DIFFERENTIAL OF KING GRAPHS AND COMPLETE N-ARY TREES

${ }^{1}$ D.Muralidharan, ${ }^{2}$ M.S.Paulraj, ${ }^{3}$ D. Yokesh
${ }^{1}$ Assistant Professor, ${ }^{2}$ Associate Professor, ${ }^{3}$ Assistant professor
${ }^{1}$ Department of Mathematics,
${ }^{1,3}$ Sri Sairam Institute of Technology Chennai 600 044, Tamil Nadu, India
${ }^{2}$ A. M. Jain College, Chennai ,Tamil Nadu, India

Abstract: Let $G=(V, E)$ be an arbitrary graph. For any subset X of V, let $B(X)$ be the set of all vertices in $V-X$, having neighbour in X. J.L. Mashburn et al. defined the differential of a set X to be $\partial(X)=|B(X)|-|X|$ and the differential of a graph to be equal to $\max \partial(X)$, for any subset of X of V. In this paper, we obtain differential value of classes of king graphs and complete n-ary trees.

I. INTRODUCTION

Let $G=(V, E)$ be a graph. For graph theoretical terminology not given here, refer to Harary [2]. For a vertex $v \in V$, the open neighborhood of v is the set $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of the set $N[v]=N(v) \cup\{v\}$. For a set $X \subset V$, its open neighborhood is $N(X)=\cup_{v \in X} N(v)$ and the closed neighborhood is $N[X]=N(X) \cup X$.

The boundary $B(X)$ of a set X is defined to be the set of vertices in $V-X$ dominated by vertices in X, that is $B(X)=(V-X) \cap N(X)$. The differential $\partial(X)$ of X is $|B(X)|-|X|$. The differential of a graph G is defined as $\partial(G)=\max \{\partial(X) \mid X \subset V\}$. Let $T \subset V$ such that $\partial(G)=\partial(T)$ Then we say T as ∂-set. As reported in [4], the differential of a set was first defined by Hedetniemi [3], and later studied by Mashburn et al. [4] and Goddard and Henning [1]. The minimum differential of an independent set was also studied by Zhang [6].

In this paper, we obtain the differential value of classes of king graphs and complete n-ary tree.

Figure $1 K_{8 \times 8}$ - King graph

II. DIFFERENTIAL VALUE OF KING GRAPHS

DEFINITION 2.1: The $m \times n$ king graph is a graph with $m n$ vertices in which each vertex represents a square in a $m \times n$ chessboard and each edge corresponds to legal move by a king. We denote $m \times n$ king graph as $K_{m \times n}$. A 8×8 king graph is given in figure 1.
THEOREM 2.2: For any $K_{m \times n}$ with $m \equiv 0(\bmod 3), \partial\left(K_{m \times n}\right)= \begin{cases}\frac{7 m n}{9} & \text { when } n \equiv 0(\bmod 3) \\ \frac{(7 n-4) m}{9} & \text { when } n \equiv 1(\bmod 3) \\ \frac{(7 n-2) m}{9} & \text { when } n \equiv 2(\bmod 3)\end{cases}$
Proof. Let $V\left(K_{m \times n}\right)=\left\{v_{11}, v_{12}, \ldots ., v_{1 n}, v_{21}, v_{22}, \ldots . v_{2 n}, \ldots, \mathrm{v}_{m 1}, v_{m 2}, \ldots, v_{m n}\right\}$ and S be any ∂-set of $K_{m \times n}$. For any $K_{3 \times 3}$ there is only one possible ∂-set. Clearly $S=\left\{v_{22}\right\}$ and $\partial(S)=8-1=7=\partial\left(K_{3 \times 3}\right)$.
Case (i) $n \equiv 0(\bmod 3)$
$K_{m \times n}$ contains mutually disjoint $\frac{m}{3} \times \frac{n}{3}$ copies of $K_{3 \times 3}$ and hence $\partial\left(K_{m \times n}\right)=\left(\frac{7 m}{3}\right)\left(\frac{n}{3}\right)=\frac{7 m n}{9}$
Case (ii) $n \equiv 1(\bmod 3)$
$K_{m \times n}$ contains mutually disjoint $\frac{m}{3} \times \frac{n-1}{3}$ copies of $K_{3 \times 3}$ and a path P_{m} and clearly $\partial\left(P_{m}\right)=\left(\frac{m}{3}\right)$.
Hence $\partial\left(K_{m \times n}\right)=7\left(\frac{m}{3}\right)\left(\frac{n-1}{3}\right)+\left(\frac{m}{3}\right)=\frac{(7 n-4) m}{9}$
Case (iii) $n \equiv 2(\bmod 3)$
$K_{m \times n}$ contains mutually disjoint $\frac{m}{3} \times \frac{n-2}{3}$ copies of $K_{3 \times 3}$ and a $K_{m \times 2}$. Let
$V\left(K_{m \times 2}\right)=\left\{v_{1(n-1)}, v_{1 n}, v_{2(n-1),}, v_{2 n}, \ldots, v_{m(n-1),}, v_{m n}\right\}$ and clearly $\left\{v_{2 n}, v_{5 n}, \ldots, v_{(m-1) n}\right\}$ is a $\partial-$ set of $K_{m \times 2}$. Hence
$\partial\left(K_{m \times 2}\right)=4\left(\frac{m}{3}\right)$. Therefore, $\partial\left(K_{m \times n}\right)=7\left(\frac{m}{3}\right)\left(\frac{n-2}{3}\right)+4\left(\frac{m}{3}\right)=\frac{(7 n-2) m}{9}$

