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Abstract: Let  ,G V E  be an arbitrary graph. For any subset X of  V ,  let  B X  be the set of all vertices in V X , 

having  neighbour in X .  J.L. Mashburn et al. defined the differential of a set X  to be    X B X X     and the 

differential of a graph to be equal to  max X , for any subset of X of  V . In this paper, we obtain differential value of 

classes of king graphs and complete n -ary trees. 

 

I. INTRODUCTION 

 Let  ,G V E be a graph. For graph theoretical terminology not given here, refer to Harary  2 . For a vertex v V , 

the open neighborhood of v  is the set    N v u V uv E    and the closed neighborhood of the set      N v N v v  . 

For a set X V , its open neighborhood is    
v X

N X N v


  and the closed neighborhood is    N X N X X  . 

 The boundary  B X  of a set X is defined to be the set of vertices in V X dominated by vertices in X , that is

     B X V X N X   . The differential  X  of X  is  B X X . The differential of a graph G is defined as 

    maxG X X V    . Let T V such that    G T    Then we say T  as  -set.  As reported in [4], the 

differential of a set was first defined by Hedetniemi [3], and later studied by Mashburn et al. [4] and Goddard and Henning [1]. 

The minimum differential of an independent set was also studied by Zhang [6]. 

 In this paper, we obtain the differential value of classes of king graphs and complete n -ary tree.  

 

Figure 1  8 8K   - King graph 
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II. DIFFERENTIAL VALUE OF KING GRAPHS 

 

DEFINITION 2.1:  The m n  king graph is a graph with mn  vertices in which each vertex represents a square in a m n  

chessboard and each edge corresponds to legal move by a king. We denote m n king graph as m nK  .  A 8 8  king graph is 

given in figure1 . 

THEOREM 2.2:  For any m nK  with  0 mod3m  ,  
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THEOREM 2.3: For any m nK  with  1 mod3m  ,  
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Proof.  Let    11 12 1 21 22 2 1 2, ,...., , , ,.... ,..., v , ,...,m n n n m m mnV K v v v v v v v v  . Clearly  3 3 7K    

Case (i)  0 mod3n   

m nK   contains mutually disjoint 
1
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Case (ii)   1 mod3n   
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THEOREM 2.4: For any m nK  with  2 mod3m  ,  
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III. DIFFERENTIAL OF COMPLETE N-ARY TREES 

 

DEFINITION 3.1: A n -ary tree is a rooted tree in which each node has no more than n  children. A binary tree is a special case 

where 2n  . A complete n -ary tree is a n -ary tree in which each node has exactly n  children. 

   In  5 , the differential value for complete binary tree was obtained. We extend the result to complete n -ary tree. 

 

THEOREM 3.2:  For any complete n -ary tree G  with k  levels where 1k   
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Proof:  Let G  be a complete n-ary tree. Let iS  be the set of all vertices in level i  and 
i

iS n . 
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