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Abstract :  The concept of *-epimorphism between Pseudo-complemented Almost Semilattices (PCASLs)  

L and M is introduced and proved that if 𝑓: 𝐿 → 𝑀 is a  *-homomorphism, then  𝑘𝑒𝑟(𝑓) is a kernel ideal of  

𝐿. It is proved that 𝑓: 𝐿 → 𝑀 is a  *-epimorphism, then the mappings  𝑓 ⃗⃗⃗   : P(L) →P(M) and  𝑓 ⃖⃗⃗⃗ : P(M) →
𝑃(𝐿) preserves kernel ideals. If  𝐿 and 𝑀 are  *-commutative  PCASLs in which 𝑥 ≤ 𝑥∗∗, for all  𝑥 and  if  

𝑓: 𝐿 → 𝑀 is  *-epimorphism then established a lattice epimorphism 𝑓 ⃗⃗⃗  
𝑘 , between complete implicative 

lattices 𝐾𝐼(𝐿) and 𝐾𝐼(𝑀) proved that  𝑓 ⃗⃗⃗  
𝑘  is dually range closed. It is  proved that complete lattices  𝐾𝐼(𝐿) 

and 𝐼(𝑆(𝐿)) of all ideals in the Boolean algebra 𝑆(𝐿) of all *-elements in *-commutative PCASL L are 

isomorphic. The concept of co-kernel of  a *-congruence on PCASL L is introduced and proved that if L is a 

*-commutative PCASL  in which 𝑥 ≤ 𝑥∗∗ for all  𝑥 ∈ 𝐿 and K is a filter of  L, then the  relation 𝑆𝐾 on L 

defined by (𝑥, 𝑦) ∈ 𝑆𝐾  if and only if  𝑥 ∘ 𝑡 = 𝑦 ∘ 𝑡, for some 𝑡 ∈ 𝐾  is the smallest *-congruence with co-

kernel  𝐾. Also, introduced the concept of  *-filter in PCASL L and proved that if K is *-filter of *-

commutative  PCASL L  then the *-congruence  𝑆𝐾 ∨ 𝜓 is the largest *-congruence with co-kernel 𝐾, where  

𝜓 is a relation on L defined by (𝑥, 𝑦) ∈ 𝜓 if and only if  𝑥∗∗ = 𝑦∗∗ which is a *-congruence. 
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1. INTRODUCTION 

 

             The concept of  Pseudo-complemented Almost Semilattices(PCASL)  was introduced by, Nanaji 

Rao, G.  and Sujatha Kumari, S [4]. They proved several  basic properties of  pseudo-complementation *  on 

L and proved that the pseudo-complementation * on an ASL L is equationally  definable.  They proved that 

the set of all *-elements in a *-commutative PCASL form a Boolean algebra which is independent(up to 

isomorphism) of the pseudo-complementation *. Next, the concepts of kernel ideal, *-ideal and *-

congruence in *-commutative PCASL L were introduced by Nanaji Rao, G.  and Sujatha Kumari,S [5], they 

derived a necessary and sufficient conditions for  an ideal in  *-commutative PCASL L to become a  kernel 

ideal, established the smallest *-congruence with given kernel ideal , largest *-congruence with given kernel 

ideal  and  characterized the largest  *-congruence in terms of smallest *-congruence and the *-congruence 

𝜓 defined on L by  (𝑥, 𝑦) ∈ 𝜓  if and only if  𝑥∗∗ = 𝑦∗∗. In [6], Nanaji Rao,G.  and Sujatha Kumari,S, 

proved some basic properties of ideal quotient in ASL L and also proved that the set 𝐼∗(𝐿) of all *-ideals of 

*-commutative  PCASL L is complete lattice  with respect to set inclusion. Next, they proved that the centre 

of  𝐼∗(𝐿) is trivial and proved that the set 𝐾𝐼(𝐿) of all kernel ideals in *-commutative PCASL L in which 

𝑥 ≤ 𝑥∗∗ for all  𝑥 ∈ 𝐿 is complete implicative lattice. 

