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1.ABSTRACT : 

In present paper, we give a detailed analysis for the explicit finite difference approximation for time fractional water 

flow equation (TFWFE) with initial and boundary conditions. We will also discuss the stability and convergence of the 

scheme in a bounded domain. Some test problems will be solved to show the application of the scheme. The 

mathematica software is used to obtain solution graphically. 
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3.INTRODUCTION : 

Fractional calculus is mere generalization of full integer order integral and differential calculus to real or even complex 

order. But, it was not used in practice due to its complexity. Fractional differential equations have been used to solve 

many  physical principles in different branches of science and engineering like biology, physics, chemistry, visco 

elasticity, control systems, thermo dynamics, statistics, finance etc [1]. The numerical techniques are widely used to 

solve fractional differential equations because of their accuracy and high computational efficiency. Recently, many 

researchers have worked on finite difference methods for solving the anomalous diffusion equation. The fractional 

diffusion equations were first studied by Wyss and Schneider [11]. Liu et. Al. has solved the time fractional advection 

dispersion equation [9]. High order finite difference scheme was used to solve the fractional sub-diffusion equations 

by Gao and Sun[5].  Graphical flowent method is obtained by Casagrande first time to solve the linear partial 

differential equation of flow. Two equations like Darcy Equation and Buckingham Equation are combined by  Richard's 

(1931) with the equation of continuity to get an over all relationship. A lot of work is done to understand the physical 

phenomenon of unsaturated soil. Several methods are developrd by Klute (1972) for obtaining the hydraulic 

conductivity and diffusivity for unsaturated soils [3]. In this paper we use an effective explicit finite difference scheme 

for developing the discrete model for time fractional water flow equation which is suitable for simulating random 

variables whose spatial probability density evolves in time according to this fractional diffusion equation. A flow in 

aquifer response to sudden change in reservoir level of water is an active part of research. For this the well known 

water flow equation (Boussinesq's equation ) is available in literature to tackle this problem. The hight of the water 

table u(x, t) in  above some reference point is governed by the equation 

∂𝑢

∂𝑡
=  𝑎2

∂2𝑢

∂𝑥2
;   0 ≤ 𝑥 ≤ 𝐿; 𝑡 ≥ 0 

We write the fractional water flow equation for aquifer response to sudden change in reservoir level by replacing the 

first order time derivative by fractional derivative of order α,   0 ≤ α ≤ 1 in the original Boussinesq's equation as follows 

𝜕𝛼𝑢

𝜕𝑡𝛼
= 𝑎2

∂2𝑢

∂𝑥2
; 0 ≤ 𝑥 ≤ 𝐿; 𝑡 ≥ 0 

To solve a particular model problem of water flow in aquifer response to sudden change in reservoir level, we have to 

impose proper initial and boundary conditions. For that with an initial water table u(x, t) is at height  ℎ1 for time t = 0, 

which becomes the initial condition and is mathematically expressed as 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑢(𝑥, 0) = ℎ1, 0 ≤ 𝑥 ≤ 𝐿 
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Now for left boundary condition, there is a applied source of water placed at height  ℎ1 so as to maintain at all times 

after t=0 and which is mathematically expressed as 

                                                                            𝑢(0, 𝑡) = ℎ1,      𝑡 ≥ 0 

Now for right boundary condition, there is source of water applied and placed at finite plane  x = L so as to maintain 

at all times after t = 0 the height is ℎ2, which is mathematically expressed as 

𝑢(𝐿, 𝑡) = ℎ2,    𝑡 ≥ 0 

Therefore, the model initial boundary value problem (IBVP) for water flow in aquifer response to sudden change in 

reservoir level is given as follows 

𝜕𝛼𝑢

𝜕𝑡𝛼
= 𝐷

∂2𝑢

∂𝑥2
; 0 ≤ 𝑥 ≤ 𝐿; 𝑡 ≥ 0 

subject to the initial and boundary conditions 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑢(𝑥, 0) = ℎ1, 0 ≤ 𝑥 ≤ 𝐿 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝑢(0, 𝑡) = ℎ1, 𝑢(𝐿, 𝑡) = ℎ2, 𝑡 ≥ 0 

