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Abstract— There are various ways to improve the throughput of a system. One of the key factors is processor. Series of so many 

analyses have been carried out and developments have been made for the same viz. pipelining, parallel processing, multi-core etc. There 

are various parameters viz. superscalar factor, reservation station architecture, number of different functional units, reservation station 

size, memory architecture etc. which influence the performance of the superscalar processor. The average Instruction fetch efficiency 

factor of superscalar architecture controls the performance aspect. The purpose of this work is to obtain the optimal configuration of 

the memory for superscalar architecture by conducting a qualitative and quantitative study. 

Keywords— superscalar factor, reservation station architecture, number of different functional units, reservation station size, memory 

architecture component. 

I. INTRODUCTION 

The performance of superscalar architecture depends on the various parameter like superscalar factor, reservation station 

architecture, number of different functional units etc. In this dissertation impact of various memory parameters on performance of 

superscalar processor is measured individually, by conducting the simulation using superscalar simulator PSATSim/EdSATSim 

v2.1, and the performance in terms of execution time is compared.  

The superscalar processor improves the performance by executing multiple instructions in parallel. The basic design choice for 

superscalar architecture includes the superscalar factor and reservation station architecture.  

 

II. PERFORMANCE PARAMETERS FOR SUPERSCALAR ARCHITECTURE  

The performance of superscalar architecture mainly depends on the following parameters: 

a)Superscalar Factor: The superscalar degree is determined by the issue parallelism n i.e. the maximum number of instructions 
that can be issued in every cycle. A superscalar machine of degree n can be viewed as having n pipelines or a pipeline that is n 
times wider in the sense of being able to carry n instructions in each pipeline stage instead of one.  

b) Reservation Station Architecture: Prior to execution of an instruction all its operands must be available. Register operands are 
fetched from the register files during decoding but it may be that some of these operands are not yet ready, because earlier 
instructions that update these registers have not finished their execution. This situation stalls the decoding stage until all register 
operands are ready 

 

Figure 1.1 Superscalar processor with Superscalar factor=3 

To avoid this stall we can fetch those register operands that are ready and go ahead. To advance these instructions into a 
separate buffer to await those register operands that are not ready. When all register operands are ready, those instructions can then 
exit this buffer and be issued into the functional units for execution. Such a temporary instruction buffer is known as a reservation 
station 

Two types of reservation station implementations are possible 

 Centralized reservation station: A single buffer is used at the source side of dispatching. One reservation station with many 
entries feeds all the functional units. Instructions are dispatched from this centralized reservation station directly to all the 
functional units to begin execution 
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 Distributed reservation stations: Multiple buffers are placed at the destination side of dispatching. Each functional unit has its 
own reservation station on the input side of the unit. Instructions are dispatched to the individual reservation stations based on 
instruction type. These instructions remain in these reservation stations until they are ready to be issued into the functional 
units for execution. 

 

c)  Number of Execution Unit: Scalar pipelined processors have only one functional unit and all instruction types are executed by 
the same functional unit. This processor consists of the ALU and MEM stages. First-generation superscalar processors are parallel 
pipelines with two diversified functional units, one executing integer instructions and the other executing floating-point 
instructions.  

 Current superscalar processors can employ multiple integer units. Some have multiple floating-point units. These are the 
two most fundamental functional unit types. An integer unit can be used for generating memory addresses and executing branch 
and load/store instructions. In most recent designs separate branch and load/store units have been incorporated. The branch unit is 
responsible for updating the PC. The load/store unit is directly connected to the D-cache. Other specialized functional units have 
emerged for supporting graphics and image processing applications 

 The best mix of functional units for a superscalar pipeline depends on the application domain. Typical programs have 40% 
ALU instructions, 20% branches, and 40% load/store instructions. We can have a 4-2-4 rule of thumb i.e. for every four ALU units, 
we should have two branch units and four load/store units. Many of the current leading superscalar processors have four or more 
ALU-type functional units including both integer and floating-point unit. Most of them have only one branch unit, they are able to 
speculate beyond one conditional branch instruction. Most of these processors have only one load/store unit. Some are able to 
process two load/store instructions in every cycle with some constraints 

