K. John Bosco, M. Antony, V. Viola, Radio mean D-distance Number of Banana Tree, Thorn Star and Cone Graph ,IJARIIT, Vol. 5 Issue 6, Feb.2017, ISSN:2456-132X
[15] T. Nicholas, K. John Bosco, M. Antony, V. Viola, On Radio Mean D-distance Number of Degree Splitting Graphs, IJARSET, Vol. 4 Issue 12, Dec 2017, ISSN: 2350-0328.
[16] T. Nicholas, K. John Bosco, V. Viola, On Radio mean D-distance Number family of Snake Graph, IJIRS, Vol. 8 Issue VI, June 2018, ISSN:2319-9725.
[17] T. Nicholas, K. John Bosco, V. Viola, On Radio Mean D-distance Number of Graph Obtained from Graph Operation IJMTT, Vol. 58 Issue 2, June 2018, ISSN: 2231-5373.
[18] M.T.Rahim,I.Tomescu,On Multilevel distance labeling of Helm Graphs, accepted for publication in ArsCombinatoria.
[19] Reddy Babu,D., Varma, P.L.N., "D-distance in graphs", Golden Research Thoughts, 2(2013),53-58.
[20] Reddy Babu,D., Varma, P.L.N., "Average D-distance Between Vertices of a graph", Italian Journal of pure and applied mathematics-N. 33; 2014(293;298).
[21] Reddy Babu,D., Varma, P.L.N., "Average D-distance Between Edges of a graph" Indian Journal of Science and Technology, Vol 8(2), 152-156, January 2015.
[22]M.M. Rivera, M.Tomova, C. Wyels, and A.Yeager, "The Radio Number of $C_{n} C_{n}$, resubmitted to ArsCombinatoria, 2009.

