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Abstract: The viability of coordinate multi-term polynomial functions for flexural analysis of thin 

rectangular isotropic plate subjected to a uniformly distributed load is herein dealt with. The rectangular 

plate has two opposite edges fixed and the other two opposite edges simply supported. Polynomial 

deflection functions with unknown coefficients, which satisfy the geometric and natural boundary 

conditions, corresponding to the first, second, truncated third and third approximations were derived. These 

deflection functions were substituted into the fourth order governing differential equation of the plate and 

using the Galerkin method, the unknown deflection coefficients were evaluated for the different 

approximations. With the help of these determined coefficients, the maximum deflection coefficient values 

and their corresponding maximum span moment coefficient values were determined for aspect ratios 

ranging from 1.0 to 2.0 for each approximation. The results of each approximation were compared with the 

results of the classical solution and their accuracy and convergence observed. The deflection coefficient 

values for the four different approximations showed close agreement with the classical solution; only the 

first approximation showed a good response pattern with respect to the maximum span moment coefficient 

values.  

Keywords: Uniform load, Coordinate polynomial, Deflection function, Rectangular plate, Boundary 

conditions, Opposite edges, Galerkin method. 

Notation 

A                 surface area of plate 

a                  primary axis of plate  

b                  secondary axis of plate 

D                 flexural rigidity 

E                 young modulus 

h                  plate thickness 

M                 maximum bending moment 

p                  aspect ratio ( p = b/a )    

q                  external load 

w (.) �̅� (.)    deflection function, trial function 

α                  maximum deflection coefficient 

β                  maximum moment coefficient 

ν                  poisson’s ratio 
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1. Introduction 

       The nature of engineering structures means that the end supports of rectangular plates could be 

subjected to different conditions namely, clamped, simple support, free etc. or a combination of these. These 

edge conditions make one rectangular plate unique from the other. A rectangular plate with two opposite 

edges simply supported and the other two clamped has found various applications in construction and 

engineering and some researchers have done different researches on them (Timoshenko and Woinowsky-

Krieger, 1959, Aginam et al., 2012).  

     However, the theory of plate bending has enjoyed currency since man started using scientifically proven 

methods to build. Advances in this area date back to early nineteenth century when Navier (1823) used the 

double trigonometric series to obtain the first solution to the problem of the bending of simply supported 

rectangular plates. Levy (1899) suggested an alternative solution for the bending of rectangular plates that 

have two opposite edges simply supported and the other two edges arbitrary. Later, Nadai (1925) simplified 

the work done by Levy (1899) for uniformly loaded and simply supported rectangular plates. A more 

straight forward way to satisfy some particular boundary conditions was formulated by Papkovitch (1941). 

But these earlier solutions could not easily handle complex plate problems; hence, approximate methods 

were established. Approximate methods could be divided into two, namely numerical and analytical 

methods. The analytical methods consist most of the powerful tools of mathematical physics for the 

engineer and the Galerkin method is prominent amongst these (Szilard, 2004). With increasing application 

of rectangular plates in engineering and construction, many scholars are seeking for ways to better 

understand the behaviour of rectangular plates and make the mechanical properties converge faster. 

Polynomial, trigonometric, or hyperbolic deflection functions have been used in different approximate 

methods to solve for the bending of rectangular plates (Wojtaszak, 1937, Taylor and Govindjee, 2004, 

Wang and El-Sheikh, 2005, Imark and Gerdemeli, 2007). Mikhlin (1964) used the Ritz method to derive the 

corresponding one-term solution for a rectangular plate and the three-term solution for a square plate and 

got fairly good results. Some scholars have argued that increasing the number of terms of the deflection 

function increases the accuracy and convergence of the solutions (Mbakogu and Pavlovic, 2000, Osadebe 

and Aginam, 2011, Aginam et al., 2018).  

       To this end, this research applies the Galerkin method to the problem of a uniformly-loaded isotropic 

rectangular plate with two opposite edges clamped and the other two opposite edges simply supported. 