In real superscalar pipeline designs, the total number of functional units exceeds the actual width of the parallel pipeline. The 
width of a superscalar pipeline is determined by the number of instructions that can be fetched, decoded, or completed in every 
machine cycle 

III. PROBLEM DEFINITION 

In this work we analyzed the impact of different memory configuration on performance of Superscalar Pipelined Architecture in 
terms of execution time and power consumption. We simulated the design for different reservation station architecture i.e. 
distributed, centralized and memory architecture (L1, L2 and System). The study includes the results for model architecture (base 
architecture Pentium IV of family of Core Processors) and It’s extensions i3, i5, and i7 architecture.  

IV. PLATFORM OF RESEARCH AND EXPERIMENTAL SETUP 

The simulation is quick and easy method to analyze any complex system. Simulation also helps to evaluate subtle design trade-
offs in an experimental environment. It reduces the cost and time by allowing to quickly evaluating different processor 
implementations without having to fabricate a chip each time. A simulator also allows the processor designer / architect to easily 
determine the expected performance improvement of a new compiler based or micro-architectural mechanism.  

As it is imperative to simulation techniques for super scalar architecture therefore for analyzing the work of this dissertation, 
simulation technique is used. The simulator used is PSATSim simulator. By running this simulator on various programs for 
different processor architecture, all the experiments are carried out. 

a)  PSATSim Simulator  

The PSATSim is a graphical simulator that can be configured to a speculative out-of-order execution as well as power 
consumption of superscalar processor. Thus it supports to see the effect of the design on both power and performance. This 
simulator  helps to understand the flow of instructions within the pipeline, dynamic scheduling, speculative execution, and the data 
dependencies between instructions. 

PSATSim simulator models the dynamic power consumption of superscalar processor architectures. It incorporates a 
speculative execution model which gives relative accuracy to the power values. PSATSim allows students to experiment with a 
wide range of architectural parameters and to observe both the power and performance results of the configuration. 

same can be adapted to support the architectural flexibility of PSATSim. Because of the large number of differences between 
the two simulators’ architectures, power values cannot be directly compared between Watch and PSATSim [2]. 

 

b)  Model processor architecture  

The processor architecture used for simulations is shown in figure 1.2. The Rename Entries and Reorder Entries are 16 and 20 
respectively. These values are the default values used in PSATSim simulator. Execution architecture is taken as standard i.e.  We 
can specify Number of Integer, floating, branch, and memory Execution Units separately.  
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Figure 1.2  Model Processor Architecture 

  

The best mix of these functional units for a superscalar processor depends on the application domain. Typical programs have 
40% ALU instructions, 20% branches, and 40% load/store instructions. According to this 4-2-4 rule of thumb [1], for every four 
ALU units (four integers and four floating point); two branch units, and four load/store units shall be optimum. Therefore Number 
of Integer Execution Unit, floating point Execution Unit is taken as four. All other parameters are used as default in PSATSim 
simulator.  

 

V. RESULT ANALYSIS 

The simulation has been perform in two different segments. First segment is focused to observe the relation of IPC with 
memory architecture for various reservation station types and different memory architecture. Second segment is focused for 
observing the power consumption for various memory architectures. 

 Results for Intel i3, i5 and i7 Processor 

This section presents the results derived for intel i3,i5 and i7 processors. We derived these results based on the experiments and 
standard formulas. Figure 1.3, 1.5 and 1.7 shows the Impact of Memory architecture on Speed up for Centralized Reservation 
Architecture for i3, i5, and i7 Processor respectively. From these graph it is clear that the speed up is considerably high for memory 
system L2. Figure 1.4, 1.6 and 1.8 shows the Impact of Memory architecture on Speed up for Distributed Reservation Architecture 
for i3, i5, i7 Processor respectively. Derailed results are shown following graphs. 

