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Abstract: Big data analytics is the new phase of research, gigabytes of data coming from the big data systems every second. 

Modern big data systems produce complex data streams due to the volume, velocity, value, variety, variability, and veracity in the 

acquired data.  The reduced and related data considered to be better than collecting raw, redundant, inconsistent, and noisy data. 

Another case for big data reduction is that the million variables big datasets causes  the curse of dimensionality which needs 

unlimited computational resources to find actionable knowledge patterns. This paper exhibits a review of data reduction 

techniques that are used for big data reduction. It also gives a complete description of big data reduction methods including the 

network theory, data compression, dimensionality reduction, duplicate elimination, data mining, and machine learning methods. 

And also discussed the research problems related to the big data reduction. 
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1. INTRODUCTION 

The aggregation of large-scale, voluminous, and multi-format data streams originated from heterogeneous and autonomous 

data sources [1]. The volume is the primary characteristic of big data that is represented by the acquisition of storage spaces in 

large-scale data centers and storage area networks. The massive size of the big data not only causes the data heterogeneity but 

also results in diverse dimensionalities in the datasets. Therefore, efforts are required to reduce the volume to effectively analyze 

big data [2]. In addition, big data streams are needed to be processed online to avoid lateral resource consumption for storage and 

processing. The second key characteristic of big data is velocity. The velocity refers to the frequency of data streams, which is 

needed to be abridged in order to handle big data effectively. For example, solar dynamics observatory generates excess of one 

terabytes data per day and the analysis of such a fast big data is possible only after reduction or summarization [3]. On the other 

hand, big data inherits the ‘curse of dimensionality.’ In other words, millions of dimensions (variables, features, attributes) are 

required to be effectively reduced to uncover the maximum knowledge patterns [4, 5]. For example, behavior profiles of the 

Internet users that mainly comprise of searches, page-views, and click-stream data are sparse and high dimensional with millions 

of possible keywords and URLs [6]. Similarly, personal genomic high-throughput sequencing not only increases the volume and 

velocity of data but also adds to the high dimensionality of the data [7]. Therefore, it is imperative to reduce the high dimensions 

while retaining the most important and useful data.  

Data reduction methods for big data vary from pure dimension reduction techniques to compression-based data reduction 

methods and algorithms for preprocessing, cluster-level data duplication, redundancy elimination, and implementation of network 

(graph) theory concepts. [16–18]. The aforementioned methods first extract the Dimension reduction techniques are useful to 

handle the heterogeneity and massiveness of big data by reducing million variable data into manageable size [8–11]. These 

techniques usually work at post-data collection phases. Similarly, cluster duplication and redundancy elimination algorithms that 

remove duplicated data for efficient data processing and useful knowledge discovery are primarily post-data collection methods 

[12–15]. Recently, the network theory concepts have also been employed for big data reduction semantics and linked structures 

from the unstructured datasets and then apply graph theory for net-work optimization. Conversely, some methods to reduce big 

data during the data collection process are also pro-posed in the recent literature [19–21]. In this study, we presented a detailed 

discussion of these data reduction methods. This paper presents a thorough literature review of methods for big data reduction. 

A few similar prior studies have also been conducted. However, these studies either present a generic discussion of big data 

reduction or dis-cuss a specific group of relevant systems or methods. For example, the authors in [1] discussed the big data 

reduction to be the critical part of mining sparse, uncertain, and incomplete data. Similarly, the authors in [22, 23] argue big data 

reduction as the critical part of data analysis and data preprocessing. However, both of the studies lack in presenting discussion 

about specific systems and methods for big data reduction. The authors in [4] discussed big data reduction issue specifically by 

focusing on dimension reduction, whereas the authors in [24] emphasized on the data compression. However, a wide range of 

methods remain unexplored. Currently, there is no specific study in the literature that addresses the core issue of big data 

reduction. Therefore, we aim to present a detailed literature review that is specifically articulated to highlight the existing methods 

relevant to big data reduction. In addition, some open research issues are also presented to direct future researchers. 

 

 

 

The main contributions of this paper are: 

• A thorough literature review and classification of big data reduction methods are presented. 
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• Recently proposed schemes for big data reduction are analyzed and synthesized. 

• A detailed gap analysis for the articulation of limitations and future research challenges for data reduction in big data     

   environments is presented. 

The paper is structured as follows: Section 2 discusses the complexity problem in big data and highlights the importance of big 

data reduction. The taxonomical discussion on big data reduction methods is presented in Section 3. The discussion on open 

issues and future research challenges is given in Section 4, and finally, the article is concluded in Section 5. 
 

2 COMPLEXITY OF BIG DATA AND THE NEED FOR DATA REDUCTION 
 

The big data systems include social media data aggregators, industrial sensor networks, scientific experimental systems, 

connected health, and several other application areas. The data collection from large-scale local and remote sensing devices and 

networks, Internet-enabled data streams, and/ or devices, systems, and networks-logs brings massively heterogeneous, multi-

source, multi-format, aggregated, and continuous big data streams. Effectively handling the big data stream to store, index, and 

query the data sources for lateral data processing is among the key challenges being addressed by researchers [25, 26]. However, 

data scientists are facing data deluge issue to uncover the maximum knowledge patterns at fine-grained level for effective and 

personalized utilization of big data systems [3, 27]. The data deluge is due to 6Vs properties of big data, namely the volume, 

variety, value, velocity, veracity, and variability. The authors in [26] discussed the 6Vs as follows. 

• Volume The data size characterizes the volume of big data. However, there is no agreed upon definition of big data which 

specifies the amount of data to be considered as ‘big’ on order to meet the definition of big data. However, a common sense is 

developed in research community who consider any data size as big in terms of volume which is not easily process able by 

underlying computing systems. For example, a large distributed system such as computing clusters- or cloud-based data 

centers may offer to process multiple terabytes of data but a standalone computer or resource constrained mobile devices may 

not offer the computational power to process even a few gigabytes of data. Therefore, the volume property of big data varies 

according to underlying computing systems. 
 
• Velocity The velocity of big data is determined by the frequency of data streams which are entering in big data systems. The 

velocity is handled by big data systems in two ways. First, the whole data streams are collected in centralized systems, and 

then, further data processing is performed. In the second approach, the data streams are processed immediately after data 

collection before storing in big data systems. The second approach is more practical; however, it requires a lot of 

programming efforts and computational resources in order to reduce and filter the data streams before entering in big data 

systems. 

