
© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 640

Performance Measurement For Various Memory

Architecture Of Superscalar Pipelined Processor

 Kritika Purohit

M.Tech. Scholar

Arya College of Engineering & IT, Jaipur (Raj.)

Jaipur, India

Dr.Vibhakar Pathak, MIEEE

Professor CS/IT

Arya College of Engineering & IT, Jaipur (Raj.)

Jaipur, India

Abstract— There are various ways to improve the throughput of a system. One of the key factors is processor. Series of so many

analyses have been carried out and developments have been made for the same viz. pipelining, parallel processing, multi-core etc. There

are various parameters viz. superscalar factor, reservation station architecture, number of different functional units, reservation station

size, memory architecture etc. which influence the performance of the superscalar processor. The average Instruction fetch efficiency

factor of superscalar architecture controls the performance aspect. The purpose of this work is to obtain the optimal configuration of

the memory for superscalar architecture by conducting a qualitative and quantitative study.

Keywords— superscalar factor, reservation station architecture, number of different functional units, reservation station size, memory

architecture component.

I. INTRODUCTION

The performance of superscalar architecture depends on the various parameter like superscalar factor, reservation station

architecture, number of different functional units etc. In this dissertation impact of various memory parameters on performance of

superscalar processor is measured individually, by conducting the simulation using superscalar simulator PSATSim/EdSATSim

v2.1, and the performance in terms of execution time is compared.

The superscalar processor improves the performance by executing multiple instructions in parallel. The basic design choice for

superscalar architecture includes the superscalar factor and reservation station architecture.

II. PERFORMANCE PARAMETERS FOR SUPERSCALAR ARCHITECTURE

The performance of superscalar architecture mainly depends on the following parameters:

a)Superscalar Factor: The superscalar degree is determined by the issue parallelism n i.e. the maximum number of instructions
that can be issued in every cycle. A superscalar machine of degree n can be viewed as having n pipelines or a pipeline that is n
times wider in the sense of being able to carry n instructions in each pipeline stage instead of one.

b) Reservation Station Architecture: Prior to execution of an instruction all its operands must be available. Register operands are
fetched from the register files during decoding but it may be that some of these operands are not yet ready, because earlier
instructions that update these registers have not finished their execution. This situation stalls the decoding stage until all register
operands are ready

Figure 1.1 Superscalar processor with Superscalar factor=3

To avoid this stall we can fetch those register operands that are ready and go ahead. To advance these instructions into a
separate buffer to await those register operands that are not ready. When all register operands are ready, those instructions can then
exit this buffer and be issued into the functional units for execution. Such a temporary instruction buffer is known as a reservation
station

Two types of reservation station implementations are possible

 Centralized reservation station: A single buffer is used at the source side of dispatching. One reservation station with many
entries feeds all the functional units. Instructions are dispatched from this centralized reservation station directly to all the
functional units to begin execution

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 641

 Distributed reservation stations: Multiple buffers are placed at the destination side of dispatching. Each functional unit has its
own reservation station on the input side of the unit. Instructions are dispatched to the individual reservation stations based on
instruction type. These instructions remain in these reservation stations until they are ready to be issued into the functional
units for execution.

c) Number of Execution Unit: Scalar pipelined processors have only one functional unit and all instruction types are executed by
the same functional unit. This processor consists of the ALU and MEM stages. First-generation superscalar processors are parallel
pipelines with two diversified functional units, one executing integer instructions and the other executing floating-point
instructions.