 

Table 1.1 Results for Intel i3 processor 

architecture 
memory 

system 
file f=ipc/sf 

For 2+1 Core 

speedup  

(f,n)=1/((1-

f)+(f/n))  

n= 2.5 

speedup  

(f,n)=1/((1-

f)+(f/n))  

n= 2.6 

speedup 

(f,n)=1/((1-

f)+(f/n))  

n= 2.8 

distributed L1 applu 0.483605 1.408774127 1.423696442 1.451144876 

distributed L1 applu 0.481425 1.406182987 1.420982445 1.448199707 

distributed l2 applu 0.480035 1.404535808 1.419257357 1.446328057 

distributed l2 applu 0.4821625 1.407058509 1.421899439 1.449194726 

distributed system applu 0.4811675 1.405877552 1.420662553 1.447852615 

distributed system applu 0.4838675 1.409086778 1.424023941 1.45150032 

centralized L1 applu 0.2851725 1.206423239 1.212842698 1.224477569 

centralized L1 applu 0.2862275 1.207345247 1.213798461 1.225495292 

centralized l2 applu 0.2852675 1.206506205 1.2129287 1.224569143 
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centralized l2 applu 0.36215 1.277612398 1.286771984 1.303459288 

centralized system applu 0.35435 1.270018669 1.278873018 1.294995306 

centralized system applu 0.2862275 1.207345247 1.213798461 1.225495292 

distributed L1 compress 0.614735 1.584386819 1.608488862 1.653403028 

distributed L1 compress 0.6312875 1.609716247 1.635281835 1.683013436 

distributed l2 compress 0.5958475 1.556440825 1.578969103 1.620863289 

distributed l2 compress 0.6111425 1.578994323 1.602789347 1.647113566 

distributed system compress 0.6173625 1.588354187 1.612683133 1.658033543 

distributed system compress 0.6335225 1.613198545 1.638968106 1.687093045 

centralized L1 compress 0.3262875 1.243429254 1.251239208 1.265432343 

centralized L1 compress 0.3293025 1.246232483 1.254150757 1.268543673 

centralized l2 compress 0.3257075 1.242891438 1.250680659 1.264835561 

centralized l2 compress 0.3292575 1.246190551 1.254107201 1.268497123 

centralized system compress 0.3262575 1.243401424 1.251210305 1.265401461 

centralized system compress 0.3293025 1.246232483 1.254150757 1.268543673 

distributed L1 epic 0.492195 1.419077798 1.434492256 1.462867461 

distributed L1 epic 0.4946425 1.422041212 1.437598282 1.466242259 

distributed l2 epic 0.49047 1.416996591 1.432311177 1.460498218 

distributed l2 epic 0.494315 1.421643961 1.437181885 1.465789775 

distributed system epic 0.49187 1.418685219 1.43408082 1.462420494 

distributed system epic 0.4946425 1.422041212 1.437598282 1.466242259 

centralized L1 epic 0.217998 1.150481615 1.154937946 1.162982145 

centralized L1 epic 0.2191653 1.151409351 1.155896879 1.163997935 

centralized l2 epic 0.2178273 1.150346027 1.154797803 1.1628337 

centralized l2 epic 0.2191525 1.151399209 1.155886396 1.163986829 

centralized system epic 0.21792 1.150419673 1.154873923 1.16291433 

centralized system epic 0.2191653 1.151409351 1.155896879 1.163997935 

distributed L1 fpppp 0.4156225 1.332220485 1.343666473 1.364602551 

distributed L1 fpppp 0.4187525 1.335561941 1.347153051 1.368359759 

distributed l2 fpppp 0.4129125 1.32934088 1.340662287 1.361366131 

distributed l2 fpppp 0.4168275 1.333504911 1.345006611 1.366046571 

distributed system fpppp 0.4166525 1.333318222 1.344811819 1.365836669 

distributed system fpppp 0.419325 1.336174932 1.34779273 1.36904922 

centralized L1 fpppp 0.2149313 1.148051255 1.152426079 1.160321761 

centralized L1 fpppp 0.2157068 1.148664858 1.153060231 1.160993352 

centralized l2 fpppp 0.2150558 1.148149719 1.152527839 1.160429527 

centralized l2 fpppp 0.215704 1.148662681 1.153057981 1.160990969 

centralized system fpppp 0.2152153 1.14827589 1.152658234 1.160567618 

centralized system fpppp 0.2157068 1.148664858 1.153060231 1.160993352 
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Figure – 1.3 Impact of Memory architecture on Speed up for Centralized Reservation 

Architecture for i3 Processor 

 

Figure – 1.4 Impact of Memory architecture on Speed up for Distributed Reservation Architecture for i3 Processor 

 

 

Table 1.2 Results for Intel i5 processor 
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architecture 
memory 

system 
file f=ipc/sf 

For 4+1 Core 

speedup 

(f,n)=1/((1-

f)+(f/n))  

n= 2.5  

speedup 

(f,n)=1/((1-

f)+(f/n))  

n= 2.55  

speedup 

(f,n)=1/((1-

f)+(f/n))  