• Variety Big data systems collect data stream from multiple data sources which produce data streams in multiple formats. This 

heterogeneity in data sources and data types impacts the variety property-related characteristics. Therefore, big data systems 

must be able to process multiple types of data stream in order to effectively uncover hidden knowledge patterns. 
 
• Veracity The utility of big data systems increases when the data streams are collected from reliable and trustworthy sources. 

In addition, the data stream collection is performed with compromising the quality of data streams. The veracity property of 

big data relates to reliability and trustworthiness of big data systems. 
 
• Variability since all data sources in big data systems do not generate the data streams with same speed and same quality. 

Therefore, variability property enables to handle the relevant issues. For example, the elastic resource provisioning as per the 

requirements of big data systems. 
 
• Value The value property of big data defines the utility, usability, and usefulness of big data systems. This property tends 

more toward the outcomes of data analytics and data processing processes and is directly proportional to other 5Vs in big data 

systems. 

The well-designed big data systems must able to deal with all 6Vs effectively by creating a balance between data processing 

objectives and the cost of data processing (i.e., computational, financial, programming efforts) in big data systems. Moreover, the 

complexity in big data systems emerges in three forms: (1) data complexity, (2) computational complexity, and (3) system 

complexity [28]. The data complexity arises due to multiple formats and unstructured nature of big data, which elevate the issue 

of multiple dimensions and the complex inter-dimensional and intra-dimensional relationships. For example, the semantic 

relationship between different values of the same attribute, for example, noise level in the particular areas of the city, increases the 

inter-dimensional complexity. Likewise, the linked relationship among different attributes (for example, age, gender, and health 

records) raises the intra-dimensional complexity issue. In addition, the increasing level of data complexity in any big data system 

is directly proportional to the increase in computational complexity where only the sophisticated algorithms and methods can 

address the issue. Moreover, the system-level complexity is increased due to extensive computational requirements of big data 

systems to handle extremely large volume, complex (mostly unstructured and semi-structured), and sparse nature of the data.  

The extensive literature review exhibits that the big data reduction methods and systems have potential to deal with the big 

data complexity at both algorithms and systems level. In addition to data com-plexity, the big data reduction problem is studied in 

various other perspectives to articulate the effects and the need of data reduction for big data analysis, management, 

commercialization, and personalization. Big data analysis also known as big data mining is a tedious task involving extraneous 

efforts to reduce data in a manageable size to uncover maximum knowledge patterns. To make it beneficial for data analysis, a 

number of pre-processing techniques for summarization, sketching, anomaly detection, dimension reduction, noise removal, and 

outliers detection are applied to reduce, refine, and clean big data [29]. The New York Times, a leading US newspaper, reports 

that data scientists spend 50–80% of the time on cleaning the big datasets [30]. The terms used in the industry for the 

aforementioned process are ‘data munging,’ ‘data wrangling,’ or ‘data janitor work.’ Another issue with the large-scale high-

dimensional data analysis is the over-fitting of learning models that are generated from large numbers of attributes with a few 
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examples. These learning models fit well within the training data, but their performance with testing data significantly degrades 

[31]. Data management is another important aspect to discuss the big data reduction problem. The effective big data management 

plays a pivotal role from data acquisition to analysis and visualization. Although data acquisition from multiple sources and 

aggregation of relevant datasets improve the efficiency of big data systems, it increases the in-network processing and data 

movement at clusters and data center levels. Similarly, the indexing techniques dis-cussed in [26] enhance the big data 

management; however, the techniques come across data processing overheads. 
 

       Although the conversion of unstructured data to semi-structured and structured formats is useful for effective query 

execution, the conversion in itself is a time- and resource-consuming activity. Moreover, big data is huge in volume that is 

distributed in different storage facilities. Therefore, the development of learning models and uncovering global knowledge from 

massively distributed big data is a tedious task. Efficient storage management of reduced and relevant data enhances both the 

local learning and global view of the whole big data [32, 33]. Currently, visual data mining technique of selecting subspace from 

the entire feature spaces and subsequently finding the relevant data patterns also require effective data management techniques. 

Therefore, the reduction in big data at the earliest enhances the data management and data quality and therefore improves the 

indexing, storage, analysis, and visualization operations of big data systems. Recently, businesses particularly the enterprises are 

turning into big data systems. The collection of large data streams from Web users’ personal data streams (click-streams, 

ambulation activities, geo-locations, and health records) and integration of those data streams with personalized services is a key 

challenge [34]. The collection of irrelevant data streams increases the computational burden that directly affects the operational 

cost of enterprises. Therefore, the collection of fine-grained, highly relevant, and reduced data streams from users is another 

challenge that requires serious attention while designing big data systems. Currently, user data collection by third parties without 

explicit consent and information about commercialization is raising the privacy issues. The participatory personal data where 

users collect and mine their own data and participate for further utilization and customization of services in ubiquitous 

environments can address the issue of fine-grained data availability for enterprises. 

 Keeping in view the big data complexity, the need for big data reduction, and analyzing big data reduction problem in 

different perspective, we present a thorough literature review of the methods for big data reduction. The core technological 

support for big data reduction methods is based on multilayer architecture (see Fig. 1). the data storage is enabled by large-scale 

data centers and networks of different computing clusters [35]. The storage infrastructures are managed by core networking 

services, embarrassingly parallel distributed computing frameworks, such as Hadoop map-reduce implementations and large-scale 

virtualization technologies [36]. In addition, cloud services for the provision of computing, networking, and storage are also 

enabled using different cloud-based operating systems. A recent phenomenon in cloud computing is enabling the edge-cloud 

services by the virtualization of core cloud services near the data sources. Recently, Cisco released a Fog cloud to enable the 

intercommunication between core cloud services and proximal networks of data sources [37, 38]. At the lowest layers of the big 

data architecture resides the multi-format data sources which include standalone mobile devices, Internet-enabled social media 

data streams, remotely deployed wireless sensor networks, and large-scale scientific data streams among many others. This 

layered architecture enables to process and manage big data at multiple levels using various computing systems with different 

form factors. Therefore, wide ranges of application models are designed and new systems have been developed for big data 

processing. 
 

3. BIG DATA REDUCTION METHODS 
 

This section presents the data reduction methods being applied in big data systems. The methods either optimize the storage or 

in-network movement of data or reduce data redundancy and duplication. In addition, some of the methods only reduce the 

volume by compressing the original data and some of the methods reduce the velocity of data streams at the earliest before 

entering in big data storage systems. Alternatively, some of the methods extract topological structures of unstructured data and 

reduce the overall big data using network theory approaches that are discussed as follows. 

