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ABSTRACT 

                       In this paper we   have  studied the flow 

pattern  and effect of MHD impulsive shock in implosion 

model In this chapter, the propagation of a cylindrical 

imploding shock wave in magnetogasdynamics has been 

considered. It has been found that for a particular value of 

, role of magnetic field is unimportant with respect to 

other flows variables in gasdynamics. 
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INTRODUCTION 

Assuming a single, imploding, strong cylindrical shock till 

collapse along axis of symmetry and moving in a continuum 

medium, Fujimoto and Mishkin [8] have obtained a 

solution of gasdynamic equations in cylindrical symmetry 

and have analyzed the problem of implosive shock in detail. 

They have considered the motion to be self-similar and 

thus have assumed that the system possess no 

characteristic length. The self-similarity exponent has been 

obtained analytically. But in overall analysis, they have 

ignored the interaction of magnetic field with other 

gasdynamic  we have studied shock waves characteristics in 

a magnetic field. Baty et al. [4], Gretler and Wehle [9], 

Landau and Lifshitz [10], Nath [12, 13], Rosenau and 

Frankenthal [14], Singh and Nath [15], Vishwakarma and 

Nath [18], Vishwakarma and Pandey [19] and Zel’dovitch 

and Raizer [21] studied the non-standard analysis and 

shock wave in jump condition, propagation of MHD shock 

in a thermally conducting medium, propagation of MHD 

shock waves in gaseous media and MHD spherical shock 

waves in a non-ideal gas with radiation. 

Basic Equations and Boundary 
Conditions : 
  Following Whitham [20], 

magnetohydrodynamic equations for axially symmetric 

cylindrical shock wave is
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         where, u, , p and h represent flow velocity, 

density, pressure and component of magnetic field in 

axial symmetry, respectively. ‘r’ represents position of the 

fluid (radial distance from axis of symmetry) at any time ‘t’. 

  The shock surface moves into gas of 

density 0, field h0 with position depicted by R(t) and its 

velocity by )t(R . The shock surface behaves as one of 

the boundaries for integration of the differential equations 

representing motion. 

  The jump conditions for the flow 

variables across the shock boundary is given by Courant 

and Friedrichs [7], Whitham [20] and Zel’dovich and Raizer 

[21] 

http://www.jetir.org/


© 2019 JETIR  February 2019, Volume 6, Issue 2                                   www.jetir.org  (ISSN-2349-5162) 

 

JETIR1902B39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 287 

 

 
2

0
R

1

2
p 


 , (2.5)  

 
0

1

1













 , (2.6)  

 
0

h
1

1
h 












 , (2.7)  

 R
1

2
u 











 , (2.8)  

  where,  is then adiabatic index. 

These are strong shock conditions derived in Whitham [20]. 

Solutions : 

 Taking non-dimensional parameter,
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we consider the following self-similar solution of equations 

(2.1) to (2.4), 
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              (2.13)      At the 

shock front  = 1 and 

P(1) = 1, R(1) = 1, U1(1) = 1,            (2.14) 
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  where, MA is Alfven 

Mach number at shock front defined as 
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The derivatives of the product function 

    )t(T)(t,rf ,        (2.16) 

are given by 
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where, the transformation 
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has been used. It makes  

  URu  . (2.20)   

 Using self-similar solutions (2.10) – (2.13), the 

partial differential equations (2.1) – (2.4) may be reduced 

to a set of ordinary differential equations as 
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where  
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 (2.25) The 

variables t and  are separable if  = constant,(2.26) 

so that 
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where positive sign stands for explosion and negative sign 

for implosion models. 

Making assumption (Fujimoto and Mishkin [8]) 
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 We can integrate (2.21), (2.23) and (2.24) from the 

shock boundary  = 1 to some point behind the shock front, 

say, at , and get 
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Explosion Case – 

  Assumption that energy E, contained in 

shock wave remains constant i.e. time-independent, leads 

to the result 
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and so, E is time independent if, 

 = 0.5.  (2.33)         

Thus self-similarity exponent remains intact even if 

interaction with magnetic field is taken into account. 

Implosion Case – 

  At the shock front  = 1, from (2.19) we 

have 
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and (2.34), the slope of non-dimensional variables are 
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As U1 is monotonically decreasing function of 
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So that from (2.19) 
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In the case of the shock, the gas is at rest, so that
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  Using equations (2.22), (2.23), (2.24), 

(2.29), (2.30) and (2.31) we can obtain the differential 

equation for U as under
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The unknown function  can be eliminated for a particular 

value of  = 2 by differentiating (2.41) logarithmically. Thus 

(2.41) for  = 2 becomes 
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and its logarithmic differentiation discloses 
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Using transformations 
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 where,     
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In the case of the shock 

1)(y,1)(x  .    (2.48)

 Analytic Determination of Self Similarity 

Coefficient  – 

The pressure vanishes in the case of the shock wave 
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. (2.49) Pressure rises at the 

shock front so that 
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shock for maxima 
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From (2.51) and (2.52) it is obvious that 
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Thus, for  < –2/9, pressure and magnetic field both show 

rising trend at the shock front Following transformation , 

U  x, y as in (2.43) equations (2.22), (2.23) and (2.24) take 

the form 
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From equations (2.55) and (2.56) it is clear that P and H 

assume their maximum value at the same point. Thus,
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implies 

x + y +  + 2 = 0,  (2.57)          

showing 0
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. 

Then from equation (2.54) 

xy +  + ( +1)y = 0. (2.58)         

From equations (2.57) and (2.58) :  

after eliminating x, we have 

y2 + y –  = 0  (2.59)         or
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 . 

The reduced pressure will have single maximum Pm(m) at  

= m when the discriminate of the quadratic equation (2.59) 

is zero i.e. 
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  1 + 4y = 0 (2.60)  or
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the maximum pressure Pm occurs at (xm, ym) given by 
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value of maximum pressure Pm(m) may be obtained from 

(2.30). 

Thus )(
4

1

9

4
)(P

m

2/3

mm
 ,  (2.62)




















 

 mm y

)1(y1

m
)yx(y

yd
exp

U

d
exp)(











 



2/1

3/1 )yx(y

yd
exp . (2.63)       In 

view of equations (2.57) and (2.58) it is obvious from 

equation (2.46) that 

0),y,x(G  , 

when (i) pressure is maximum and (ii) when x() = y() = –

1 i.e. at the tail of the shock, 

the numerator of equation (2.45) also vanishes at these 

points. 

Conclusion : 

  By considering axially symmetric 

implosion model, the effect of MHD implosive shock on 

flow pattern has been discussed. We have seen that for a 

particular value of (=2) the magnetic field is maximum 

behind shock only at the point where gas dynamic pressure 

attains its maximum. The value of the self-similarity 

exponent remains unaltered and for this value of , 

interaction of magnetic field with other flow variables has 

no impact on the position of maximum pressure and 

gasdynamic variables behavior as if no magnetic field were 

present. 
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