n= 2.75  

distributed L1 applu 0.483605 1.408774127 1.416342285 1.444561979 

distributed L1 applu 0.481425 1.406182987 1.413689084 1.441672865 

distributed l2 applu 0.480035 1.404535808 1.412002548 1.439836749 

distributed l2 applu 0.4821625 1.407058509 1.414585556 1.442648966 

distributed system applu 0.4811675 1.405877552 1.413376346 1.441332368 

distributed system applu 0.4838675 1.409086778 1.416662436 1.444910647 

centralized L1 applu 0.2851725 1.206423239 1.20968739 1.221707408 

centralized L1 applu 0.2862275 1.207345247 1.210626524 1.222710287 

centralized l2 applu 0.2852675 1.206506205 1.209771897 1.221797648 

centralized l2 applu 0.36215 1.277612398 1.282265638 1.299476075 

centralized system applu 0.35435 1.270018669 1.274517277 1.291148007 

centralized system applu 0.2862275 1.207345247 1.210626524 1.222710287 

distributed L1 compress 0.614735 1.584386819 1.596583187 1.642562068 

distributed L1 compress 0.6312875 1.609716247 1.622648998 1.671481674 

distributed l2 compress 0.5958475 1.556440825 1.567844915 1.610761645 

distributed l2 compress 0.6111425 1.578994323 1.591036165 1.636417124 

distributed system compress 0.6173625 1.588354187 1.600664747 1.647085688 

distributed system compress 0.6335225 1.613198545 1.626233895 1.675464761 

centralized L1 compress 0.3262875 1.243429254 1.247398578 1.26204862 

centralized L1 compress 0.3293025 1.246232483 1.250256716 1.265111978 

centralized l2 compress 0.3257075 1.242891438 1.246850252 1.261461018 

centralized l2 compress 0.3292575 1.246190551 1.250213961 1.265066147 

centralized system compress 0.3262575 1.243401424 1.247370204 1.262018214 

centralized system compress 0.3293025 1.246232483 1.250256716 1.265111978 

distributed L1 epic 0.492195 1.419077798 1.426894528 1.456059757 

distributed L1 epic 0.4946425 1.422041212 1.429929962 1.459369334 

distributed l2 epic 0.49047 1.416996591 1.424762882 1.453736168 

distributed l2 epic 0.494315 1.421643961 1.429523042 1.458925607 

distributed system epic 0.49187 1.418685219 1.426492426 1.455621411 

distributed system epic 0.4946425 1.422041212 1.429929962 1.459369334 

centralized L1 epic 0.217998 1.150481615 1.152749164 1.161070693 

centralized L1 epic 0.2191653 1.151409351 1.153692748 1.162072909 

centralized l2 epic 0.2178273 1.150346027 1.152611263 1.16092423 

centralized l2 epic 0.2191525 1.151399209 1.153682433 1.162061952 

centralized system epic 0.21792 1.150419673 1.152686166 1.161003783 

centralized system epic 0.2191653 1.151409351 1.153692748 1.162072909 

distributed L1 fpppp 0.4156225 1.332220485 1.338031222 1.35959536 

distributed L1 fpppp 0.4187525 1.335561941 1.341446101 1.363287233 

distributed l2 fpppp 0.4129125 1.32934088 1.335088582 1.356414995 

distributed l2 fpppp 0.4168275 1.333504911 1.339343836 1.361014302 

distributed system fpppp 0.4166525 1.333318222 1.339153047 1.360808048 

distributed system fpppp 0.419325 1.336174932 1.342072594 1.363964673 

centralized L1 fpppp 0.2149313 1.148051255 1.150277399 1.158445761 
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centralized L1 fpppp 0.2157068 1.148664858 1.150901441 1.159108415 

centralized l2 fpppp 0.2150558 1.148149719 1.150377538 1.158552093 

centralized l2 fpppp 0.215704 1.148662681 1.150899227 1.159106064 

centralized system fpppp 0.2152153 1.14827589 1.150505854 1.158688347 

centralized system fpppp 0.2157068 1.148664858 1.150901441 1.159108415 

 

 

Figure – 1.5 Impact of Memory architecture on Speed up for Centralized Reservation Architecture for i5 Processor 

 

Figure – 1.6 Impact of Memory architecture on Speed up for Distributed Reservation Architecture for i5 Processor 

 

 

Table 1.3 Results for Intel i7 processor 

architecture memory file f=ipc/sf For 6+1 Core 
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system speedup 

(f,n)=1/((1-

f)+(f/n))  

n= 6.45  

speedup 

(f,n)=1/((1-

f)+(f/n))  

n= 6.55  

speedup 

(f,n)=1/((1-

f)+(f/n))  