3.1 Network Theory 

Network (also known as graph) theory is playing a primary role in reduction of high-dimensional unstructured big data into 

low-dimensional structured data [39]. However, the extraction of topological structures (networks) from big data is quite 

challenging due to the heterogeneity and complex data structures. The authors in [40] proposed network theory-based approach to 

extract the topological and dynamical network properties from big data. The topological networks are constructed by establishing 

and evaluating relationships (links) among different data points. The statistical node analysis of the networks is performed for 

optimization and big data reduction [41]. The optimized networks are represented as small-world networks, free-scale networks, 

and random networks and are ranked on the basis of statistical parameters, namely mean, standard deviation, and variance.  

3.2 Redundancy Elimination 

     Data redundancy is the key issue for data analysis in big data environments. Three main reasons for data redun-dancy are: 

(1) addition of nodes, (2) expansion of datasets, and (3) data replication. The addition of a single virtual machine (VM) brings 

around 97% more redundancy, and the growth in large datasets comes with 47% redundant data points [13]. In addition, the 

storage mechanism for maximum data availability (also called data replication) brings 100% redundancy at the cluster level. 

Therefore, effective data deduplication and redundancy elimination methods can cope with the challenge of redundancy. The 

workload analysis shows that the 39 higher throughputs improve performance about 45% but in some extreme cases the 

performance degrades up to 161%. The energy overhead of deduplication is 7%; however, the overall energy saved by processing 

de duplicated data is 43%. The performance is degraded to 5%, whereas energy overhead is 6% for pure solid state drive (SSD) 

environments. However, in hybrid environment the system’s performance is improved up to 17%. 
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    Fig1. Multilayer Architecture for Big Data Systems.     

   

Cluster deduplication is a generalized big data reduction scheme for disk-based cluster backup systems. The redundant data 

stored on multiple disks and partitions are a serious challenge for big data processing systems. The deduplication techniques allow 

to handle different data chunks (partitions) using hash functions to lower intra-node and inter-node communication overheads. In 

addition, these methods improve the storage efficiency by eliminating redundant data from multiple nodes. Large-scale cluster 

deduplication schemes face challenge of information-is-land (only server-level deduplication is possible due to the 

communication overhead) where data routing is the key issue. Another major challenge is disk-chunk-index-lookup (keeping 

duplicated chunk indexes of large datasets creates memory overheads), which degrades the performance of backup clients due to 

frequently random I/O for lookup and indexing. Data deduplication schemes are based on either locality or similarity of data in 

the cluster. Locality-based approaches (stateful or stateless routing schemes) work on the location of duplicated data and perform 

optimization [14]. The major issue with the locality-based approach is the communication overhead of transferring similar data to 

same nodes. On the other hand, similarity-based schemes distribute the similar data to the same nodes across the cluster and 

reduce communication burden [56]. Although the schemes solve the problem of communication over-head, they prove ineffective 

for inter-node data deduplication system. To cope with challenges of communication overhead and ineffectiveness in inter-node 

deduplication systems, some hybrid techniques are also proposed in the recent literature. For example, SiLo [15] and R-Dedupe 

[12] used both the similarity- and locality-based techniques where SiLo addressed only the challenge of inter-node deduplication 

while R-Dedupe creates the balance between high deduplication and scalability across all of the nodes in the cluster. Although the 

cluster-level deduplication is effective for big data reduction, new deduplication methods are required to improve energy 

efficiency and resource awareness in large-scale data centers.  

The massive amount of data movement in data centers increases the computational and communicational burdens. The 

exploitation of in-network data processing techniques can reduce the aforementioned complexities. The authors of [57] proposed 

an in-network data processing technique for bandwidth reduction by customizing routing algorithms, eliminating network 

redundancy (by caching frequent packets), and reducing on-path data. In contrast, mobile users in the same locality or with the 

same habits generate similar data points causing a huge amount of redundant data in participatory big data environments. In 

addition, the absence of spatiotemporal correlation among sensory data in mobile opportunistic networks is also a great challenge. 

The authors in [58] proposed a cooperative sensing and data forwarding framework for mobile opportunistic networks where 

sampling redundancy is eliminated to save energy consumption. The authors proposed two data forwarding protocols [epidemic 

routing with fusion and binary spray and wait with fusion (BSWF)] by leveraging data fusion. The essence of the research is the 
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intelligent fusion of sensory data to eliminate redundancy. The simulation results revealed that proposed method can remove 93% 

of redundancy in the data as compared to non-cooperative methods. The issue of data duplication or redundancy has been 

addressed by researchers in different environments at different levels (mobile, cluster, cloud, and data center). Therefore, the 

selection of best method depends upon the application models. For example, in mobile opportunistic networks and mobile crowd 

sensing environments, the data redundancy elimination methods are best suited when they are deployed in mobile devices. 

Similarly, for scientific and highly correlated data deduplication is best suitable when it is performed at cluster, data center, and 

cloud level. 
 

3.3 Data Preprocessing 
 

     Data preprocessing is the second important phase of big data processing, and it must be preprocessed before storage at 

large-scale infrastructures [19]. This approach helps in big data reduction and also extracts the meta-data for further processing. 

The authors argue that primary approaches for data preprocessing are based on semantic analysis (using ontologies) or linked data 

structures (such as Google knowledge graph). However, this literature review uncovers few other techniques, such as low 

memory pre-filters for streaming data, URL filtration method, and map-reduce implementation of 2D peak detection methods in 

the big genomic data. Low memory pre-filters are used for preprocessing genomic sequencing streaming data. The algorithm runs 

in a single pass and gives improved performance for error correction and lossy compression in data streams. In addition, the 

algorithm extracts the subsets of data streams using sketch-based techniques and applies pre-filtering algorithm for lossy 

compression and error correction. The algorithm first constructs the Bruijn graph, and the subsets are extracted using locus-

specific graph analysis technique [59].  