 Current superscalar processors can employ multiple integer units. Some have multiple floating-point units. These are the
two most fundamental functional unit types. An integer unit can be used for generating memory addresses and executing branch
and load/store instructions. In most recent designs separate branch and load/store units have been incorporated. The branch unit is
responsible for updating the PC. The load/store unit is directly connected to the D-cache. Other specialized functional units have
emerged for supporting graphics and image processing applications

 The best mix of functional units for a superscalar pipeline depends on the application domain. Typical programs have 40%
ALU instructions, 20% branches, and 40% load/store instructions. We can have a 4-2-4 rule of thumb i.e. for every four ALU units,
we should have two branch units and four load/store units. Many of the current leading superscalar processors have four or more
ALU-type functional units including both integer and floating-point unit. Most of them have only one branch unit, they are able to
speculate beyond one conditional branch instruction. Most of these processors have only one load/store unit. Some are able to
process two load/store instructions in every cycle with some constraints

In real superscalar pipeline designs, the total number of functional units exceeds the actual width of the parallel pipeline. The
width of a superscalar pipeline is determined by the number of instructions that can be fetched, decoded, or completed in every
machine cycle

III. PROBLEM DEFINITION

In this work we analyzed the impact of different memory configuration on performance of Superscalar Pipelined Architecture in
terms of execution time and power consumption. We simulated the design for different reservation station architecture i.e.
distributed, centralized and memory architecture (L1, L2 and System). The study includes the results for model architecture (base
architecture Pentium IV of family of Core Processors) and It’s extensions i3, i5, and i7 architecture.

IV. PLATFORM OF RESEARCH AND EXPERIMENTAL SETUP

The simulation is quick and easy method to analyze any complex system. Simulation also helps to evaluate subtle design trade-
offs in an experimental environment. It reduces the cost and time by allowing to quickly evaluating different processor
implementations without having to fabricate a chip each time. A simulator also allows the processor designer / architect to easily
determine the expected performance improvement of a new compiler based or micro-architectural mechanism.

As it is imperative to simulation techniques for super scalar architecture therefore for analyzing the work of this dissertation,
simulation technique is used. The simulator used is PSATSim simulator. By running this simulator on various programs for
different processor architecture, all the experiments are carried out.

a) PSATSim Simulator

The PSATSim is a graphical simulator that can be configured to a speculative out-of-order execution as well as power
consumption of superscalar processor. Thus it supports to see the effect of the design on both power and performance. This
simulator helps to understand the flow of instructions within the pipeline, dynamic scheduling, speculative execution, and the data
dependencies between instructions.

PSATSim simulator models the dynamic power consumption of superscalar processor architectures. It incorporates a
speculative execution model which gives relative accuracy to the power values. PSATSim allows students to experiment with a
wide range of architectural parameters and to observe both the power and performance results of the configuration.

same can be adapted to support the architectural flexibility of PSATSim. Because of the large number of differences between
the two simulators’ architectures, power values cannot be directly compared between Watch and PSATSim [2].

b) Model processor architecture

The processor architecture used for simulations is shown in figure 1.2. The Rename Entries and Reorder Entries are 16 and 20
respectively. These values are the default values used in PSATSim simulator. Execution architecture is taken as standard i.e. We
can specify Number of Integer, floating, branch, and memory Execution Units separately.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 642

Figure 1.2 Model Processor Architecture

The best mix of these functional units for a superscalar processor depends on the application domain. Typical programs have
40% ALU instructions, 20% branches, and 40% load/store instructions. According to this 4-2-4 rule of thumb [1], for every four
ALU units (four integers and four floating point); two branch units, and four load/store units shall be optimum. Therefore Number
of Integer Execution Unit, floating point Execution Unit is taken as four. All other parameters are used as default in PSATSim
simulator.

V. RESULT ANALYSIS

The simulation has been perform in two different segments. First segment is focused to observe the relation of IPC with
memory architecture for various reservation station types and different memory architecture. Second segment is focused for
observing the power consumption for various memory architectures.