Where} u(x, t)  =  volumetric water content of the reservoir, 𝑚3/min, 

D = 𝑎2 (𝑚3/min)  is the product of storage coefficient times &  the hydraulic coefficient divided by the aquifer 

thickness, 

ℎ1  = the initial height (m) of water table, 

ℎ2  = the depth of the reservoir on the right at  x = L, 

x   =   the distance from one reservoir at higher water level   ℎ1  & to the other reservoir at lower level ℎ2 t   = time 

(min.),  L  = width of the strip of land that separates the two reservoirs of depth  ℎ1and ℎ2,  (ℎ2 <ℎ11). 

We consider the Caputo time fractional derivative of order α,   0 ≤ α ≤ 1  and the symmetric second order difference 

quotient in space at time level t = 𝑡𝑘  for solution. 

We organize the paper as follows: In section 2 , we develop the explicit fractional order finite difference scheme for 

time fractional water flow equation. The stability of the solution is proved in section 3 and section 4 deals with 

convergence of the scheme. The numerical solution of time fractional water flow equation is obtained using 

Mathematica software in the last section. 

4. FINITE DIFFERENCE SCHEME: 

We consider the following time fractional water flow equation with initial and boundary conditions 

                                                      
𝜕𝛼𝑢

  𝜕𝑡𝛼
= 𝐷

∂2𝑢

∂𝑥2
; 0 ≤ 𝑥 ≤ 𝐿; 𝑡 ≥ 0                                                       (2.1) 

                                       𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑢(𝑥, 0) = ℎ1, 0 ≤ 𝑥 ≤ 𝐿                                                     (2.2)    

                             𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝑢(0, 𝑡) = ℎ1, 𝑢(𝐿, 𝑡) = ℎ2, 𝑡 ≥ 0                                       (2.3) 

Where 0 ≤ α ≤ 1, 
𝜕𝛼𝑢

𝜕𝑡𝛼
  denotes the time fractional derivative intended in Caputo sense and D =  𝑎2 diffusivity constant.  

Note that for α = 1,  we recover in the limit the well  known diffusion equation of Markovian process 

∂𝑢

∂𝑡
=  𝐷 

∂2𝑢

∂𝑥2
;   0 ≤ 𝑥 ≤ 𝐿;  𝑡 ≥ 0 
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For the explicit numerical approximation scheme, we define  h =    
𝐿

𝑁
  and  τ =   

𝑇

𝑁
   the space and time steps respectively,  

such that tk =  
𝑘

𝜏
;  k = 0,1,...,N be the integration time 0 ≤  𝑡𝑘 ≤ 𝑇  and 𝑥𝑖  = ih for i = 0,1, ..., N. Define  ui

k  =  u(x_i, t_k)  

and let ui
k denote the numerical approximation to the exact solution u(x_i, t_k). 

In the differential equation (2.1),  the time fractional derivative term is approximated by the following scheme 

𝜕𝛼𝑢

𝜕𝑡𝛼
≈

1

Γ(1 − 𝛼)
∫

1

(𝑡𝑘+1 − η)𝛼
𝜕𝑢(𝑥𝑖  η)

𝜕η

𝑡𝑘+1

0

𝑑η 

This can be simplified to 

𝜕𝛼𝑢

𝜕𝑡𝛼
 =

𝜏−𝛼

Γ(2−𝛼)
 [𝑢𝑖

𝑘+1 − 𝑢𝑖
𝑘]  +  

𝜏−𝛼

Γ(2−𝛼)
∑ 𝑏𝑗[𝑢𝑖

𝑘+1−𝑗
− 𝑢𝑖

𝑘−𝑗
]