Different approximations of the deflection function of the plate corresponding to the first, second, truncated 

third and third approximations are examined in detail. The results of maximum deflections and span 

moments for each approximation are compared with the results of the classical solution (Timoshenko and 

Woinowsky-krieger, 1970) and their behaviours discussed in terms of how convergent or otherwise they are. 

2. Theoretical background 

The classical plate theory assumes that the material is elastic and that the stress normal to the middle plane 

𝜎𝑧 is small and may be neglected. Hence, Hooke’s law is obeyed two-dimensionally. The stress and 

displacement relations can be stated as (Birman, 2011): 

𝜎x = −
𝐸𝑧

1 − ν2
 (

𝜕2𝑤

𝜕𝑥2
+  𝜈

𝜕2𝑤

𝜕𝑦2
 )                                                                                                  (1𝑎) 

𝜎y = −
𝐸𝑧

1 − ν2
 (

𝜕2𝑤

𝜕𝑦2
+  𝜈

𝜕2𝑤

𝜕𝑥2
 )                                                                                                  (1𝑏) 

𝜏𝑥𝑦 = −
𝐸𝑧

1 + ν
 
𝜕2𝑤

𝜕𝑥𝜕𝑦
                                                                                                                         (1𝑐) 

The moment-stress relations are calculated thus, 
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{

Mx

My

Mxy

}  =   ∫ {

σx

σy

τxy

}  𝑧𝑑𝑧                                                                                                               (2)    
+ℎ/2

−ℎ/2
      

Integrating equation (2) over the thickness of the plate gives: 

Mx = −D (
∂2w

∂x2
+  ν

∂2w

∂y2
 )                                                                                                  (3a) 

My = −D (
∂2w

∂y2
+  ν

∂2w

∂x2
 )                                                                                                  (3b) 

Mxy = Myx = −D (1 − ν) 
∂2w

∂x∂y
                                                                                                (3c) 

Where D = Eh3/12(1 − ν2) is the flexural rigidity of the plate, E is the Young modulus, G is the shear 

modulus and ν is the Poisson’s ratio. 

But the general equation of plate is given as (Ventsel and Krauthammer, 2001): 

∂2Mx

∂x2
+

∂2Mxy

∂x ∂y
+

∂2My

∂y2
= −P(x, y)                                                                                                 (4) 

Substituting equations 3 (a-c) into the general equation of plate element yields the governing differential 

equation of isotropic plate as: 

∂2w

∂x4
+ 2

∂4w

∂x2 ∂y2
+

∂4w

∂y4
= 

−P(x, y)

D
                                                                                                 (5) 

Where P is the applied lateral load. 

 3. Methodology 

The approximation method adopted for this research is Galerkin. However, the Galerkin formulation of 

plate bending problem for an isotropic rectangular plate is given in Cartesian coordinate as follows: 

∬ (𝐷
∂4w

∂x4
+ 2D

∂4w

∂x2 ∂y2
+ D

∂4w

∂y4
− q)

A

 w̅1(x, y)dxdy = 0 

∬ (𝐷
∂4w

∂x4
+ 2D

∂4w

∂x2 ∂y2
+ D

∂4w

∂y4
− q)

A

 w̅2(x, y)dxdy = 0 

                     . 

                     . 

                     . 

∬ (𝐷
∂4w

∂x4
+ 2D

∂4w

∂x2 ∂y2
+ D

∂4w

∂y4
− q)

A

 w̅N(x, y)dxdy = 0                                                     (6) 

The integrals are evaluated over the entire surface area A of the plate and �̅�1….𝑁(𝑥, 𝑦) are the linearly 

independent displacement functions that satisfy all the prescribed boundary conditions but not necessarily 

equation (5). w(x,y) is the plate deflection function which is being approximated in this study as an n-term 

polynomial, viz: 

w(x,y) = C1X1(x)Y1(y) + C2X2(x)Y2(y) + C3X3(x)Y3(y)…+ CnXn(x)Yn(y)                         (7) 

Where X1, X2, X3…Xn and Y1, Y2, Y3, … Yn are derived coordinate functions in x and y axes respectively. 