THEOREM 2.3: For any $K_{m \times n}$ with $m \equiv 1(\bmod 3), \partial\left(K_{m \times n}\right)= \begin{cases}\frac{7 m n-4 n}{9} & \text { when } n \equiv 0(\bmod 3) \\ \frac{7 m n-4 m-4 n+1}{9} & \text { when } n \equiv 1(\bmod 3) \\ \frac{7 m n-2 m-4 n-4}{9} & \text { when } n \equiv 2(\bmod 3)\end{cases}$
Proof. Let $V\left(K_{m \times n}\right)=\left\{v_{11}, v_{12}, \ldots ., v_{1 n}, v_{21}, v_{22}, \ldots . v_{2 n}, \ldots, \mathrm{v}_{m 1}, v_{m 2}, \ldots, v_{m n}\right\}$. Clearly $\partial\left(K_{3 \times 3}\right)=7$
Case (i) $n \equiv 0(\bmod 3)$
$K_{m \times n}$ contains mutually disjoint $\frac{m-1}{3} \times \frac{n}{3}$ copies of $K_{3 \times 3}$ and a path P_{n}. Let $V\left(P_{n}\right)=\left\{v_{m 1}, v_{m 2}, v_{m 3}, \ldots . v_{m n}\right\}$ and clearly
$\partial\left(P_{n}\right)=\left(\frac{n}{3}\right)$. Therefore, $\partial\left(K_{m \times n}\right)=7\left(\frac{m-1}{3}\right)\left(\frac{n}{3}\right)+\left(\frac{n}{3}\right)=\frac{(7 m-4) n}{9}$
Case (ii) $n \equiv 1(\bmod 3)$
$K_{m \times n}$ contains mutually disjoint $\frac{m-1}{3} \times \frac{n-1}{3}$ copies of $K_{3 \times 3}$ and a path P_{m+n-1}. Let
$V\left(P_{m+n-1}\right)=\left\{v_{m 1}, v_{m 2}, v_{m 3}, \ldots . v_{m(n-1)}, v_{1 n}, v_{2 n}, \ldots, v_{(m-1) n}, v_{m n}\right\}$ and $\partial\left(P_{m+n-1}\right)=\frac{m+n-2}{3}$. Therefore,
$\partial\left(K_{m \times n}\right)=7\left(\frac{m-1}{3}\right)\left(\frac{n-1}{3}\right)+\frac{m+n-2}{3}=\frac{7 m n-4 m-4 n+1}{9}$.
Case (iii) $n \equiv 2(\bmod 3)$
$K_{m \times n}$ contains mutually disjoint $\frac{m-1}{3} \times \frac{n-2}{3}$ copies of $K_{3 \times 3}$, a path P_{n} and a $K_{m \times 2}$. Let $V\left(P_{n}\right)=\left\{v_{m 1}, v_{m 2}, v_{m 3}, \ldots . v_{m n}\right\}$ and $\partial\left(P_{n}\right)=\left(\frac{n-2}{3}\right)$. Let $V\left(K_{m \times 2}\right)=\left\{v_{1(n-1)}, \ldots . ., v_{m(n-1)}, v_{1 n}, v_{2 n}, \ldots ., v_{m n}\right\}$ and clearly $\left\{v_{2 n}, v_{5 n}, \ldots ., v_{(m-2) n}\right\}$ is a ∂ - set of $K_{m \times 2}$. Hence $\partial\left(K_{m \times 2}\right)=4\left(\frac{m-1}{3}\right)$. Therefore,
$\partial\left(K_{m \times n}\right)=7\left(\frac{m-1}{3}\right)\left(\frac{n-2}{3}\right)+\left(\frac{n-2}{3}\right)+4\left(\frac{m-1}{3}\right)=\frac{7 m n-2 m-4 n-4}{9}$. when $n \equiv 0(\bmod 3)$
THEOREM 2.4: For any $K_{m \times n}$ with $m \equiv 2(\bmod 3), \partial\left(K_{m \times n}\right)= \begin{cases}\frac{7 m n-4 m-2 n-4}{9} & \text { when } n \equiv 1(\bmod 3) \\ \frac{7 m n-2 m-2 n-2}{9} & \text { when } n \equiv 2(\bmod 3)\end{cases}$