 Results for Intel i3, i5 and i7 Processor

This section presents the results derived for intel i3,i5 and i7 processors. We derived these results based on the experiments and
standard formulas. Figure 1.3, 1.5 and 1.7 shows the Impact of Memory architecture on Speed up for Centralized Reservation
Architecture for i3, i5, and i7 Processor respectively. From these graph it is clear that the speed up is considerably high for memory
system L2. Figure 1.4, 1.6 and 1.8 shows the Impact of Memory architecture on Speed up for Distributed Reservation Architecture
for i3, i5, i7 Processor respectively. Derailed results are shown following graphs.

Table 1.1 Results for Intel i3 processor

architecture
memory

system
file f=ipc/sf

For 2+1 Core

speedup

(f,n)=1/((1-

f)+(f/n))

n= 2.5

speedup

(f,n)=1/((1-

f)+(f/n))

n= 2.6

speedup

(f,n)=1/((1-

f)+(f/n))

n= 2.8

distributed L1 applu 0.483605 1.408774127 1.423696442 1.451144876

distributed L1 applu 0.481425 1.406182987 1.420982445 1.448199707

distributed l2 applu 0.480035 1.404535808 1.419257357 1.446328057

distributed l2 applu 0.4821625 1.407058509 1.421899439 1.449194726

distributed system applu 0.4811675 1.405877552 1.420662553 1.447852615

distributed system applu 0.4838675 1.409086778 1.424023941 1.45150032

centralized L1 applu 0.2851725 1.206423239 1.212842698 1.224477569

centralized L1 applu 0.2862275 1.207345247 1.213798461 1.225495292

centralized l2 applu 0.2852675 1.206506205 1.2129287 1.224569143

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 643

centralized l2 applu 0.36215 1.277612398 1.286771984 1.303459288

centralized system applu 0.35435 1.270018669 1.278873018 1.294995306

centralized system applu 0.2862275 1.207345247 1.213798461 1.225495292

distributed L1 compress 0.614735 1.584386819 1.608488862 1.653403028

distributed L1 compress 0.6312875 1.609716247 1.635281835 1.683013436

distributed l2 compress 0.5958475 1.556440825 1.578969103 1.620863289

distributed l2 compress 0.6111425 1.578994323 1.602789347 1.647113566

distributed system compress 0.6173625 1.588354187 1.612683133 1.658033543

distributed system compress 0.6335225 1.613198545 1.638968106 1.687093045

centralized L1 compress 0.3262875 1.243429254 1.251239208 1.265432343

centralized L1 compress 0.3293025 1.246232483 1.254150757 1.268543673

centralized l2 compress 0.3257075 1.242891438 1.250680659 1.264835561