𝑘

𝑗=1
                                      

             (2.1) 

Where bj =[(𝑗 + 1)1−𝛼 − 𝑗1−𝛼] ,       j= 1, 2, …..,k 

For approximating the second order space derivative,  we adopt a symmetric second order difference 

quotient in space at time level t = tk  

∂2𝑢

 ∂𝑥2
      =      

𝑢𝑖−1
𝑘 −2𝑢𝑖

𝑘+𝑢𝑖+1
𝑘

ℎ2
 

 

 

Therefore, the fractional approximated equation is 

𝜏−𝛼

Γ(2−𝛼)
 [𝑢𝑖

𝑘+1 − 𝑢𝑖
𝑘]  +  

𝜏−𝛼

Γ(2−𝛼)
∑ 𝑏𝑗[𝑢𝑖

𝑘+1−𝑗
− 𝑢𝑖

𝑘−𝑗
]

𝑘

𝑗=1
    = D  

𝑢𝑖−1
𝑘 −2𝑢𝑖

𝑘  + 𝑢𝑖+1
𝑘

ℎ2
 

After simplification , we get 

𝑢𝑖
𝑘+1  =  r  𝑢𝑖−1

𝑘    +   ( 1  -  2r- 𝑏1  )𝑢𝑖
𝑘 +  r   𝑢𝑖+1

𝑘   +  ∑ [ 𝑏j − 𝑏j+1] 𝑢𝑖
𝑘−𝑗𝑘−1

𝑗=1  +  𝑏k   𝑢𝑖
0,     i = 0,1, ..., N, k = 0,1,..., r 

=    
𝐷𝜏𝛼Γ(2−𝛼)

ℎ2
     and   bj =[(𝑗 + 1)1−𝛼 − 𝑗1−𝛼] 

The initial condition is approximated as  𝑢𝑖
0 =  ℎ1  ,  i = 1, 2, ... , N. 

The boundary conditions are approximated as  𝑢0
𝑘  =  ℎ1 , 𝑢𝑁

𝑘  =   ℎ2,  k = 0, 1, 2, ... , N. 

Therefore, the complete fractional approximated IBVP is 

𝑢𝑖
1  =  r  𝑢𝑖−1

0    +   ( 1  -  2r )𝑢𝑖
0 +  r  𝑢𝑖+1

0  ,              For k=0                                                            (2. 4)        

 𝑢𝑖
𝑘+1  =  r  𝑢𝑖−1

𝑘  +(1 -2r- 𝑏1 )𝑢𝑖
𝑘 + r 𝑢𝑖+1

𝑘 +  ∑ [ 𝑏j − 𝑏j+1] 𝑢𝑖
𝑘−𝑗𝑘−1

𝑗=1  +  𝑏k 𝑢𝑖
0, for k ≥ 1             (2.5)     

 Initial condition :  𝑢𝑖
0 =  ℎ1  ,  i = 1, 2, ... , N.                                                                                  (2.6) 

Boundary conditions :   𝑢0
𝑘  =  ℎ1 , 𝑢𝑁

𝑘  =  ℎ2,  k = 0, 1, 2, ... , N.                                                    (2.7) 

Where      r =    
𝐷𝜏𝛼Γ(2−𝛼)

ℎ2
     and   bj =[(𝑗 + 1)1−𝛼 − 𝑗1−𝛼] 

Therefore, the fractional approximated   IBVP  (2.4) to (2.7)  can be written in the following matrix equation 

form  
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U1 = 𝐵U0 + S,                                                              𝑓𝑜𝑟 𝑘 = 0

U𝑘+1 =  AU𝑘  +∑ (𝑏𝑗 − 𝑏𝑗+1)U
𝑘−𝑗

𝑘−1

𝑗=1
+ 𝑏𝑘U

0 + 𝑆,                  𝑓𝑜𝑟 𝑘 ≥ 1
}   

Where  UK = [𝑈k  
1  𝑈k  

2 …𝑈𝑁−1  
k ]𝑇, for k = 0,1,2 ..., N and A and B are tri-diagonal matrices . 