Proof. Let $V\left(K_{m \times n}\right)=\left\{v_{11}, v_{12}, \ldots ., v_{1 n}, v_{21}, v_{22}, \ldots . v_{2 n}, \ldots, \mathrm{v}_{m 1}, v_{m 2}, \ldots, v_{m n}\right\}$. Clearly, $\partial\left(K_{3 \times 3}\right)=7$
Case (i) $n \equiv 0(\bmod 3)$
$K_{m \times n}$ contains mutually disjoint $\frac{m-2}{3} \times \frac{n}{3}$ copies of $K_{3 \times 3}$ and a $K_{2 \times n}$.
Let $V\left(K_{2 \times n}\right)=\left\{v_{(m-1) 1}, v_{(m-1) 2}, \ldots ., v_{(m-1) n}, v_{m 1}, v_{m 2}, v_{m 3}, \ldots . v_{m n}\right\}$ and clearly $\left\{v_{m 2}, v_{m 5}, \ldots ., v_{m(n-1)}\right\}$ is a ∂ - set of $K_{2 \times n}$.
Hence $\partial\left(K_{2 \times n}\right)=4\left(\frac{n}{3}\right)$.Therefore, $\partial\left(K_{m \times n}\right)=\left(\frac{7 m-2}{3}\right)\left(\frac{n}{3}\right)=\frac{7 m n-2 n}{9}$.
Case (ii) $n \equiv 1(\bmod 3)$
$K_{m \times n}$ contains mutually disjoint $\frac{m-2}{3} \times \frac{n-1}{3}$ copies of $K_{3 \times 3}$ a $K_{2 \times n}$ and a path P_{m-2}. Let
$V\left(K_{2 \times n}\right)=\left\{v_{(m-1) 1}, v_{(m-1) 2}, \ldots ., v_{(m-1) n}, v_{m 1}, v_{m 2}, v_{m 3}, \ldots . v_{m n}\right\}$. Clearly $\left\{v_{m 2}, v_{m 5}, \ldots, v_{m(n-1)}\right\}$ is a ∂ - set of $K_{2 \times n}$ and
$\partial\left(K_{2 \times n}\right)=4\left(\frac{n-1}{3}\right)$. Let $V\left(P_{m-2}\right)=\left\{v_{1 n}, v_{2 n}, v_{3 n}, \ldots . v_{(m-2)^{n}}\right\}$ and $\partial\left(P_{m-2}\right)=\left(\frac{m-2}{3}\right)$. Therefore,
$\partial\left(K_{m \times n}\right)=7\left(\frac{m-2}{3}\right)\left(\frac{n-1}{3}\right)+4\left(\frac{n-1}{3}\right)+\left(\frac{m-2}{3}\right)=\frac{7 m n-4 m-2 n-4}{9}$
Case (iii) $n \equiv 2(\bmod 3)$
$K_{m \times n}$ contains mutually disjoint $\frac{m-2}{3} \times \frac{n-2}{3}$ copies of $K_{3 \times 3}$, a $K_{2 \times n}$ and a $K_{(m-2) \times n}$. Let
$V\left(K_{2 \times n}\right)=\left\{v_{(m-1) 1}, v_{(m-1) 2}, \ldots ., v_{(m-1) n}, v_{m 1}, v_{m 2}, v_{m 3}, \ldots . v_{m n}\right\}$. Clearly $\left\{v_{m 2}, v_{m 5}, \ldots ., v_{m n}\right\}$ is a $\partial-$ set of $K_{2 \times n}$ and
$\partial\left(K_{2 \times n}\right)=4\left(\frac{n-2}{3}\right)+2=\frac{4 n-2}{3}$. Let $V\left(K_{(m-2) \times n}\right)=\left\{v_{1(n-1)}, v_{2(n-1)}, \ldots ., v_{(m-2)(n-1)}, v_{1 n}, v_{2 n}, \ldots, v_{(m-2) n}\right\}$. Clearly
$\left\{v_{2 n}, v_{5 n}, \ldots, v_{(m-3) n}\right\}$ is a ∂ - set of $K_{(m-2) \times n}$ and hence $\partial\left(K_{(m-2) \times n}\right)=4\left(\frac{m-2}{3}\right)$. Therefore,
$\partial\left(K_{m \times n}\right)=7\left(\frac{m-2}{3}\right)\left(\frac{n-2}{3}\right)+\left(\frac{4 n-2}{3}\right)+4\left(\frac{m-2}{3}\right)=\frac{7 m n-2 m-2 n-2}{9}$.