The massive data redundancy is handled using the k-means, median, and subsequently, digital normalization is employed as 

the data reduction technique. The authors argued that 95% of the data can be removed in the normal sequencing sample and the 

percentage reaches 98% of high-coverage single sequencing data. The results show that memory requirement for proposed 

algorithm is reduced from 3 TB to 300 GB of RAM. Wearable sensors generate multi-dimensional, nonlinear, dynamic data 

streams with weak correlation between data points. The authors in [60] used locality-sensitive bloom filter to enhance the 

efficiency of instance-based learning for front-end data preprocessing near the sensing elements. The technique enables the 

filtration and communication of only the relevant and meaningful information to reduce computational and communication 

burden. The authors discussed the big healthcare data system for elderly patients and developed a prototype of the proposed 

solution. The architecture of the system is based upon a wearable sensor with blue tooth low energy (BLE) interface and can 

communicate with mobile application and/or PC to establish a personal area network (PAN). The mobile application processes 

the data and recognizes the state of the user. The sensor data and user states are further trans-mitted to a remote big data server 

through TCP/UDP ports. The compression algorithms are applied to incoming data streams, and resultant compressed files remain 

10% of the actual data streams. An application of big data reduction is the filtration of malicious URLs in Internet security 

applications. The authors in [21] proposed two feature reduction techniques that extract the lexical features and the descriptive 

features and then combine their results. The lexical features extract the structure of the URLs. However, the issue with lexical 

features is that malicious URL addresses have constantly changing behavior to abstain from malware detection software. The 

descriptive features are extracted to track and preserve different states of the same URL to label it as malicious.  

The authors selected passive-aggressive (for dense feature extraction) and confidence weighted algorithms (for sparse feature 

extraction) as the online learning algorithms and trained their models with extracted features [61, 62]. The prediction results of the 

filtration technique demonstrate around 75% data reduction with approximately 90% retention rate (inverse of data loss). The 

analysis of large-scale proteomics data, which is the protein-level representation of big genomic data, requires massive 

computational resources to study different protein properties, such as expressions, changes in protein structures, and the 

interaction with other proteins. The protein molecules are too large to be identified by spectrometer and therefore are broken into 

smaller fragments called peptides. The mass spectrometer outputs the graphical output where each spectrum of data points is 

shown using Gaussian curves for peptide identification.  The preprocessing step of proteomics data analysis is the identification of 

curves also called the 2D peaks. Each of the samples submitted to the spectrometer takes around 100 min to 4 h for complete 

analysis. During the passage of peptides, the spectrometer takes snapshots of spectrum every second where each peptide remains 

visible for several spectrums. The authors proposed a map-reduce implementations for proteomics data analysis where 2D peaks 

are picked at map level and further analyzed at reduce level [63]. The data reduction takes place at map level by applying 

preprocessing techniques for decoding the arrays, noise removal, and management of the overlapping peaks in the spectrum. 

Experimental results show that the given map-reduce implementation completes the data analysis in 22 min. Recently light 

detection and ranging (LiDAR) technology enabled the generation of big 3D spatial data [64]. A cloud computing-based LiDAR 

processing system (CLiPS) processes big 3D spatial data effectively. The CLiPS uses several preprocessing techniques for data 

reduction to deal with large size of data. The data reduction is performed using a vertex decimation approach to provide a user’s 

preferred parameters to reduce the big data. The results show the advantage of cloud computing technologies over the 

conventional systems comparing performance and time consumption.  

The literature review of these techniques reveals that data preprocessing techniques are highly dependent on the nature of big 

data and also encourage further investigation of the underlying problem. Therefore, these techniques could not be generalized for 

all types of big data streams. 
 

3.4 Dimension Reduction 
 

Big data reduction is mainly considered to be the dimension reduction problem because the massive collection of big data 

streams introduces the ‘curse of dimensionality’ with millions of features (variables and dimensions) that increases the storage 

and computational complexity of big data systems [5]. A wide range of dimension reduction methods are proposed in the existing 

literature. The methods are based on clustering, map-reduce implementations of existing dimension reduction methods, feature 
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selection techniques, and fuzzy logic implementations. Table 1 presents the summary of the above-mentioned methods. The 

dynamic quantum clustering (DQC) enables powerful visualization of high-dimensional big data [8]. It outlines subsets of the 

data on the basis of density among all of the correlated variables in high-dimensional feature space. The DQC is scalable to very 

large systems due to its support for highly distributed data in parallel environments. The DQC is based on quantum mechanics 

techniques from physics. It works by constructing a potential proxy function to estimate the density of data points. The function 

named as parzen estimator, ;ð~xÞ, is applied over n-dimensional feature space, and it is the sum of Gaussian functions centered at 

each data point. Conventional dimensionality reduction algorithms that use Gaussian maximum likelihood estimator could not 

handle the datasets with over 20,000 variables. The BIG-Oh addresses the issue by applying a parallel divide-and-conquer 

strategy that can be applied up to 1-million vari-ables in the feature space for dimensionality reduction [9]. The results show that 

the proposed algorithm is highly scalable and faster than the existing algorithms, such as Glasso and ALM [65, 66]. 
 

Knowledge discovery from high-dimensional big social image datasets is quite challenging. The authors proposed a new 

framework called twister which is a map-reduce implementation of k-means algorithm for dimensionality reduction [67]. The 

authors proposed a topology-aware pipeline-based method to accelerate broadcasting and to overcome the limitations of existing 

massively parallel infrastructure (MPI) implementations. In addition, the performance of the system was improved using local 

reduction techniques. This technique reduces local data before shuffling. The amount of data reduced is estimated below  
 

 
 
 

      Normally, online learning techniques take the full feature set as the input, which is quite challenging when dealing with 

high-dimensional features space. The authors proposed an online feature selection (OFS) approach where the online learners only 

work on small and fixed-length feature sets. However, the selection of active features for accurate prediction is a key issue in the 

approaches presented in [68]. The authors investigated sparsity regularization and truncation techniques and proposed a new 

algorithm called the OFS. The results showed that the OFS outperformed RAND and PEtrun algorithms for UCI data-sets and it 

works best in online learning mode as compared to batch-mode learning. The corsets are the small set of points that represent the 

larger population of data and maintain the actual properties of overall population. These properties vary by nature of knowledge 

discovery algorithms. For example, the corsets representing first k-components maps with first k-components in the big data. 