Equation (7) could be simplified further by putting 

w̅1 = X1(x)Y1(y)   
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w̅2 = X2(x)Y2(y)  

w̅3 = X3(x)Y3(y)  
       . 

       . 

       . 

w̅n = Xn(x)Yn(y)                                                                                                                                    (8)   
Substituting equation (8) into equation (7), we obtain 

w(x,y) = C1w̅1 + C2w̅2 + C3w̅3 …+ Cnw̅n                                                                                      (9𝑎) 

w(x,y) = w̅C                                                                                                                                             (9𝑏) 

where w̅ =  [w̅1  w̅2  w̅3  w̅4  w̅5  w̅6] and C =  [C1  C2  C3  C4  C5  C6] 
Substituting equations 9 (a-b) into equation (6) and differentiating accordingly gives: 

a11 =
D

a4
∬ [

∂4w̅1

∂x4
+ 2

∂4w̅1

∂x2 ∂y2
+

∂4w̅1

∂y4
] w̅1(x, y)dxdy                                                                      

A

 

a12 =
D

a4
∬ [

∂4w̅1

∂x4
+ 2

∂4w̅1

∂x2 ∂y2
+

∂4w̅1

∂y4
] w̅2(x, y)dxdy                                                                      

A

 

a13 =
D

a4
∬ [

∂4w̅1

∂x4
+ 2

∂4w̅1

∂x2 ∂y2
+

∂4w̅1

∂y4
] w̅3(x, y)dxdy                                                                      

A

 

                                                     . 

                                                     . 

                                                     . 

anm =
D

a4
∬ [

∂4w̅n

∂x4
+ 2

∂4w̅n

∂x2 ∂y2
+

∂4w̅n

∂y4
] w̅m(x, y)dxdy                                                                 (10)

A

 

Similarly, for the external load, we have: 

b1 = ∬qw̅1(x, y)dxdy                                                                                                                        
A

 

b2 = ∬qw̅2(x, y)dxdy                                                                                                                        
A

 

b3 = ∬qw̅3(x, y)dxdy                                                                                                                        
A

 

                                . 

                                . 

                             . 

bn = ∬qw̅n(x, y)dxdy                                                                                                                   (11) 
A

 

In matrix form, the above formulation gives: 

[
 
 
 
 
 
𝑎1,1         𝑎1,2      .       .        .         𝑎1,m

𝑎2,1         𝑎2,2      .       .        .         𝑎2,m

 .  
.
.

𝑎n,1         𝑎n,2      .       .        .         𝑎n,m]
 
 
 
 
 

 

[
 
 
 
 
 
C1

C2

.

.

.
Cn]

 
 
 
 
 

 =  

[
 
 
 
 
 
𝑏1

𝑏2

.

.

.
𝑏n]

 
 
 
 
 

 
𝑞

𝐷
𝑎4                                                  (12) 

On evaluation of the unknown coefficients, C1, C2, . . . and  Cn from equation (12), the coefficients are 

substituted into equation (7) to get the corresponding deflection of the plate. The moments are evaluated 

from equations 3(a) and 3(b). 

 

4. Analysis of Plate  

           The deflected middle surface of a uniformly loaded rectangular plate as shown in Fig. 1 can be 

approximated using a grid work of beams. The plate has two opposite edges clamped and the other two 

opposite edges simply supported. The poisson’s ratio is taken as ν = 0.3. 
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Figure 1: A rectangular plate with two opposite edges clamped and the other two opposite edges 

           simply supported subjected to a uniformly distributed load. 

The appropriate deflection function must satisfy at least two prescribed conditions at each boundary point. 