centralized l2 compress 0.3292575 1.246190551 1.254107201 1.268497123

centralized system compress 0.3262575 1.243401424 1.251210305 1.265401461

centralized system compress 0.3293025 1.246232483 1.254150757 1.268543673

distributed L1 epic 0.492195 1.419077798 1.434492256 1.462867461

distributed L1 epic 0.4946425 1.422041212 1.437598282 1.466242259

distributed l2 epic 0.49047 1.416996591 1.432311177 1.460498218

distributed l2 epic 0.494315 1.421643961 1.437181885 1.465789775

distributed system epic 0.49187 1.418685219 1.43408082 1.462420494

distributed system epic 0.4946425 1.422041212 1.437598282 1.466242259

centralized L1 epic 0.217998 1.150481615 1.154937946 1.162982145

centralized L1 epic 0.2191653 1.151409351 1.155896879 1.163997935

centralized l2 epic 0.2178273 1.150346027 1.154797803 1.1628337

centralized l2 epic 0.2191525 1.151399209 1.155886396 1.163986829

centralized system epic 0.21792 1.150419673 1.154873923 1.16291433

centralized system epic 0.2191653 1.151409351 1.155896879 1.163997935

distributed L1 fpppp 0.4156225 1.332220485 1.343666473 1.364602551

distributed L1 fpppp 0.4187525 1.335561941 1.347153051 1.368359759

distributed l2 fpppp 0.4129125 1.32934088 1.340662287 1.361366131

distributed l2 fpppp 0.4168275 1.333504911 1.345006611 1.366046571

distributed system fpppp 0.4166525 1.333318222 1.344811819 1.365836669

distributed system fpppp 0.419325 1.336174932 1.34779273 1.36904922

centralized L1 fpppp 0.2149313 1.148051255 1.152426079 1.160321761

centralized L1 fpppp 0.2157068 1.148664858 1.153060231 1.160993352

centralized l2 fpppp 0.2150558 1.148149719 1.152527839 1.160429527

centralized l2 fpppp 0.215704 1.148662681 1.153057981 1.160990969

centralized system fpppp 0.2152153 1.14827589 1.152658234 1.160567618

centralized system fpppp 0.2157068 1.148664858 1.153060231 1.160993352

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 644

Figure – 1.3 Impact of Memory architecture on Speed up for Centralized Reservation

Architecture for i3 Processor

Figure – 1.4 Impact of Memory architecture on Speed up for Distributed Reservation Architecture for i3 Processor

Table 1.2 Results for Intel i5 processor

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 645

architecture
memory

system
file f=ipc/sf

For 4+1 Core

speedup

(f,n)=1/((1-

f)+(f/n))

n= 2.5

speedup

(f,n)=1/((1-

f)+(f/n))

n= 2.55

speedup

(f,n)=1/((1-

f)+(f/n))