n= 6.7 

distributed L1 applu 0.483605 1.690981517 1.694261027 1.699019247 

distributed L1 applu 0.481425 1.685730779 1.688975214 1.693682375 

distributed l2 applu 0.480035 1.682399822 1.685622088 1.690296976 

distributed l2 applu 0.4821625 1.687503465 1.690759724 1.695484097 

distributed system applu 0.4811675 1.685112718 1.688353035 1.693054201 

distributed system applu 0.4838675 1.691615981 1.694899739 1.699664145 

centralized L1 applu 0.2851725 1.317453121 1.318625757 1.320322768 

centralized L1 applu 0.2862275 1.319002187 1.320181936 1.321889258 

centralized l2 applu 0.2852675 1.317592461 1.318765737 1.320463674 

centralized l2 applu 0.36215 1.440927823 1.442709828 1.445290886 

centralized system applu 0.35435 1.427372467 1.429083374 1.431561224 

centralized system applu 0.2862275 1.319002187 1.320181936 1.321889258 

distributed L1 compress 0.614735 2.080850394 2.087169935 2.096363576 

distributed L1 compress 0.6312875 2.143225176 2.150110983 2.160132735 

distributed l2 compress 0.5958475 2.013969061 2.019705932 2.028048056 

distributed l2 compress 0.6111425 2.067789265 2.073993026 2.083017416 

distributed system compress 0.6173625 2.09050806 2.096913835 2.106233548 

distributed system compress 0.6335225 2.151935038 2.158901673 2.169041673 

centralized L1 compress 0.3262875 1.380643934 1.382117692 1.384251403 

centralized L1 compress 0.3293025 1.385517173 1.387015088 1.389183846 

centralized l2 compress 0.3257075 1.379710391 1.381179536 1.383306556 

centralized l2 compress 0.3292575 1.385444185 1.386941737 1.389109969 

centralized system compress 0.3262575 1.380595616 1.382069135 1.3842025 

centralized system compress 0.3293025 1.385517173 1.387015088 1.389183846 

distributed L1 epic 0.492195 1.71199369 1.71541512 1.720379968 

distributed L1 epic 0.4946425 1.718076499 1.721539478 1.72656483 

distributed l2 epic 0.49047 1.707732334 1.71112478 1.716047425 

distributed l2 epic 0.494315 1.717260054 1.720717445 1.725734657 

distributed system epic 0.49187 1.711189201 1.714605151 1.71956202 

distributed system epic 0.4946425 1.718076499 1.721539478 1.72656483 

centralized L1 epic 0.217998 1.225790425 1.226566241 1.227688277 

centralized L1 epic 0.2191653 1.227274168 1.22805603 1.229186823 

centralized l2 epic 0.2178273 1.225573678 1.226348612 1.22746937 

centralized l2 epic 0.2191525 1.227257941 1.228039738 1.229170434 

centralized system epic 0.21792 1.225691404 1.226466817 1.227588269 

centralized system epic 0.2191653 1.227274168 1.22805603 1.229186823 

distributed L1 fpppp 0.4156225 1.541271165 1.5436117 1.547004074 

distributed L1 fpppp 0.4187525 1.547579476 1.549957023 1.55340319 

distributed l2 fpppp 0.4129125 1.53585073 1.538159642 1.541506057 