For the plate shown in Fig. 1, the boundary conditions are:  

w(x)   =   
∂2w

∂x2  (x) = 0          at  x = 0, 1                                                                                (13a) 

w(y)   =   
∂w

∂y
 (y) = 0            at  y = 0, 1                                                                                (13b) 

It is assumed that the deflection function w can be represented in the form of polynomials as follows: 

w(x) = ∑ Emxm

∞

m=0

                                                                                                                     (14a) 

w(y) = ∑ Fny
n

∞

n=0

                                                                                                                        (14b) 

Where xm and yn denote complete sets of independent continuous functions suitable for the representation 

of the deflected surface. Coefficients Emand Fnare determined from the prescribed boundary conditions of 

the plate while m and n are determined by the type of loading on the plate. 

The deflection function is given as the product of the two beam functions in x and y axes, thus: 

w (x, y) = w(x) . w(y)                                                                                                                      (15) 

First approximation 

For this approximation, the deflection function is given as follows: 

w (x, y) =  C1w̅1                                                                                                                               (16) 

Where C1 is the unknown coefficient, 

w̅1 = C1(X − 2X3 + X4)(Y2 − 2Y3 + Y4)                                                                                     (17) 

 

0 
X 

Y 
b 

a 

a 

b q 
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The solution is sought by substituting equation (16) into equations (10) and (11) and evaluating the integrals 

over the entire area A of the plate. The resulting linear equation is solved for the unknown coefficient, C1. 

Then, C1 is substituted into equation (16) to get the deflection of the plate at any arbitrary point (x,y). The 

associated moments are determined by substituting corresponding values of deflection into equations (3a) 

and (3b) and solving accordingly. Different values of deflection and the corresponding moments at the 

center of the plate are evaluated for aspect ratios 1.0 ≤ 𝑝 ≤ 2.0 and the results are tabulated in Tables 1, 2 

and 3 for the deflection, short-span moment and long-term moment respectively.  

Second approximation 

Here a three-term polynomial for the deflection function is derived as follows: 

w(x, y) =  C1w̅1 + C2w̅2 +  C3w̅3                                                                                                      (18) 

where  w̅1 has been defined in equation (17) while 

w̅2 = (X − 2X3 + X4)(Y2 − 2Y3 + Y4)X2

w̅3 = (X − 2X3 + X4)(Y2 − 2Y3 + Y4)Y2
}                                                                                         (19) 

Therefore,  

w(x, y) =  C1(X − 2X3 + X4 )(Y2 − 2Y3 + Y4)  +   C2 (X
3 − 2X5 + X6)(Y2 − 2Y3 + Y4)  + 

C3 (X − 2X3 + X4 )(Y4 − 2Y5 + Y6)                                                                                                   (20) 

By substituting equation (20) into equations (10) and (11), the resulting 3 x 3 algebraic equation is solved 

for the unknown coefficients C1, C2,  and C3. The determined coefficients are substituted into equation (20) 

to get the deflection coefficient values at any arbitrary point of the plate. The moment coefficient values are 

obtained by substituting the deflection values into equations 3 (a-b) and solving accordingly. The results are 

tabulated in Tables 1, 2 and 3 for the deflection, short-span moment and long-term moment respectively. 

Truncated third approximation 

The deflection function for this approximation will be represented by a four-term polynomial as follows:  

w(x, y) =  C1w̅1 + C2w̅2 +  C3w̅3 +  C4w̅4                                                                                     (21) 

where  w̅1, w̅2 and w̅3  are defined by equations (17)  and (19) while 

w̅4 = (X − 2X3 + X4)(Y2 − 2Y3 + Y4)X2Y2                                                                                     (22) 

Therefore,  

w(x, y) =  C1(X − 2X3 + X4 )(Y2 − 2Y3 + Y4)  +   C2 (X
3 − 2X5 + X6)(Y2 − 2Y3 + Y4)  + 

C3 (X − 2X3 + X4 )(Y4 − 2Y5 + Y6)   +  C4 (X
3 − 2X5 + X6)(Y4 − 2Y5 + Y6)                                  (23) 