n= 2.75

distributed L1 applu 0.483605 1.408774127 1.416342285 1.444561979

distributed L1 applu 0.481425 1.406182987 1.413689084 1.441672865

distributed l2 applu 0.480035 1.404535808 1.412002548 1.439836749

distributed l2 applu 0.4821625 1.407058509 1.414585556 1.442648966

distributed system applu 0.4811675 1.405877552 1.413376346 1.441332368

distributed system applu 0.4838675 1.409086778 1.416662436 1.444910647

centralized L1 applu 0.2851725 1.206423239 1.20968739 1.221707408

centralized L1 applu 0.2862275 1.207345247 1.210626524 1.222710287

centralized l2 applu 0.2852675 1.206506205 1.209771897 1.221797648

centralized l2 applu 0.36215 1.277612398 1.282265638 1.299476075

centralized system applu 0.35435 1.270018669 1.274517277 1.291148007

centralized system applu 0.2862275 1.207345247 1.210626524 1.222710287

distributed L1 compress 0.614735 1.584386819 1.596583187 1.642562068

distributed L1 compress 0.6312875 1.609716247 1.622648998 1.671481674

distributed l2 compress 0.5958475 1.556440825 1.567844915 1.610761645

distributed l2 compress 0.6111425 1.578994323 1.591036165 1.636417124

distributed system compress 0.6173625 1.588354187 1.600664747 1.647085688

distributed system compress 0.6335225 1.613198545 1.626233895 1.675464761

centralized L1 compress 0.3262875 1.243429254 1.247398578 1.26204862

centralized L1 compress 0.3293025 1.246232483 1.250256716 1.265111978

centralized l2 compress 0.3257075 1.242891438 1.246850252 1.261461018

centralized l2 compress 0.3292575 1.246190551 1.250213961 1.265066147

centralized system compress 0.3262575 1.243401424 1.247370204 1.262018214

centralized system compress 0.3293025 1.246232483 1.250256716 1.265111978

distributed L1 epic 0.492195 1.419077798 1.426894528 1.456059757

distributed L1 epic 0.4946425 1.422041212 1.429929962 1.459369334

distributed l2 epic 0.49047 1.416996591 1.424762882 1.453736168

distributed l2 epic 0.494315 1.421643961 1.429523042 1.458925607

distributed system epic 0.49187 1.418685219 1.426492426 1.455621411

distributed system epic 0.4946425 1.422041212 1.429929962 1.459369334

centralized L1 epic 0.217998 1.150481615 1.152749164 1.161070693

centralized L1 epic 0.2191653 1.151409351 1.153692748 1.162072909

centralized l2 epic 0.2178273 1.150346027 1.152611263 1.16092423

centralized l2 epic 0.2191525 1.151399209 1.153682433 1.162061952

centralized system epic 0.21792 1.150419673 1.152686166 1.161003783

centralized system epic 0.2191653 1.151409351 1.153692748 1.162072909

distributed L1 fpppp 0.4156225 1.332220485 1.338031222 1.35959536

distributed L1 fpppp 0.4187525 1.335561941 1.341446101 1.363287233

distributed l2 fpppp 0.4129125 1.32934088 1.335088582 1.356414995

distributed l2 fpppp 0.4168275 1.333504911 1.339343836 1.361014302

distributed system fpppp 0.4166525 1.333318222 1.339153047 1.360808048

distributed system fpppp 0.419325 1.336174932 1.342072594 1.363964673

centralized L1 fpppp 0.2149313 1.148051255 1.150277399 1.158445761

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 646

centralized L1 fpppp 0.2157068 1.148664858 1.150901441 1.159108415

centralized l2 fpppp 0.2150558 1.148149719 1.150377538 1.158552093

centralized l2 fpppp 0.215704 1.148662681 1.150899227 1.159106064

centralized system fpppp 0.2152153 1.14827589 1.150505854 1.158688347

centralized system fpppp 0.2157068 1.148664858 1.150901441 1.159108415

Figure – 1.5 Impact of Memory architecture on Speed up for Centralized Reservation Architecture for i5 Processor

Figure – 1.6 Impact of Memory architecture on Speed up for Distributed Reservation Architecture for i5 Processor

Table 1.3 Results for Intel i7 processor

architecture memory file f=ipc/sf For 6+1 Core

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 647

system speedup

(f,n)=1/((1-

f)+(f/n))

n= 6.45

speedup

(f,n)=1/((1-

f)+(f/n))

n= 6.55

speedup

(f,n)=1/((1-

f)+(f/n))