     Similarly, the corsets containing k-clusters with radius r approximate the big data and obtain the k-clusters with same r. In 

this way, the authors [11] applied corsets to reduce the big data into small and manageable size, which reduces the overall data 

complexity. The authors mapped corsets with k-means, principal component analysis (PCA) and projective clustering algorithms 

deployed with massively parallel streaming data [69, 70]. The big data is reduced in such a way that high dimensions of input 

space do not affect the cardinalities of corsets. In addition, the corsets are merged by maintaining the property that union of two 

corsets represents the reduced set of union of two big datasets. The experimental results showed that corsets are suitable to 

address NP-hard problems in massively parallel and streaming data environments where big data complexity is reduced by 

application of data processing algorithms on small datasets that are approximated from big data.  In addition, the corsets are 

paradigm shift in big data analysis where the focus of research remains on big data reduction instead of improving the 

computational efficiency of existing algorithms. Medical big data comes across several issues regarding extraction of structures, 

storage of massive data streams, and uncovering the useful knowledge patterns. Research shows that fuzzy classification methods 

are good choice to cope with the above-mentioned issues. Recently, the authors of [71] presented linguistic hedges fuzzy 

classifier with selected features (LHNFCSFs) to reduce dimensions, select features, and perform classification operations. The 

integration of linguistic hedges in adaptive neural-fuzzy classifier enhances the accuracy. The LHNFCSF reduces the feature 

space effectively and enhances the performance of the classifier by removing unimportant, noisy, or redundant features. The 

results depict that the LHNFCSF addresses the medical big data issues by reducing the dimensions of large datasets and speeding 

up the learning process and improves the classification performance. Tensors are multi-dimensional representations of data 

elements with at least one extra dimension as compared to matrices. The increasing numbers of elements demand more 

computational power to process the tensors. Tensor processing works fine with small tensors. However, processing large tensors 

is a challenging task [10].  

Tensor decomposition (TD) schemes are used to extract small but representative tensors from large tensors [72]. Three widely 

used TD strategies include canonical polybasic decomposition (CPD), tucker decomposition, and tensor trains (TT). The TD 

schemes represent the large tensors linked with their small representations. These decomposition schemes reduce the high 

dimensionality in big datasets and establish the interconnection among tensors to form tensor networks (TNs). These TNs enable 

to further reduce the data size by using optimization-based algorithms to find factor matrices and optimize using linear and 

nonlinear least square methods. The case studies show that tensor decomposition strategies could be used to alleviate eliminate 

dimensionality in large scientific computing datasets and have many potential applications for feature extraction, cluster analysis, 

classification, data fusion, anomaly detection, pattern recognition, integration, time-series analysis, predictive modeling, multi-

way component analysis, and regression. The feature hashing (FH) method reduces feature dimensionality by randomly assigning 

each feature in the actual space to a new dimension in a lower-dimensional space [73]. This is done by simply hashing the ID of 

the original features. Usually, all dimensional reduction techniques degrade the data quality. However, most of them preserve the 

geometric qualities of the data. Alternately, the FH does not preserve the data quality. Research shows that the degradation of data 

quality is so minimal that its benefits are outweighed by the cost. The FH scales linearly with simple preprocessing and 

preservation of data sparsity, if exists. The scalability property of the FH makes it a natural choice for million (or even billion) 

feature datasets. For example, the FH method applied to email spam filtering shows its power when applied upon sparse and 

Amount of data=  

No: of nodes 

X 100%  No: of maps 
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streaming data with real-time requirements of mass customization. The results show that the feature set is reduced from one 

billion to one million features. 

                                                                 

                                                    Table 1: Dimension Reduction Methods 

S.No References Method Description Strengths Weakness 

 

1 Weinstein et 

al. [8] 

DQC Visual data mining 

method 

Ability to expose hidden 

structures and determine their 

significance in high- 

dimensional big data 

Lacks efficiency and 
Requires a 

combination of 
statistical tools.  

2 Hsieh et al.[ 

9] 

BIGQuic Applying a parallel 

divide-and- conquer 

strategy 

Supports parallelization and  

Allowing for inexact 

computation of specific 

components 

Lacks accuracy and 

reliability 

3 Hoi et al. [68] OFS Selection of active 

features for accurate 

prediction 

Works best in online 

learning mode as  compared 

with batch-mode learning 

Lacks efficiency 

4 Feldman et al. 

[11] 

Corsets Applying corsets to 

reduce big data 

High significance when used 

for data complexity 

Works well on small 

datasets only 

5 Azar and 

Hassanien 

[71] 

LHNFCSF Linguistic hedges fuzzy 

classifier 

Data reduction Lack of efficiency 

6 Cichocki [72] TNs Tensor decomposition 

and approximation 

Reduction in feature spaces High computational 

complexity 

7 Dalessandro 

[73] 

FH Maps features from 

high- dimensional space 

to low- dimensional 

spaces 

Reduces feature space 

randomly 

Compromise on data 

quality 

8 Liu et al. 

[77] 

CF Classifier training with 

minimal feature spaces 

Outlines critical feature 

dimensions and adequate 

sampling size 

Assumptions need to be 
more accurate to outline 
critical feature 
dimension 

 

9 Zeng and 

Li [74] 

IPLS Performs incremental 

analysis of streaming 

data 

Computationally efficient 

Highly accurate 

Needs to handle 

change detection in 

streaming data 

 

         The big data streams enter with episodic information and create high-dimensional feature spaces. Normally, the feature 

extraction methods need whole data in the memory that increases the computational complexity of big data systems and degrades 

the performance of classifiers. The incremental feature extraction methods are the best choice to handle such issues [74]. 

Incremental partial least squares (IPLSs) is a variant of the partial least squares method that effectively reduces dimensions from 

large-scale streaming data and improves the classification accuracy. The pro-posed algorithm works in two-stage feature 

extraction process. First, the IPLS adopts the target function to update the historical means and to extract the leading projection 

direction. Second, the IPLS calculates the rest of projection directions that are based on the equivalence between the Krylov 

sequence and the partial least square vectors [75]. The comparison of the IPLS was performed with incremental PCA algorithm, 

incremental interclass  scatter method, and incremental maximum margin criterion technique. The results revealed that the IPLS 

showed improved performance in terms of accuracy and computational efficiency. Systems of systems (SoS)—case study The 

integration of heterogeneous and independent operating computing systems to collectively maximize the performance as com-

pared to the individual settings leads toward the SoS [76]. Nowadays, SoS is contributing to generate big data and raises the need 

for data reduction. Few examples of statistical and computational intelligence tools for data reduction in SoS include the PCA, 

clustering, fuzzy-logic, neuro-computing, and evolutionary computing, such as genetic algorithms, and Bayesian networks. The 

authors applied data reduction methods at different stages of analyzing photovoltaic data that were collected from different 

sources. The original dataset contained 250 variables, which is highly dimensional and is not practical due to limitations of 

execution time and memory constraints on a desktop computer. Two approaches for data reduction at this stage were considered: 