The unknown coefficients C1, C2, C3 and C4 are determined by solving the 4 X 4 algebraic equations 

obtained by substituting equation (23) into equations (10) and (11). The maximum deflections and moments 

are determined as before by substituting the obtained coefficients into equation (23) for the deflection, and 

substituting the deflection into equations 3 (a-b) and solving accordingly gives the moments. The results are 

tabulated in Tables 1, 2 and 3 for the deflection, short-span moment and long-term moment respectively. 

Third approximation   

For this approximation, the deflection function is written as follows:  

w(x, y) =  C1w̅1 + C2w̅2 +  C3w̅3 +  C4w̅4 + C5w̅5 + C6w̅6                                                     (24) 
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where  w̅1, w̅2, w̅3  and w̅4  are defined by equations (17), (19) and (22) while  

w̅5 = (X − 2X3 + X4)(Y2 − 2Y3 + Y4)X4

w̅6 = (X − 2X3 + X4)(Y2 − 2Y3 + Y4)Y4

}                                                                                         (25) 

Therefore,  

w(x, y) =  C1(X − 2X3 + X4 )(Y2 − 2Y3 + Y4)  +   C2 (X
3 − 2X5 + X6)(Y2 − 2Y3 + Y4)  + 

C3 (X − 2X3 + X4 )(Y4 − 2Y5 + Y6)   +  C4 (X
3 − 2X5 + X6)(Y4 − 2Y5 + Y6) + C5(X

5 − 2X7 + X8 ) 
(Y2 − 2Y3 + Y4) + C6(X − 2X3 + X4 )(Y6 − 2Y7 + Y8)                                                                         (26) 

Lastly, equation (26) is substituted into equations (10) and (11) and the ensuing 6 X 6 algebraic equation is 

evaluated for the unknown coefficients in the deflection function. Subsequently, the determined coefficients 

are put in equation (26) to evaluate the deflection at any point of the plate. The moment coefficient values 

are in turn determined from equations 3 (a) and 3 (b). The results so obtained are tabulated in Tables 1, 2 

and 3 for the deflection, short-span moment and long-term moment respectively. 

5. Results and Discussion 

Deflection 

     Table 1 shows the deflection coefficient values for the different approximations considered for plate 

aspect ratios 1.0 ≤ p(b a⁄ ) ≤ 2.0 along with the results of the classical solution. The accuracy of the results 

obtained from the first approximation is satisfactory. The percentage difference when compared with the 

results of classical solution remained fairly constant from 3.65 (at p = 1.0) to 4.86 (at p = 2.0). This shows 

minor divergence as the aspect ratio increases from 1.0 to 2.0. These deflection coefficient values are all in 

upper-bound. Interestingly, the deflection coefficient values for the second approximation and the truncated 

third approximation are almost the same for the present formulation. The percentage difference with the 

classical solution gives 0.84 (at p =1) to about 5.20 (at p =2) for both approximations, which shows more 

divergence than the first approximation. The coefficient values for both approximations are all lower-bound. 

For the first three approximations, the coefficient values show slight divergence as the aspect ratio increases 

from 1.0 to 2.0. The third approximation shows a mixed behaviour as the coefficient values are upper-

bounded from aspect ratio 1.0 to 1.5 and lower-bounded from 1.6 to 2.0. This means that the coefficient 

values converged from aspect ratio 1.0 to 1.5 and then diverged from 1.6 to 2.0. Fig. 2 shows the graphical 

representation of the results of the present formulation for deflection in comparison with the results of the 

classical solution. It can be observed that the four different approximations show close agreement with the 

classical solution. The slope of the first approximation however, is the closest to the classical solution of all 

the four approximations considered. 