𝐴    =

(

 
 
 
 
 
 
 
 

1 − 2r − 𝑏1 r 0 0 0

𝑟 1 − 2r − 𝑏1 0 0 0

⋱

1 − 2r − 𝑏1  r  

𝑟 1 − 2r − 𝑏1)

 
 
 
 
 
 
 
 

 

 𝐵    =

(

 
 
 
 
 
 
 

1 − 2r r 0 0 0
𝑟 1 − 2r 0 0 0

⋱

1 − 2r  r  

𝑟 1 − 2r)

 
 
 
 
 
 
 

 

 

   and S is a constant column matrix of order N-1 given by 

S = [rℎ1, , 0 , 0 , … rℎ2]
𝑇, 

The above system of algebraic equations is solved by using Mathematica software in section 5. 

In the next section, we discuss the stability of the solution of fractional explicit finite difference scheme (2.4) 

to (2.7) for the time fractional soil moisture diffusion equation (TFSMDE) . 

 5. STABILITY: 

Lemma: The eigenvalues of the N X N tri-diagonal matrix 

(

 
 
 
 
 
 
 

𝑎 𝑏 ⋯ ⋯ ⋯ 0
𝑐 𝑎 𝑏 ⋯

⋮ ⋮⋱ ⋱ ⋮⋱ ⋮

0 ⋯ 0

⋮ ⋮⋱ ⋱ ⋮⋱ ⋮

0 ⋯ 𝑐 𝑎 )

 
 
 
 
 
 
 

 

𝜆𝑠 = a + 2 √𝑏𝑐 𝑐𝑜𝑠
𝑠ꙥ 

𝑁+1
 .    s = 1,2,……… N-1 
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The solution of the explicit finite difference scheme (2.4) to (2.7)  for water flow equation (2.1) to (2.3)  is 

stable, when r ≤ min {  
1

2
   ,

2−𝑏1 

4
  } 

Proof: We shall use the mathematical induction to analyze the stability.For k=0 and 1 ≤ i  ≤ N-1 the 

eigenvalues of B are given by 

𝜆𝑠 = 1 – 2r  + 2r  𝑐𝑜𝑠
𝑠ꙥ 

𝑁
   ≤  1 ;   s = 1,2,……… N-1 

Again consider 

𝜆𝑠 = 1 – 2r  + 2r  𝑐𝑜𝑠
𝑠ꙥ 

𝑁
   ≥ 1-4r ;   s = 1,2,……… N-1 

𝜆𝑠  ≥ -1 when   r  ≤ 
1

2
, therefore  ⎸𝜆𝑠⎸ ≤  1 when r  ≤ 

1

2
 

Hence ‖𝐵‖2 =  max
1≤𝑖≤𝑁

|𝜆𝑠| ≤  1, ‖𝑈1‖2 =  ‖𝐵𝑈0‖2, but  ‖𝐵‖2  ≤  1 

Then  ‖𝑈1‖2 ≤   ‖𝑈0‖2,  true for n=1. 

We assume ‖𝑈𝑘‖2 ≤  ‖𝑈0‖2,   n  ≤  k  is true 

We prove that ‖𝑈𝑘+1‖2 ≤  ‖𝑈0‖2,   for n=k+1 

For ‖𝐴‖2 we have for  1 ≤ i ≤  N-1 the eigen values of A are given by 

𝜆𝑠 = 1 – 2r  - 𝑏1  + 2r  𝑐𝑜𝑠
𝑠ꙥ 

𝑁
  ≤ 1 -  𝑏1 ;   s = 1,2,……… N-1 and 𝑏1 ≥ 0 

𝜆𝑠 = 1 – 2r  - 𝑏1  + 2r  𝑐𝑜𝑠
𝑠ꙥ 

𝑁
  ≥  1 – 4r -  𝑏1 ;  s = 1,2,……… N-1 and 𝑏1 ≥ 0 

𝜆𝑠 ≥  -1   when    1 – 4r -  𝑏1 ≥ -1  ⇒   r  ≤  
2−𝑏1 

4
   

⇒  ⎸𝜆𝑠⎸ ≤  1 when r  ≤  
2−𝑏1 

4
    for  1 ≤ i ≤  N-1. Therefore ‖𝐴‖2   ≤  1  . 