III. DIFFERENTIAL OF COMPLETE N-ARY TREES

DEFINITION 3.1: A n-ary tree is a rooted tree in which each node has no more than n children. A binary tree is a special case where $n=2$. A complete n-ary tree is a n-ary tree in which each node has exactly n children.
In [5], the differential value for complete binary tree was obtained. We extend the result to complete n-ary tree.
THEOREM 3.2: For any complete n-ary tree G with k levels where $k \geq 1$
$\partial(G)= \begin{cases}\frac{r^{k}-1}{r-1}\left[\frac{r^{3}-r^{2}+r}{r^{2}+r+1}\right] & \text { if } k \equiv 0(\bmod 3) \\ \frac{r^{k+1}-1}{r-1}-2\left[\frac{r^{k+2}-1}{r^{3}-1}\right] & \text { if } k \equiv 1(\bmod 3) \\ \frac{r^{k+1}-1}{r-1}\left[\frac{r^{2}-r+1}{r^{2}+r+1}\right] & \text { if } k \equiv 2(\bmod 3)\end{cases}$
Proof: Let G be a complete n-ary tree. Let S_{i} be the set of all vertices in level i and $\left|S_{i}\right|=n^{i}$.
Clearly $S_{k-1} \cup S_{k-4} \cup \ldots . \cup S_{2}$ is a ∂-set of G when $k \equiv 0(\bmod 3), S_{k-1} \cup S_{k-4} \cup \ldots . \cup S_{0}$ is a ∂-set of G when $k \equiv 1(\bmod 3)$ and $S_{k-1} \cup S_{k-4} \cup \ldots . \cup S_{1}$ is a ∂-set of G when $k \equiv 2(\bmod 3)$
Case (i) $k \equiv 0(\bmod 3)$
$\left(r^{k}+r^{k-2}+r^{k-3}+r^{k-5}+r^{k-6}+\ldots .+r^{3}+r\right)-\left(r^{k-1}+r^{k-4}+\ldots .+r^{5}+r^{2}\right)$
$=r^{k}\left(1+\frac{1}{r^{2}}+\frac{1}{r^{3}}+\frac{1}{r^{5}}+\frac{1}{r^{6}}+\ldots .+\frac{1}{r^{k-3}}+\frac{1}{r^{k-1}}\right)-\left(r^{k-1}+r^{k-4}+\ldots .+r^{5}+r^{2}\right)$
$=r^{k}\left(1+\left(\frac{1}{r}\right)+\left(\frac{1}{r}\right)^{2}+\left(\frac{1}{r}\right)^{3}+\left(\frac{1}{r}\right)^{4}+\ldots .+\left(\frac{1}{r}\right)^{k-1}\right)-2\left(r^{k-1}+r^{k-4}+\ldots .+r^{5}+r^{2}\right)$
$=r^{k}\left(\frac{1-\left(\frac{1}{r}\right)^{k}}{1-\frac{1}{r}}\right)-2 r^{k}\left(\frac{1}{r}+\frac{1}{r^{4}}+\frac{1}{r^{7}}+\ldots . .+\frac{1}{r^{k-5}}+\frac{1}{r^{k-2}}\right)$
$=r^{k}\left(\frac{r^{k}-1}{r-1} \times \frac{r}{r^{k}}\right)-2 \frac{r^{k}}{r}\left(\frac{1}{r^{0}}+\frac{1}{r^{3}}+\frac{1}{r^{6}}+\ldots . .+\frac{1}{r^{k-6}}+\frac{1}{r^{k-3}}\right)$