Table 1:  Mid-span (X =0.5, Y =0.5) Deflection Coefficient Values, α, for the Present Study 

in Comparison with the Classical Solution at Varying Aspect ratio (𝐖𝐦𝐚𝐱 = (𝛂𝐪𝐚𝟒 𝑫⁄ ). 

Aspect 
ratio, P 

Present Study 
Classical 
Solution 

W1 W2 W3 W4 W 

 
First 

Approximation 
Second 

Approximation 
Truncated Third 
Approximation 

Third 
Approximation 

Timoshenko 
and 

Woinowsky-
Krieger (1970) 

1.0 0.00199(3.65%) 0.00190(-0.84%) 0.00190(-0.84%) 0.00219(13.98%) 0.00192 

1.1 0.00261(3.98%) 0.00249(-0.93%) 0.00249(-0.92%) 0.00281(12.03%) 0.00251 

1.2 0.00330(3.45%) 0.00312(-2.27%) 0.00312(-2.26%) 0.00347(8.68%) 0.00319 
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*Values in bracket are the percentage difference between the present study and the classical solution 

 

 
Figure 2: Deflection Coefficients at the Mid-Span for the Present Study in Comparison 

with the Classical Solution at Varying Aspect Ratio. 

 

Short Span Moment  

       The response pattern in terms of moment in the short span as shown in Table 2 followed that of the 

deflection. The moment coefficient values for the first approximation are all in upper-bound; that of the 

second and truncated third approximations are all in lower-bound while the third approximation is a mix of 

upper and lower bounded coefficient values. Conventionally, the deflection coefficient values are evaluated 

to a higher degree of accuracy than the maximum moment values. This is due to the fact that the stress 

couples are proportional to the second derivatives of the deflection functions. Consequently, for plates 

having aspect ratios 1.0 ≤ p(b a⁄ ) ≤ 2.0, the percentage difference range from 17.34 (at p = 1.0) to 10.05 

(at p = 2.0) for first approximation.  This shows the coefficient values converge as they move from aspect 

ratio 1.0 to 2.0. The second and truncated third approximations give nearly the same values. They all 

diverge as they move from aspect ratio 1.0 to 2.0 giving a percentage difference of 6.90 to 46.92 and 6.84 to 

46.65 respectively. However, the percentage difference of third approximation coefficient values with the 

results of the classical solution converged from 71.47 (at p = 1.0) to 0.32 (at p = 1.5) and then diverged from 

13.43 (at p = 1.6) to 62.66 (at p = 2.0). This is similar to the pattern shown by the deflection coefficient 

values. Fig. 3 shows the graphical representation of the results of the present formulation for short span 

moment in comparison with the results of the classical solution. It can be observed that the slope of the first 

approximation is the closest to the classical solution of all the four approximations considered. 

 

Table 2:  Short Span Moment Coefficient Values, 𝛃𝐱, at Mid-Span (x =0.5, y =0.5) for the Present 

Study in Comparison with the Classical Solution at Varying Aspect Ratio((𝐌𝐱)𝐦𝐚𝐱) =  𝐪𝐚𝟐𝛃𝐱). 