Hence   ‖U𝑘+1 ‖2 =  ‖AU𝑘  +∑ (𝑏𝑗 − 𝑏𝑗+1)U
𝑘−𝑗

𝑘−1

𝑗=1
+ 𝑏𝑘U

0 + 𝑆‖
2

 

≤  ( 1 -  𝑏1 + 𝑏1 − 𝑏𝑘 + 𝑏𝑘) ‖𝑈0‖2 

‖U𝑘+1 ‖2 ≤  ‖𝑈0‖2 

This result is true for n = k+1. Hence by induction  ‖U𝑘 ‖2 ≤  ‖𝑈0‖2. 

Therefore, this shows that the scheme is stable when   r ≤ min {  
1

2
   ,

2−𝑏1 

4
  }. 

The next section is devoted for convergence of the finite difference scheme. 

6. CONVERGENCE: 

Let  V𝑘 be the vector of exact solution and U𝑘  be the vector of approximate solution of the time fractional 

water flow equation (1.1) – (1.3) then  U𝑘  converges to V𝑘  as (h,τ) →  (0,0) when,  r ≤ min {  
1

2
   ,

2−𝑏1 

4
  } 

Proof: Let   UK = [𝑢1, 𝑢2, ……… . . 𝑢𝑁−1 ]
𝑇,   

VK = [𝑣1, 𝑣2, ……… . . 𝑣𝑁−1 ]
𝑇,  
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Then  EK  =  VK  -  UK 

Let us assume that  

|𝑒𝑙
𝑘| = 𝑚𝑎𝑥

1≤𝑖≤𝑁
|𝜖𝑖
𝑘| = ∥ 𝐸𝑘 ∥∞ 

   𝑇𝑙
𝑘 = max

1≤𝑖≤𝑁
|𝑇𝑖
𝑘| = h2 o(𝜏 + ℎ2),  for l = 1, 2, ……. 

For k=0, from equation (2.4) we have 

𝑢𝑖
1  =  r  𝑢𝑖−1

0    +   ( 1  -  2r )𝑢𝑖
0 +  r  𝑢𝑖+1

0  ,              For k=0  

|𝑒𝑙
1| = | r𝑒𝑖−1

0 + (1 − 2r)𝑒𝑖
0 +  𝑟 𝑒𝑖+1

0 | + r|𝑇𝑖
1| ≤ |𝑒𝑖

0| + rh2 o (𝜏1−𝛼 + ℎ2) 

∴ ‖𝐸1‖∞ ≤ 𝑒𝑖
1‖𝐸0‖∞+ 𝜏𝛼Γ(2 − 𝛼) o (𝜏1−𝛼 + ℎ2), the result holds for n=1. 

For n = k, we assume that, ‖𝐸𝑘‖∞ ≤ ‖𝐸0‖∞ + 𝜏
𝛼Γ(2 − 𝛼) o (𝜏1−𝛼 + ℎ2) 

∴ For n= k+1, we prove that 

‖𝐸𝑘+1‖∞ ≤ ‖𝐸0‖∞+ (𝑘 + 1)𝜏𝛼Γ(2 − 𝛼) o (𝜏1−𝛼 + ℎ2) 