$=r\left(\frac{r^{k}-1}{r-1}\right)-2 \frac{r^{k}}{r}\left(1+\left(\frac{1}{r}\right)^{3}+\left(\frac{1}{r}\right)^{6}+\ldots . .+\left(\frac{1}{r}\right)^{k-3}\right)$
$=r\left(\frac{r^{k}-1}{r-1}\right)-2 \frac{r^{k}}{r}\left(\frac{1-\left(\frac{1}{r^{3}}\right)^{\frac{k}{3}}}{1-\frac{1}{r^{3}}}\right)$
$=r\left(\frac{r^{k}-1}{r-1}\right)-2 \frac{r^{k}}{r}\left(\frac{\left(r^{3}\right)^{\frac{k}{3}}-1}{r^{3}-1} \times \frac{r^{3}}{r^{k}}\right)$
$=r\left(\frac{r^{k}-1}{r-1}\right)-2 r^{2}\left(\frac{r^{k}-1}{r^{3}-1}\right)$
$=r\left(\frac{r^{k}-1}{r-1}\right)-2 r^{2}\left(\frac{r^{k}-1}{(r-1)\left(r^{2}+r+1\right)}\right)$
$=\frac{r^{k}-1}{r-1}\left(r-\frac{2 r^{2}}{\left(r^{2}+r+1\right)}\right)$
$=\frac{r^{k}-1}{r-1}\left(\frac{r^{3}-r^{2}+r}{r^{2}+r+1}\right)$
Case (ii) $k \equiv 1(\bmod 3)$
$\left(r^{k}+r^{k-2}+r^{k-3}+r^{k-5}+r^{k-6}+\ldots .+r^{2}+r\right)-\left(r^{k-1}+r^{k-4}+r^{k-7}+\ldots .+r^{3}+r^{0}\right)$
$=r^{k}\left(1+\frac{1}{r^{2}}+\frac{1}{r^{3}}+\frac{1}{r^{5}}+\frac{1}{r^{6}}+\ldots+\frac{1}{r^{k-2}}+\frac{1}{r^{k-1}}\right)-\left(r^{k-1}+r^{k-4}+r^{k-7}+\ldots .+r^{3}+r^{0}\right)$
$=r^{k}\left(1+\left(\frac{1}{r}\right)+\left(\frac{1}{r}\right)^{2}+\left(\frac{1}{r}\right)^{3}+\left(\frac{1}{r}\right)^{4}+\ldots .+\left(\frac{1}{r}\right)^{k}\right)-2\left(r^{k-1}+r^{k-4}+r^{k-7}+\ldots \ldots .+r^{3}+r^{0}\right)$
$=r^{k}\left(\frac{1-\left(\frac{1}{r}\right)^{k+1}}{1-\frac{1}{r}}\right)-2 r^{k}\left(\frac{1}{r}+\frac{1}{r^{4}}+\frac{1}{r^{7}}+\ldots . .+\frac{1}{r^{k-3}}+\frac{1}{r^{k}}\right)$
$=r^{k}\left(\frac{r^{k+1}-1}{r-1} \times \frac{r}{r^{k+1}}\right)-2 r^{k}\left(\frac{1}{r}+\frac{1}{r^{4}}+\frac{1}{r^{7}}+\ldots . .+\frac{1}{r^{k-3}}+\frac{1}{r^{k}}\right)$
$=\left(\frac{r^{k+1}-1}{r-1}\right)-2 \frac{r^{k}}{r}\left(1+\frac{1}{r^{3}}+\frac{1}{r^{6}}+\ldots . .+\frac{1}{r^{k-2}}+\frac{1}{r^{k-1}}\right)$
$=\left(\frac{r^{k+1}-1}{r-1}\right)-2 \frac{r^{k}}{r}\left(\frac{1-\left(\frac{1}{r^{3}}\right)^{\frac{k+2}{3}}}{1-\frac{1}{r^{3}}}\right)$
$=\left(\frac{r^{k+1}-1}{r-1}\right)-2 \frac{r^{k}}{r}\left(\frac{r^{k+2}-1}{r^{3}-1} \times \frac{r^{3}}{r^{k+2}}\right)$
$=\left(\frac{r^{k+1}-1}{r-1}\right)-2\left(\frac{r^{k+2}-1}{r^{3}-1}\right)$