distributed l2 fpppp 0.4168275 1.543693666 1.546048387 1.54946138 

distributed system fpppp 0.4166525 1.543341378 1.545694034 1.549104025 

distributed system fpppp 0.419325 1.548738903 1.551123277 1.554579367 

centralized L1 fpppp 0.2149313 1.221909187 1.222669244 1.22376846 

centralized L1 fpppp 0.2157068 1.222888326 1.223652351 1.224757312 
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centralized l2 fpppp 0.2150558 1.222066274 1.222826967 1.223927104 

centralized l2 fpppp 0.215704 1.222884851 1.223648862 1.224753803 

centralized system fpppp 0.2152153 1.222267581 1.22302909 1.224130408 

centralized system fpppp 0.2157068 1.222888326 1.223652351 1.224757312 

 

 

Figure – 1.7 Impact of Memory architecture on Speed up for Centralized Reservation Architecture for i7 Processor 

 

Figure – 1.8 Impact of Memory architecture on Speed up for Distributed Reservation Architecture for i7 Processor 

 

If we combine the finding from pervious section, then on averaging the L2 memory system is found optimal then the L1 and 

System memory architecture. 
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VI. CONCLUSION 

 This work aims at finding optimal values for the superscalar processor by conducting a qualitative and quantitative study. 
This is achieved by using PSATSim simulation tool which provides the right platform for evaluating the superscalar processors by 
varying the parameter values.  

 The basic purpose of this work is conceptually based on two different segments viz. : 

 The first part has been conducted for power analysis considering the super scalar factor already established.  

 The second part has been conducted for IPC analysis considering the super scalar factor and power. 

The impact of superscalar factor and power analysis is analyzed on performance of Superscalar Pipelined Architecture in terms 
of IPC.  

   This analysis has been performed for distributed and centralised reservation architecture with superscalar factor 4 and 
three memory architectures viz.  

 Case 1 when the system has only L1 cache Memory 

 Case 2 when the system has L1 & L2 Cache Memory 

 Case 3 when the system has system memory 

After performing simulation, It is found that for distributed reservation architecture and superscalar factor 4, the power 
consumption for processor architecture having only L2 cache memory is highest, and architecture having L1 & system is lowest. 

If we consider the above result with the results derived for i3, i5 and i7 processor then on averaging the L2 memory system is 
found optimal then the L1 and System memory architecture. 
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