(1) labeling the interesting attributes by domain expert and (2) development of an adaptive learning algorithm for automatic 

attribute selection. The authors employed the first approach for data reduction. The authors further cleaned-up the data and 

removed all invalid data points from the dataset. For example, solar irradiance in night hours generates data points with negative 

values, therefore not feasible for contribution in the study. After removing the invalid data, the data points containing very low 

values for global horizontal irradiance (GHI), direct normal irradiance (DNI), and direct horizontal irradiance (DHI) are removed 

to create more crispy data for further analysis.  
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        The cleaned data are further fed into two nonparametric model generation tools, namely the fuzzy inference system 

generator and back-propagation neural network training tools using MATLAB fuzzy logic toolbox and the neural network 

toolbox. The initial evaluation of both of the tools revealed that the input variables should be further reduced for performance 

maximization in terms of execution time and memory consumption. The authors expanded the non-linear data by using additional 

variables that in turn increased the performance of the training model but also increased time and space complexity. Therefore, 

the PCA is applied for dimension reduction to compress the data without significant information loss. After application of the 

PCA, further dimension reduction was performed using genetic algorithm (GA). First, the data were reduced using the GA on the 

full set of initial data and remaining data were expanded nonlinearly. Finally, the expanded dataset is used to train a neural 

network to assess the overall effectiveness of the GA. In practice, the time- and computation-related constraints were limited to 

the selection of training data to first 1000 samples. The first iteration of GA took initially 244 samples and reduced it to 74. The 

results showed that the GA reduced the number of attributes up to 70%. 
 

3.5 Data Mining and Machine Learning 
 

Now a days several DM and ML methods have also been proposed for big data reduction. The methods are either applied to 

reduce data immediately after its acquisition or customized to address some specific problems. For overhead in big data 

environment. The authors compared the result of proposed locality-sensitive hash (LSH)-based method with linear perception 

(LP)-based dimensionality reduction algorithm and argued on the effectiveness of the proposed scheme as compared to the LP-

based dimensionality reduction methods.  The problem of mining uncertain big data due to existential probabilities becomes 

worse and requires huge efforts and computational power to explore the incrementally growing uncertain search space. Therefore, 

the search space is needed to be reduced for uncovering the maximum certain and useful patterns. The authors of [79] proposed a 

map-reduce algorithm to reduce the search space and mine frequent patterns from uncertain big data. The algorithm facilitates the 

users to confine their search space by setting some succinct anti-monotone (SAM) constraints for data analysis and subsequently 

mines the uncertain big data to uncover frequent patterns that satisfy the user-specified SAM constraints. The input of the 

algorithm is uncertain big data, user-specified minimum support (minimum support) threshold, and the SAM constraints. Two 

sets of map-re-duce implementations are used to uncover singleton and non-singleton frequent patterns. Experimental results 

show that the user-specified SAM (termed as selectivity) is directly proportional to multiple parameters which are derived from 

algorithm’s runtime, the pairs returned by map function, the pairs sorted and shuffled by reduce function, and the required 

constraints checks. Artificial intelligence methods, for example, artificial neural networks (ANNs) have also potential for big data 

reduction and compression. The authors in [80] proposed a self-organized Kohonen network-based method to reduce big 

hydrographic data acquired from the deep seas. The proposed system first converts the raw data into ‘swath’ files using a 

combination of four filters: (1) limit filter, (2) amplitude filter, (3) along track filter, and (4) across track filter. The appropriate 

combinations of the filters ensure the optimal dataset size. Despite filtering, the sample size is still large to be considered as big 

data. 
 

  The self-organized Kohonen networks are trained and optimized using filtered hydrographic data to cluster the incoming 

data streams. The experimental results exhibited the feasibility of self-organized Kohonen networks for big hydrographic data for 

further analysis. In addition to conventional machine learning algorithms, based on shallow learning models, deep learning is 

creating  space as an option for big data reduction methods [81].  Deep learning models are hierarchical representations of super-

vised and unsupervised classification methods that are best suitable for large-scale, high-dimensional big data streams [22]. Deep 

learning models become computationally inefficient with the increase in big data complexity. However, the availability of MPIs 

(clusters/clouds) can address the aforementioned issue. Conventionally, deep learning models work at multiple layers with 

different granularities of information and predictive abilities. Two well-established deep learning architectures are deep belief 

networks (DBNs) and convolutional neural networks (CNNs). The DBN learning models are developed in two stages: (1) the 

initial models are developed using unsupervised learning methods with unlabeled data streams and (2) the models are fine-tuned 

using supervised learning methods and labeled data streams. The typical architecture of the DBN. The architecture is based on an 

input and output layer with multiple intermediate hidden layers. The output of each ð n 1Þth layer becomes the input of the nth 

layer in the architecture. In addition, the learning models are fine-tuned using back-propagation methods to support generative 

performance and judicial power of the DBNs. Although the CNNs are based on learning models, they differ from the DBNs. The 

CNNs layers are either the convolutional layers to support the convolution of several input filters or sub-sampling layers to reduce 

the size of output variable from previous layers. Effective utilization of these deep learning models in conjunction with MPIs can 

significantly reduce big data streams. 
 

Deep learning models are inherently computationally complex and require many-core CPUs and large-scale computational 

infrastructures. Some recent learning approaches for such large-volume, complex data include locally connected networks [82, 

83], improved optimizers, and deep stacking networks (DSNs). The authors of [84] proposed the hybrid deep learning model, 

called Dis Belief, to address the issue of high dimensionality in big data streams. Disbelief utilizes a large-scale cluster to 

parallelize both the data and the learning models using synchronization, message passing, and multi-threading techniques. The 

Dis Belief model first achieves parallelism by partitioning large-scale networks into small blocks that are mapped to a single node 

and then achieves data parallelism using two separate distribution optimization procedures called stochastic gradient descent 

(SGD) for online optimization and sandblaster for batch optimization. Although feasible for big data reduction, the deep learning 

models are resource hungry and require MPIs based on clusters of CPUs or GPUs. Therefore, there is a need to develop optimized 

deep learning strategies to achieve resource efficiency and reduce communication burdens inside the MPIs. The wide spectrum 

view of the proposed methods for big data reduction uncovers the fact that the research on big data reduction methods is being 

carried out at several levels of big data architecture and in different forms. 
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4 Open Research Issues 
 