n= 6.7

distributed L1 applu 0.483605 1.690981517 1.694261027 1.699019247

distributed L1 applu 0.481425 1.685730779 1.688975214 1.693682375

distributed l2 applu 0.480035 1.682399822 1.685622088 1.690296976

distributed l2 applu 0.4821625 1.687503465 1.690759724 1.695484097

distributed system applu 0.4811675 1.685112718 1.688353035 1.693054201

distributed system applu 0.4838675 1.691615981 1.694899739 1.699664145

centralized L1 applu 0.2851725 1.317453121 1.318625757 1.320322768

centralized L1 applu 0.2862275 1.319002187 1.320181936 1.321889258

centralized l2 applu 0.2852675 1.317592461 1.318765737 1.320463674

centralized l2 applu 0.36215 1.440927823 1.442709828 1.445290886

centralized system applu 0.35435 1.427372467 1.429083374 1.431561224

centralized system applu 0.2862275 1.319002187 1.320181936 1.321889258

distributed L1 compress 0.614735 2.080850394 2.087169935 2.096363576

distributed L1 compress 0.6312875 2.143225176 2.150110983 2.160132735

distributed l2 compress 0.5958475 2.013969061 2.019705932 2.028048056

distributed l2 compress 0.6111425 2.067789265 2.073993026 2.083017416

distributed system compress 0.6173625 2.09050806 2.096913835 2.106233548

distributed system compress 0.6335225 2.151935038 2.158901673 2.169041673

centralized L1 compress 0.3262875 1.380643934 1.382117692 1.384251403

centralized L1 compress 0.3293025 1.385517173 1.387015088 1.389183846

centralized l2 compress 0.3257075 1.379710391 1.381179536 1.383306556

centralized l2 compress 0.3292575 1.385444185 1.386941737 1.389109969

centralized system compress 0.3262575 1.380595616 1.382069135 1.3842025

centralized system compress 0.3293025 1.385517173 1.387015088 1.389183846

distributed L1 epic 0.492195 1.71199369 1.71541512 1.720379968

distributed L1 epic 0.4946425 1.718076499 1.721539478 1.72656483

distributed l2 epic 0.49047 1.707732334 1.71112478 1.716047425

distributed l2 epic 0.494315 1.717260054 1.720717445 1.725734657

distributed system epic 0.49187 1.711189201 1.714605151 1.71956202

distributed system epic 0.4946425 1.718076499 1.721539478 1.72656483

centralized L1 epic 0.217998 1.225790425 1.226566241 1.227688277

centralized L1 epic 0.2191653 1.227274168 1.22805603 1.229186823

centralized l2 epic 0.2178273 1.225573678 1.226348612 1.22746937

centralized l2 epic 0.2191525 1.227257941 1.228039738 1.229170434

centralized system epic 0.21792 1.225691404 1.226466817 1.227588269

centralized system epic 0.2191653 1.227274168 1.22805603 1.229186823

distributed L1 fpppp 0.4156225 1.541271165 1.5436117 1.547004074

distributed L1 fpppp 0.4187525 1.547579476 1.549957023 1.55340319

distributed l2 fpppp 0.4129125 1.53585073 1.538159642 1.541506057

distributed l2 fpppp 0.4168275 1.543693666 1.546048387 1.54946138

distributed system fpppp 0.4166525 1.543341378 1.545694034 1.549104025

distributed system fpppp 0.419325 1.548738903 1.551123277 1.554579367

centralized L1 fpppp 0.2149313 1.221909187 1.222669244 1.22376846

centralized L1 fpppp 0.2157068 1.222888326 1.223652351 1.224757312

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 648

centralized l2 fpppp 0.2150558 1.222066274 1.222826967 1.223927104

centralized l2 fpppp 0.215704 1.222884851 1.223648862 1.224753803

centralized system fpppp 0.2152153 1.222267581 1.22302909 1.224130408

centralized system fpppp 0.2157068 1.222888326 1.223652351 1.224757312

Figure – 1.7 Impact of Memory architecture on Speed up for Centralized Reservation Architecture for i7 Processor

Figure – 1.8 Impact of Memory architecture on Speed up for Distributed Reservation Architecture for i7 Processor

If we combine the finding from pervious section, then on averaging the L2 memory system is found optimal then the L1 and

System memory architecture.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902A92 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 649

VI. CONCLUSION

 This work aims at finding optimal values for the superscalar processor by conducting a qualitative and quantitative study.
This is achieved by using PSATSim simulation tool which provides the right platform for evaluating the superscalar processors by
varying the parameter values.

 The basic purpose of this work is conceptually based on two different segments viz. :

 The first part has been conducted for power analysis considering the super scalar factor already established.

 The second part has been conducted for IPC analysis considering the super scalar factor and power.

The impact of superscalar factor and power analysis is analyzed on performance of Superscalar Pipelined Architecture in terms
of IPC.

 This analysis has been performed for distributed and centralised reservation architecture with superscalar factor 4 and
three memory architectures viz.

 Case 1 when the system has only L1 cache Memory

 Case 2 when the system has L1 & L2 Cache Memory

 Case 3 when the system has system memory

After performing simulation, It is found that for distributed reservation architecture and superscalar factor 4, the power
consumption for processor architecture having only L2 cache memory is highest, and architecture having L1 & system is lowest.

If we consider the above result with the results derived for i3, i5 and i7 processor then on averaging the L2 memory system is
found optimal then the L1 and System memory architecture.