 

             In this paper, we introduced the concept of *-epimorphism between PCASLs  𝐿 and 𝑀  and proved 

that if  𝑓: 𝐿 → 𝑀 is a  *-homomorphism, then  𝑘𝑒𝑟(𝑓) is a kernel ideal of  𝐿. Moreover we proved that if 

𝑓: 𝐿 → 𝑀 is a*-epimorphism, then the mappings 𝑓 ⃗⃗⃗   : P(L) →P(M) and  𝑓 ⃖⃗⃗⃗ : P(M) → 𝑃(𝐿) preserves kernel 

ideals.  Also, proved that if  𝐿 and 𝑀 are  *-commutative  PCASLs in which 𝑥 ≤ 𝑥∗∗ for all  𝑥 and  if  
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𝑓: 𝐿 → 𝑀 is  *-epimorphism then the mapping  𝑓 ⃗⃗⃗  
𝑘 ∶ 𝐾𝐼(𝐿) → 𝐾𝐼(𝑀) is a lattice epimorphism and also 

proved that 𝑓 ⃗⃗⃗  
𝑘  is dually range closed. Next, we proved that complete lattices  𝐾𝐼(𝐿) of all kernel ideals of 

*-commutative PCASL L in which 𝑥 ≤ 𝑥∗∗ for all  𝑥 ∈ 𝐿 and 𝐼(𝑆(𝐿)) of all ideals of the Boolean algebra of 

all *-elements in *-commutative PCASL L are isomorphic. Again, we introduced the concept of co-kernel 

of a *-congruence on PCASL L and proved that if 𝐿 is *-commutative PCASL in which 𝑥 ≤ 𝑥∗∗, for all  𝑥 ∈
𝐿 and  𝐾 is a filter of 𝐿, then the relation  𝑆𝐾 on L defined by (𝑥, 𝑦) ∈ 𝑆𝐾  if and only if  𝑥 ∘ 𝑡 = 𝑦 ∘ 𝑡, for 

some 𝑡 ∈ 𝐾  is the smallest *-congruence with co-kernel  𝐾. Also, we introduced the concept of  *-filter in 

PCASL L  and proved  the set 𝐹∗(𝐿) of all *-filters of PCASL L , is a complete implicative  lattice. Finally, 

we proved that if 𝐾 is a *-filter of *-commutative PCASL L then the *-congruence  𝑆𝐾 ∨ 𝜓 is the largest *-

congruence with co-kernel  𝐾, where   𝜓 is a relation on L defined by (𝑥, 𝑦) ∈ 𝜓 if and only if  𝑥∗∗ =
𝑦∗∗which is a *-congruence. 

 

2. PRELIMINARIES 

 

In this section we collect few important definitions and results which are already known and which will be 

used more frequently in the text.  

 
2.1. Definition: An almost semilattice(ASL) is an algebra ),( L  where L  is a non-empty set and   is a 

binary operation on L , satisfing the following conditions:  

       (1) )(=)( zyxzyx               (Associative Law)  

       (2) zxyzyx  )(=)(              (Almost Commutative Law)  

       (3)  xxx = , for all Lzyx ,, .  (Idempotent Law)  

 

2.2. Definition: An ASL  with 0  is an algebra ,0),( L  of type (2,0)  satisfing the following conditions:  

        (1)      )(=)( zyxzyx         (Associative Law) 

        (2)             )(=)( zxyzyx   (Almost Commutative Law) 

        (3)                            = xxx         (Idempotent Law) 

        (4)  0=0 x , for all Lzyx ,, .  

 

2.3. Definition: Let L  be a non-empty set. Define a binary operation   on L  by yyx = , for all Lyx , . 

Then ),( L  is an ASL and is called discrete ASL. 

2.4. Theorem: Let ),( L  be an ASL. Define a relation   on L  by ba   if and only if aba = .       Then   

is a partial ordering on L .   

2.5. Theorem:  Let ),( L  be an ASL. Then for any Lba ,  with ba   we have cbca    and bcac  

, for all Lc .   

2.6. Theorem: Let ),( L  be an ASL. Then for any Lba , , we have the following:   

   (1) bba  .  
   (2) abba  =  whenever ba  .  
  
 If ),( L  is an ASL then by an ideal of L is a non-empty subset I of L which satisfies 𝑥 ∘ 𝑡 ∈ 𝐼 for any 

𝑥 ∈ 𝐼 and 𝑡 ∈ 𝐿. It can be easily verified, for any 𝑎 in an ASL L, (𝑎] = {𝑎 ∘ 𝑥 ∶  𝑥 ∈ 𝐿 is an ideal of L and 

called principal ideal generated  by 𝑎. 

  
2.7.Definition:  A non-empty subset 𝐹 of an 𝐴𝑆𝐿 𝐿 is said to be a filter if 𝐹 satisfing the following 
conditions : 
(1) 𝑥, 𝑦 ∈ 𝐹  implies 𝑥 ∘ 𝑦 ∈ 𝐹, 
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(2) If  𝑥 ∈ 𝐹and 𝑎 ∈ 𝐿 such that   𝑎 ∘ 𝑥 = 𝑥  then 𝑎 ∈ 𝐹. 
 

2.8.Definition:  Let ),( L  be an ASL. Then an element Lm  is said to be unimaximal if xxm = , for all 

Lx .  

2.9.Corollary: Let L  be an ASL  and I  be an ideal of L . Then, for any IbaLba   ,,  if and only if 

Iab  .  