The open research issues, limitations, and possible future research directions is presented in this section. Network theory The 

extraction of topological network and ranking of network nodes from big data is a complex process due to inherent big data 

complexity. In addition, the complex interactions among different nodes of the extracted networks increase the computational 

complexity of existing network theory-based methods. The scale-free networks and random networks can effectively reduce 

complex big datasets. However, the full network extraction from inconsistent and missing data is the key challenge [16, 40]. Big 

data systems contain many small and manageable datasets, but finding the connections among these datasets is a crucial task. The 

similarity graph is generated from big data where vertices represent datasets and the weighted edges are defined on the basis of 

similarity measure. The graph is further reduced by merging similar datasets to reduce the number of nodes. The similarity-based 

big data reduction methods are good choice for network extraction and reduction. However, a range of new similarity measures 

are required to deal with the evolving complexity and to fully comply with 6Vs of big data [17]. Persistent homology is a good 

solution for topological data analysis, but it involves high computational complexity. The solutions like selective collapse 

algorithms represent datasets in the form of forests, and the nodes are collapsed in a way to improve the speed of persistent 

homology and maintain strong collapse. The persistent homology tools for reducing and analyzing big data still need to be further 

explored in the future research [18, 42]. Similarly, the automated extraction of events and their representation in network 

structures is an emerging research area. The assessment of events co-occurrence and their mutual influences is the key challenge 

for big data reduction. The authors in [41] performed the influence assessment among different concepts (events or datasets) 

based on the co-occurrence of two events. The co-occurrence is assessed based on the preferential attachment property which 

determines that new nodes are most likely connected with highly connected nodes as compared to less connected nodes. In 

addition, the influence relationship among network nodes can be effectively derived from conditional dependencies among 

variables. However, the mathematical and probabilistic constraints increase the computational complexity in network extraction 

methods. Therefore, efforts are required to optimize the influence assessment methods for computationally efficient and better 

approximated network structures [41]. 

    Compression Big data processing in cloud computing environments involves challenges relevant to inefficiency, parallel 

memory bottlenecks, and deadlocks. The spatiotemporal compression is a key solution for processing big graph data in the cloud 

environment. In spatiotemporal compression-based methods, the graph is partitioned and edges are mapped into different clusters 

where compression operations are performed for data reduction. The spatiotemporal compression is an effective approach for big 

data reduction.  

However, the research is required to find new parameters that are helpful in finding additional spatiotemporal correlations for 

maximum big data reduction [45]. The gap between computations and I/O capacity in the HEC systems degrades the system 

performance significantly. Although in situ analytics are useful for decreasing the aforementioned gap, the cost of computation 

increases abruptly. The compression methods can significantly reduce the transferred data and narrow the gap between 

computations and I/O capacity. The authors in [43] suggested that the number of available processors and the data reduction ratio 

(compression ratio) are two key factors that need attention in future research in this area. Alternately, the AST is a new way of 

compressing digitized data by selectively stretching and warping the signal. The technique is primarily based on self-adaptive 

stretch where more samples are associated with sharp features and fewer samples are associated with redundant coarse features. 

The AST performs data compression of the signal extracted on frequency domain. The method also performs inverse 

transformation of the constructed signal. The method specifically works with big data involving signal processing. However, the 

generalization to other domains is a bottleneck in this research [47].  Compressed sensing is a compressible and/or sparse signal 

that projects a high-dimensional data in low dimensional space using random measurement matrix.  

      The probability of poor data quality and information fidelity loss increases when the analysis is performed on reduced and 

compressed data [48]. The RED encoding scheme proposed by authors in [48] is used to manage massively generated voluminous 

electrophysiology data. The scheme performs best when encoding of invariant signals is performed. However while encoding 

time-series signals, the performance varies but the scheme achieves high compression rate with improved computational speed in 

lossless compression. The performance of the RED encoding methods degrades with high variance in signals [50]. Parallel 

compression methods can be used to reduce the data size with low computational cost. It uses proper orthogonal decomposition to 

compress data because it can effectively extract important features from the data and resulting compressed data can also be 

linearly decom- pressed. The parallel compression methods balance between feature retention error and compression ratio and 

perform fast decompression for interactive data visualization.  
 

However, the standard deviation of error is significant due to noise in the dataset [55]. The sketching method uses count-min 

sketch algorithm to compress vehicular movement data and achieve compact communication. Although it ensures data reduction 

by preserving some important characteristics of the original data, the probability of information fidelity loss is more when 

sketching is applied with inconsistent and noisy data stream [46]. Data deduplication (redundancy elimination) Cluster-level data 

deduplication is a key requirement to comply with service-level agreements (SLAs) for privacy pre-serving in cloud 

environments. The main challenge is the establishment of trade-off between high deduplication ratio and scalable deduplication 

throughput. The similarity-based deduplication scheme optimizes the elimination process by considering the locality and 

similarity of data points in both the intra-node and inter-node scenarios. The approach is effective for data reduction, but it 

requires to be implemented with very large-scale cluster data deduplication systems [12]. The I/O latency and extra computational 

overhead of cluster-level data deduplication are among the key challenges. The authors in [13] character-ized the deduplication 

schemes in terms of energy impact and performance overhead. The authors outlined three sources of redundancy in cluster 

environment including: the deployment of additional nodes in the cluster, (2) the expansion of big datasets, and (3) the usage of 

replication mechanisms. The outcomes of the analysis reveal that the local deduplication, at cluster level, can reduce the hashing 

overhead. However, local deduplication cannot achieve the maximum redundancy. In contrast, global deduplication can achieve 
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maximum redundancy but compromises on the hashing overheads. In addition, fine-grained deduplication is not suitable for big 

datasets especially in streaming data environments [13]. 
  