Aspect 
ratio, P 

Present Study 
Classical 
Solution 

Mx1 Mx2 Mx3 Mx4 Mx 
First 

Approximation 
Second 

Approximation 
Third Truncated 
Approximation 

Third 
Approximation 

Timoshenko 
and 

0.001

0.003

0.005

0.007

0.009

0.011

1 1.2 1.4 1.6 1.8 2

D
ef

le
ct

io
n

 C
o

ef
fi

ci
e

n
t

Aspect Ratio, P

W1

W2

W3

W4

W

1.3 0.00402(3.61%) 0.00378(-2.66%) 0.00378(-2.65%) 0.00413(6.40%) 0.00388 

1.4 0.00477(3.70%) 0.00445(-3.35%) 0.00445(-3.33%) 0.00477(3.78%) 0.00460 

1.5 0.00551(3.77%) 0.00511(-3.79%) 0.00511(-3.77%) 0.00538(1.41%) 0.00531 

1.6 0.00624(3.48%) 0.00575(-4.60%) 0.00575(-4.58%) 0.00595(-1.36%) 0.00603 

1.7 0.00695(4.04%) 0.00637(-4.66%) 0.00637(-4.64%) 0.00645(-3.39%) 0.00668 

1.8 0.00762(4.10%) 0.00695(-5.05%) 0.00695(-5.03%) 0.00690(-5.79%) 0.00732 

1.9 0.00826(4.56%) 0.00749(-5.14%) 0.00750(-5.11%) 0.00727(-7.91%) 0.00790 

2.0 0.00885(4.86%) 0.00800(-5.23%) 0.00800(-5.20%) 0.00759(-10.08%) 0.00844 
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Woinowsky-
Krieger (1970) 

1 0.02863(17.34%) 0.02272(-6.90%) 0.02273(-6.84%) 0.04184(71.47%) 0.02440 

1.1 0.03547(15.54%) 0.02673(-12.92%) 0.02676(-12.84%) 0.04823(57.11%) 0.03070 

1.2 0.04269(13.54%) 0.03050(-18.88%) 0.03054(-18.78%) 0.05335(41.88%) 0.03760 

1.3 0.05007(12.26%) 0.033919(-23.86%) 0.03396(-23.86%) 0.05684(27.44%) 0.04460 

1.4 0.05745(11.77%) 0.0368(-28.25%) 0.03695(-28.12%) 0.05852(13.85%) 0.05140 

1.5 0.06469(10.58%) 0.03940(-32.65%) 0.03949(-32.50%) 0.05831(-0.32%) 0.05850 

1.6 0.07165(10.23%) 0.04148(-36.19%) 0.04159(-36.01%) 0.05627(-13.43%) 0.06500 

1.7 0.07826(9.92%) 0.04314(-39.40%) 0.04328(-39.21%) 0.05249(-26.28%) 0.07120 

1.8 0.08448(10.00%) 0.04444(-42.13%) 0.04461(-41.91%) 0.04714(-38.62%) 0.07680 

1.9 0.09027(9.95%) 0.04542(-44.68%) 0.04562(-44.44%) 0.04040(-50.80%) 0.08210 

2 0.09563(10.05%) 0.04613(-46.92%) 0.04636(-46.65%) 0.03245(-62.66%) 0.08690 

*Values in bracket are the percentage difference between the present study and the classical solution 

 

 
Figure 3: Short Span Moment Coefficient Values at the Mid-Span for the Present Study in 

Comparison with the Classical Solution at Varying Aspect Ratio. 
 

Long Span Moment Coefficients 

      Table 3 shows the results of the long span moment coefficients for the present formulation along with 

the results of the classical solution. For the first approximation, the long span coefficient values are all in 

upper bound. The coefficient values rise from aspect ratio 1.0 and peak at aspect ratio 2.0 while the classical 

solutions rise from aspect ratio 1.0 and peak at aspect ratio 1.8. The percentage difference with the classical 

solution increases from 13.07 (at p =1.0) to 28.52 (at p = 2.0). The second and truncated third 

approximations, as with preceding results, give almost the same coefficient values. The results are a mix of 

upper and lower bounded coefficient values. They are upper- bounded from aspect ratio 1.0 to 1.2 and lower 

bounded from 1.3 to 2.0. The peak coefficient values for both occur at aspect ratio 1.6. The third 

approximation coefficient values are upper- bounded from aspect ratio 1.0 to 1.5 and lower bounded from 

1.6 to 2.0. The peak coefficient values occur at aspect ratio 1.3. As would be expected, these coefficient 

values show less convergence than the deflection coefficient values because the moment coefficients are a 

function of the second derivatives of the deflection coefficient values.  Fig. 4 shows the graphical 

representation of the results of the present formulation for long span moment in comparison with the results 

of the classical solution. It can be observed that the slope of the first approximation is the closest to the 

classical solution of all the four approximations considered. 