Now from equation (2.5) we have 

⎸𝐸𝑙
𝑘+1⎸  = | r  𝑒𝑖−1

𝑘 +  1 − 2r − 𝑏1 )𝑒𝑖
𝑘 + r 𝑒𝑖+1

𝑘 + ∑ [ 𝑏j − 𝑏j+1] 𝑒𝑖
𝑘−𝑗𝑘−1

𝑗=1 + 𝑏k  𝑒𝑖
0 | +   r|𝑇𝑙

1|  ,   

                ≤    |𝑒𝑙
𝑘| + r|𝑇𝑙

1|  ≤  ‖𝐸0‖∞+ r|𝑇𝑙
1| 

                 ≤   ‖𝐸0‖∞+ 𝑘𝜏𝛼Γ(2 − 𝛼) o (𝜏1−𝛼 + ℎ2) + 𝜏𝛼Γ(2 − 𝛼) o (𝜏1−𝛼 + ℎ2) 

                 ≤     ‖𝐸0‖∞+ (𝑘 + 1)𝜏𝛼Γ(2 − 𝛼) o (𝜏1−𝛼 + ℎ2)  

Therefore, we conclude that if we assume  r ≤ min {  
1

2
   ,

2−𝑏1 

4
  } then ‖𝐸𝑘‖∞ → 0 as 𝜏 → 0, h→0, which results 

in the convergence of  𝑈𝑖
𝑘  to 𝑈( 𝑥i , 𝑡k ). Hence the proof is completed. 

7. NUMERICAL SOLUTIONS : 

 In this section, we obtain the approximated solution of time fractional water flow equation with initial and 

boundary conditions. It is important to use analytical model to obtain the numerical solution of the time 

fractional   water flow equation (TFWFE) by the finite difference scheme. Therefore, we consider the 

following one-dimensional time fractional water flow equation with initial and boundary conditions to 

explain  the behaviour of fractional diffusion equation  by using Mathematica Software. 

                                                   
𝜕𝛼𝑢

  𝜕𝑡𝛼
= 𝐷

∂2𝑢

∂𝑥2
;  0 ≤ 𝑥 ≤ 20,  0 ≤ α ≤ 1, 𝑡 ≥ 0                                     

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑢(𝑥, 0) = 0.2,          0 ≤ 𝑥 ≤ 20 

               𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠:     𝑢(0, 𝑡) = 0.2, 𝑢(20, 𝑡) = 0.1,    𝑡 ≥ 0 

with the diffusion coefficient D = 10. The numerical solutions are obtained at t = 0.3 by considering the 

parameters τ = 0.03,  h = 2, α = 0.9,  α = 0.8 is simulated in the following figure. 
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Fig.5.1: The water flow profile with  t = 0.3, h = 2, α = 1 (blue),  α = 0.9(red), α = 0.8 (green) 

Following table shows the comparison of exact solution and numerical solutions. 

X 𝑈𝐸𝑋𝐴𝐶𝑇(1) 𝑈𝛼=0.9(2) 𝑈𝛼=0.8 (3)      (1) – (2)  (1) – (3) 

2 0.2000 0.2000 0.2000 0.0 0.0 

4 0.2000 0.200001 0.199999 0.00001 .000001 

6 0.2000 0.20000 0.199996 0.0 .000004 

8 0.2000 0.199992 0.199968 0.000008 .000032 

10 0.199996 0.199916 0.199785 0.00008 .000211 

12 0.199891 0.199369 0.198842 0.00052 .001049 

14 0.198569 0.196508 0.195072 0.002061 .003497 

16 0.189753 0.185585 0.183243 0.004168 .00651 

18 0.158578 0.15578 0.154284 0.002798 .004294 
 

                               Table 5.1:Comparison of exact and numerical solutions at  t = 0.3 

8.CONCLUSIONS: 

1) The proposed explicit difference approximation for time fractional soil moisture diffusion equation can 

be reliably applied to solve any fractional order dynamical systems and controllers. 

2) The stability and convergence of the scheme is also proved effectively. 

3) The comparison of exact and numerical solutions shows that results are compatible with theoretical 

analysis. 
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