Data routing is a key issue in multi-node data deduplication systems. The availability of sufficient throughput is the main 

bottleneck for data movement among backup and recovery systems. The stateful data routing schemes, as compared to stateless 

approaches, have higher overhead with low imbalance in the data which minimizes the utility of data deduplication systems. The 

open issues for data routing include the characterization of parameters which causes the data skew. In addition, the scalability of 

routing methods to large-scale cluster systems and the impact of feature selection and super-chunk size are needed to be explored 

in future research. Moreover, the addition of new nodes is needed to be considered for effective bin migration strategies [14]. The 

in-network data processing methods facilitate in data reduction and reduce the bandwidth consumption, and the efforts are 

required for on-the-path data reduction and redundancy elimination. The reduced bandwidth consumption by in-network data 

processing methods enable enhanced query processing throughput. The future implementation of in-network data processing is 

envisioned as the provision of network-as-a-service (NaaS) in the cloud environment which is fully orchestrated for redundancy 

elimination and query optimization [57]. In addition, there is a need to devise new network-aware query processing and 

optimization models, and integration of these models in distributed data processing systems. Research shows that co-operative 

sensing methods can aid in significant data reduction in large-scale sensing infrastructures [58]. Cur-rent co-operative sensing 

methods lack in low-level con-textual features and adaptive global learning models to handle the change detection in streaming 

data environments. Future research work to integrate current low-level contextual models and adaptive machine learning methods 

can aid in maximum data reduction as well as collection of a high-quality data.  
 

Data preprocessing The investigations of research problems relevant to preprocessing techniques of big data are still at the 

initial level. Most of the works are based on the adoption of existing preprocessing methods that were earlier proposed for 

historical large datasets and data streams. The forefront deployment of data preprocessing methods in the big data knowledge 

discovery process requires new, efficient, robust, scalable, and optimized preprocessing techniques for both historical and 

streaming big data. The application of appropriate and highly relevant preprocessing methods not only increases data quality but 

also improves the analytics on reduced datasets.  The research on new methods for sketching, anomaly detection, noise removal, 

feature extraction, outliers detection, and pre-filtering of streaming data is required to reduce big data effectively. In addition, the 

deployment of adaptive learning models in conjunction with said methods can aid in dynamic preprocessing of big streaming data 

[21]. 

 Dimension reduction Big data reduction is traditionally considered to be a dimension reduction problem where multi-million 

features spaces are reduced to manageable feature spaces for effective data management and analytics. Unsupervised learning 

methods are the key consideration for dimensionality reduction problem. However, this literature review revealed several other 

statistical and machine learning methods to address this issue. The techniques to combine conventional dimension reduction 

methods with statistical analysis methods can increase the efficiency of big data systems [8]. This approach may aid in targeting 

highly dense and information oriented structures (feature sets) to achieve maximum and efficient big data reduction. Alternately, 

tensor decomposition and approximation methods are useful to cope with the curse of dimensionality that arises due to high-

dimensional complex and sparse feature spaces [10]. The main application of TD-based methods is witnessed in the scientific 

computing and quantum information theory domain. This literature review revealed that the issue of dimensionality reduction in 

big data could be handled by adopting front-end data processing, online feature selection from big data streams, constant-size 

corsets for clustering, statistical methods, and fuzzy classification-based soft computing approaches. These adoptions open new 

research avenues for interdisciplinary research and develop novel big data reduction methods. The strengths and weaknesses of 

these methods are already presented in detail in Table 1. 
 

     DM and ML The DM and the ML methods for big data reduction could be used at various levels of big data architectures. 

These methods enable to find interesting knowledge patterns from big data streams to produce highly relevant and reduced data 

for further analysis. For example, HMM as applied in [78] enables the context-aware features to filter the raw data streams to 

transmit only highly relevant and required information. In addition, the scheme enables to project high-dimensional data streams 

in manageable low-dimensional feature spaces. Although the application of these methods is convenient for data reduction, the 

trade-off between energy consumptions in local processing with raw data transmission is a key challenge that is needed to be 

considered. The DM and ML methods also have potential to be deployed in map-reduce implementations of Hadoop architecture. 

The authors in [79] parallelized the frequent pattern mining algorithms using the map-reduce programming model to reduce the 

massively high-dimensional feature space produced by uncertain big data. However, there exists a huge research gap for the 

implementation of other DM and ML methods for big data reduction that include supervised, unsupervised, semi-supervised, and 

hierarchical deep learning models [85]. In addition, the implementation of statistical methods, both descriptive and inferential, for 

big data reduction using approximation and estimation properties in uncertain big data environments is also useful for data 

reduction in map-reduce programming models. Moreover, the DM and ML methods are equally useful for big data reduction 

when coupled with artificial intelligence based optimization methods. However, supervised, unsupervised, and semi-supervised 

learning methods need more attention for future research [80].  
 

      Deep learning models have recently gained attention by the researchers. The deployment of deep learning models for big 

data reduction is potential research direction that can be pursued in future. The deep learning models are initially developed from 

certain data and gradually evolve with uncertain data to effectively reduce big data streams. How-ever, the increasing 

computational complexities of operating in uncertain big data environments and optimization of learning models to discover 

patterns from maximum data are the issues that can be further investigated [84]. In this section, we thoroughly discussed the open 

issues, research challenges, the limitations of proposed methods for big data reduction and presented some future research 

directions. The survey reveals that big data reduction is performed at many levels during the data processing life-cycle that 

http://www.jetir.org/


© 2019 JETIR  February 2019, Volume 6, Issue 2                                   www.jetir.org  (ISSN-2349-5162) 
 

JETIR1902964 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 526 

 

include data capturing, data preprocessing, data indexing and storage, data analysis, and visualization. Therefore, the relevant 

reduction methods and systems should be designed to handle the big data complexity at all stages of big data processing. In 

addition, the future research work should focus on considering all 6Vs to process big data in computing systems with different 

form factors from fine-grained mobile computing systems to large-scale massively parallel computing infrastructures. 
 

5 Conclusions 
 

The techniques discussed in this paper are an effort to address the issue. The presented literature review reveals that there 

is no existing method that can handle the issue of big data complexity single-handedly by considering the all 6Vs of big data. The 

studies discussed in this article mainly focused on data reduction in terms of volume (by reducing size) and variety (by reducing 

number of features or dimensions). However, further efforts are required to reduce the big data streams in terms of velocity and 

veracity. In addition, the new methods are required to reduce big data streams at the earliest immediately after data production 

and its entrance into the big data systems. In general, compression-based data reduction methods are convenient for reducing 

volume. However, the decompression overhead needs to be considered to improve efficiency. Similarly, network theory-based 

methods are effective for extracting structures from unstructured data and to efficiently handle the variety in big data. The data 

deduplication methods are useful to improve the data consistency. Therefore, the aforementioned methods are a suitable 

alternative to manage the variability issues in big data. Likewise, data preprocessing, dimension reduction, data mining, and 

machine learning methods are useful for data reduction at different levels in big data systems. Keeping in view the outcomes of 

this review, we conclude that big data reduction methods are emerging research area. 
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