REFERENCES

[1] Shen John, Lipasti Mikko, Modern Processor Design: Fundamentals of Superscalar Processors, First edition, TMH, 2004

[2] Clint W. Smullen, IV, Tarek M. Taha, “PSATSim: An Interactive Graphical Superscalar Architecture Simulator for Power and Performance Analysis”, 33nd
International Symposium on Computer Architecture, 2006

[3] Vladimir Lazarov, Maria Marinova, “Dependencies Evaluation in Superscalar Processors”, CompSysTech '04 Proceedings of the 5th international
conference on Computer systems and technologies, 2004, Pages 1 – 4

[4] Hwang Kai, Jotwani Naresh, Advanced Computer Architecture, Second edition, TMH, 2010

[5] Hartstein, A.; Puzak, T.R., "The optimum pipeline depth for a microprocessor," Computer Architecture, 2002. Proceedings. 29th Annual International
Symposium on , vol., no., pp.7,13, 2002

[6] Jangid Deepak, Jha Suresh, Purohit Rajesh. “An Improved Register Data Flow Technique in Superscalar Architecture”, UGC National Conference on
Emerging Trends in Computer Communication and Networks, ETCN-2012

[7] J. Yi and D. Lilja, “Effects of Processor Parameter Selection on Simulation Results,” Minnesota Supercomputer Inst. Report 2002/146, 2002.

[8] Arpad Gellert, Horia Calborean, Lucian Vintan, Adrian Florea, ‘Multi-Objective Optimizations for a Superscalar Architecture with Selective Value
Prediction’, IET Computers & Digital Techniques, Vol. 6, Issue 4, ISSN: 1751-8601, pp. 205-213, 2012

[9] James E. Bennett , Michael J. Flynn, “ Performance factors for superscalar processors”, Tech. Report CSL-TR-95-661, Computer Systems Laboratory,
Stanford University, February 1995

[10] Wallace, S.; Bagherzadeh, N., "Performance Issues of a Superscalar Microprocessor," Parallel Processing, 1994. Vol. 1. ICPP 1994. International
Conference on, vol.1, no., pp.293,297, 15-19 Aug. 1994

[11] Taha, T.M.; Wills, D.S., "An Instruction Throughput Model of Superscalar Processors," Computers, IEEE Transactions on , vol.57, no.3, pp.389,403, March
2008

[12] Taiwo O. Ojeyinka, Olusola Olajide Ajayi “Performance Analysis of Dual Core, Core 2 Duo and Core i3 Intel Processor”, International Journal of Computer
Applications (0975 – 8887) Volume 120 – No.10, June 2015

[13] Rebaya, K. Gasmi, I. Amari and S. Hasnaoui, "Performance analysis of an efficient technique for ordering programs into multiple processors architectures,"
2017 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC), Gafsa, 2017, pp. 124-128.

[14] S. Dhotre, P. Patil, S. H. Patil and R. Jamale, "Analysis of scheduler settings on the performance of multi-core processors," 2017 International Conference
on Trends in Electronics and Informatics (ICEI), Tirunelveli, 2017, pp. 687-691.

[15] C. Damman, G. Edison, F. Guet, E. Noulard, L. Santinelli and J. Hugues, "Architectural performance analysis of FPGA synthesized LEON processors,"
2016 International Symposium on Rapid System Prototyping (RSP), Pittsburgh, PA, 2016, pp. 1-8.

[16] X. Zhang, B. Yin and H. Shi, "Performance analysis of multi-server based on processor-sharing queue," 2016 18th International Conference on Advanced
Communication Technology (ICACT), Pyeongchang, 2016, pp. 843-848.

[17] Vitale, G. Rizzo, B. Rengarajan and V. Mancuso, "An Analytical Approach to Performance Analysis of Coupled Processor Systems," 2015 27th
International Teletraffic Congress, Ghent, 2015, pp. 89-97.

[18] Y. C. Chan, J. Guo, E. W. M. Wong and M. Zukerman, "Performance analysis for overflow loss systems of processor-sharing queues," 2015 IEEE
Conference on Computer Communications (INFOCOM), Kowloon, 2015, pp. 1409-1417.

http://www.jetir.org/