Table 3:  Long Span Moment Coefficient Values, 𝛃𝐲, at Mid-Span (x =0.5, y =0.5) for the Present 

Study in Comparison with the Classical Solution at Varying Aspect Ratio ((𝐌𝐲)𝐦𝐚𝐱
=  𝐪𝐚𝟐𝛃𝐲). 
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My1 My2 My3 My4 My 

First 
Approximation 

Second 
Approximation 

Third Truncated 
Approximation 

Third 
Approximation 

Timoshenko 
and 

Woinowsky-
Krieger (1970) 

1 0.03754(13.07%) 0.03426(3.18%) 0.03428(3.25%) 0.04299(29.49%) 0.03320 

1.1 0.04211(13.50%) 0.037589(1.30%) 0.03761(1.39%) 0.04642(25.12%) 0.03710 

1.2 0.04618(15.45%) 0.04023(0.56%) 0.04027(0.67%) 0.04865(21.63%) 0.04000 

1.3 0.04970(16.67%) 0.04218(-1.00%) 0.04223(-0.86%) 0.04966(16.58%) 0.04260 

1.4 0.05266(17.54%) 0.04347(-2.97%) 0.04354(-2.81%) 0.04949(10.46%) 0.04480 

1.5 0.05508(19.74%) 0.04418(-3.95%) 0.04427(-3.77%) 0.04823(4.85%) 0.04600 

1.6 0.05701(21.56%) 0.04439(-5.35%) 0.04449(-5.13%) 0.04602(-1.87%) 0.04690 

1.7 0.05849(23.14%) 0.04419(-6.96%) 0.04431(-6.72%) 0.04302(-9.44%) 0.04750 

1.8 0.05960(24.95%) 0.04368(-8.43%) 0.04381(-8.16%) 0.03936(-17.49%) 0.04770 

1.9 0.06039(26.87%) 0.04292(-9.84%) 0.04306(-9.53%) 0.03518(-26.09%) 0.04760 

2 0.06092(28.52%) 0.04198(-11.43%) 0.04215(-11.09%) 0.03062(-35.41%) 0.04740 

*Values in bracket are the percentage difference between the present study and the classical solution. 

 
Figure 4: Long Span Moment Coefficient Values at the Mid-Span for the Present Study in 

Comparison with the Classical Solution at Varying Aspect Ratio. 

 

6. Conclusion 

        This research presents the maximum deflection and maximum span moment coefficients of a uniformly 

loaded thin isotropic rectangular plate with two opposite edges simply supported and the other two opposite 

edges clamped for aspect ratios 1.0 ≤ 𝑏/𝑎 ≥ 2.0 in Galerkin method. The results have been compared with 

the results in literature and their accuracy and convergence observed. The convergence to the classical 

solution did not increase as the number of terms of the deflection function increased from the first, to 

second, to truncated third and to the third approximation. Apart from the first approximation, the second, 

truncated third and third approximations gave mainly lower-bounded coefficient values in spite of having 

longer terms in their deflection functions. Secondly, only the slope of the first approximation coefficient 

values can best match that of the classical solution for both the maximum deflection and the maximum span 

moments. Thirdly, the average percentage differences between the results of the first approximation and that 

of the classical solution are 3.9 and 11.9 for the maximum deflection and maximum short span moment 

coefficients respectively while the percentage differences with both the second and truncated third 

approximations are about 3.5 and 30.2 for the maximum deflection and maximum short span moment 

respectively. The third approximation showed the most divergence for the maximum deflection and 
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maximum span moments of the four approximations considered. Therefore, it is concluded that increasing 

the number of terms of the present formulation beyond the first approximation does not increase the 

accuracy and convergence of the solutions. Clearly, the multi-term deflection functions corresponding to the 

second, truncated third and third approximations can be used if only deflection is of essence.  
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