Case (iii) $k \equiv 2(\bmod 3)$
$=\left(r^{k}+r^{k-2}+r^{k-3}+r^{k-5}+r^{k-8}+r^{k-6}+\ldots .+r^{2}+r^{0}\right)-\left(r^{k-1}+r^{k-4}+r^{k-7}+\ldots .+r^{4}+r^{1}\right)$
$=r^{k}\left(1+\frac{1}{r^{2}}+\frac{1}{r^{3}}+\frac{1}{r^{5}}+\ldots .+\frac{1}{r^{k}}\right)-\left(r^{k-1}+r^{k-4}+r^{k-7}+\ldots .+r^{4}+r^{1}\right)$
$=r^{k}\left(1+\frac{1}{r}+\frac{1}{r^{2}}+\frac{1}{r^{3}}+\ldots .+\frac{1}{r^{k}}\right)-2 \frac{r^{k}}{r}\left(\frac{1}{r^{0}}+\frac{1}{r^{3}}+\frac{1}{r^{6}}+\ldots .+\frac{1}{r^{k-2}}\right)$
$=r^{k}\left(\frac{1-\left(\frac{1}{r}\right)^{k+1}}{1-\frac{1}{r}}\right)-2 \frac{r^{k}}{r}\left(\frac{1}{r^{0}}+\frac{1}{r^{3}}+\frac{1}{r^{6}}+\ldots .+\frac{1}{r^{k-2}}\right)$
$=r^{k}\left(\frac{1-\left(\frac{1}{r}\right)^{k+1}}{1-\frac{1}{r}}\right)-2 \frac{r^{k}}{r}\left(\frac{1}{r^{0}}+\frac{1}{r^{3}}+\frac{1}{r^{6}}+\ldots+\frac{1}{r^{k-2}}\right)$
$=r^{k}\left(\frac{1-\left(\frac{1}{r}\right)^{k+1}}{1-\frac{1}{r}}\right)-2 \frac{r^{k}}{r}\left(\frac{1-\left(\frac{1}{r^{3}}\right)^{\frac{k+1}{3}}}{1-\frac{1}{r^{3}}}\right)$
$=\left(\frac{r^{k+1}-1}{r-1}\right)-2 \frac{r^{k+2}}{r^{k+1}}\left(\frac{r^{k+1}-1}{r^{3}-1}\right)$
$=\frac{r^{k+1}-1}{r-1}-2 r \frac{r^{k+1}-1}{(r-1)\left(r^{2}+r+1\right)}$
$=\frac{r^{k+1}-1}{r-1}\left(1-\frac{2 r}{r^{2}+r+1}\right)=\frac{r^{k+1}-1}{r-1}\left(\frac{r^{2}+r+1-2 r}{r^{2}+r+1}\right)$
$=\frac{r^{k+1}-1}{r-1}\left(\frac{r^{2}-r+1}{r^{2}+r+1}\right)$

REFERENCES

[1] W.Goddard and M. A. Henning, Generalised domination and independence in graphs, Congr. Number.. 123:161-171, 1997.
[2] F.Harary, Graph Theory, Addison Wesley, Reading Mass., 1972.
[3] S. T. Hedetniemi, Private communication.
[4] J. L. Mashburn, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and P. J. Slater, Differentials in graphs, Utilitas Math, 69 (2006), 43-54.
[5] P. Roushini Leely Pushpam and D. Yokesh, Differentials in certain classes of graphs, Tamkang Journal of Mathematics, 41 (2010), 129-138.
[6] C. Q. Zhang, Finding critical independent sets and critical vertex subsets are polynomial Problems, SIAM J. Discrete Math., 3 (1990), k 431-438.