2.10.Lemma: Let L  be an ASL  and ,, Lba    Then ](ba  if and only if aba = .  

2.11.Theorem:  Let ),( L  be an ASL with 0 . Then for any Lba , , we have the following:  

     (1) 0=0a .  
     (2) 0=ba  if and only if 0=ab .  
     (3) abba  =  whenever 0=ba .  
 

2.12. Definition:  For any non-empty subset A  of an ASL L with ,0 define axLxA :{=*  0,=  for all

}  Aa . Then *A  is called the annihilator of A .  It can be easily seen that *A  is an ideal of L . Also, note 

that, if ,}{= aA  then we denote ** }{= aA  by *][a .  

2.13. Theorem: Let L  be an ASL  with 0. Then a unary operation LL:*  is a pseudo-complementation 
on L  if and only if it satisfies the following conditions: 

bbaba  ** )(=)1(  

aa =0)2( *   

  0=0)3( ** .  

 
2.14. Definition: Let 𝐿 and 𝐿′ be two 𝐴𝑆𝐿𝑠 with zero elements 0 and 0′ respectively. Then a mapping 𝑓 ∶
𝐿 → 𝐿′ is called an 𝐴𝑆𝐿 homomorphism if it satisfies the following conditions : 
(1) 𝑓(𝑎 ∘ 𝑏) = 𝑓(𝑎) ∘ 𝑓(𝑏), for all 𝑎, 𝑏 ∈ 𝐿 
(2) 𝑓(0) = 0′. 
 

2.15. Definition: Let L  be an ASL  with zero. Then a unary operation *aa   on L  is said to be pseudo-
complementation on L  if, for any Lba , , it satisfies the following conditions: 

   (1) bbaba =0= *    

(2) 0=*aa  .  
 
2.16. Lemma: Let L  be a PCASL . Then for any Lba , , we have the following: 

(1) aa =0*   

(2) *0  is unimaximal 

(3) aaa =**   

(4) a  is unimaximal   0=*a  

(5) 0=0 ** .  
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2.17. Definition:  An ideal 𝐼 of a 𝑃𝐶𝐴𝑆𝐿 𝐿 is said to be a kernel ideal if 𝐼 is the kernel of a *-congruence on 
𝐿. 
 
Remark: Whether *-elements commutes are not, is not known so far in pseudo-complemented ASL  with 
pseudo-complementation *, investigation is goin on. 
       Here onwords by a ∗-commutative PCASL L we mean  L is a PCASL with pseudo-complementation * in 

which all ∗-elements are commute.  

            When (𝐿,∘) is a *-commutative PCASL then an ideal 𝐼 of 𝐿 is a kernel ideal if and only if  for any 

𝑥, 𝑦 ∈ 𝐼, (𝑥∗ ∘ 𝑦∗)∗ ∈ 𝐼 ([5], Theorem 3.12). 

2.18. Theorem: Let L  be a ∗-commutative PCASL . Then for any Lba , , we have the following 

   (1) ** abba   

            (2) 
**** = aa  

            (3) ****** abba  .  
 
2.19. Theorem:  Let L  be a ∗-commutative PCASL . Then for any Lba , , we have 

  the following: 

   (1) 
****** =)( baba   

            (2) 
** )(=)( abba   

            (3) 
*** )(, baba  .   

 

2.20. Definition: Let L  be a  PCASL with pseudo-complementation *. Then a congruence relation   on L  

is said to be a ∗-congruence if for any   ),(,),( ** yxyx .  

2.21. Theorem: Let L  be a ∗-commutative PCASL and let   be a congruence on L . Then   is a ∗-

congruence if and only if for any ,0)(x  implies ),0( **x .  

2.22. Theorem: Let L  be a *-commutative PCASL in which 𝑥 ≤ 𝑥∗∗ for all , 𝑥 ∈ 𝐿. Then order by set 

inclusion,  𝐾𝐼(𝐿) forms a complete implicative lattice in which the operations are as follows: If  {𝐼𝛼  : 𝛼 ∈ Δ} 

is any family of kernel ideals  of 𝐿, ⋀  𝐼𝛼   𝛼∈Δ = 𝑖𝑛𝑓𝐾𝐼(𝐿){𝐼𝛼  : 𝛼 ∈ Δ} =  ⋂ 𝐼𝛼 ,𝛼∈Δ   ⋁  𝐼𝛼𝛼∈Δ =

𝑠𝑢𝑝𝐾𝐼(𝐿){𝐼𝛼  : 𝛼 ∈ Δ} =  { 𝑥 ∈ 𝐿 ∶ (∃ 𝛼1, 𝛼2, … , 𝛼𝑛 ∈△)(∃𝑥𝑖 ∈ 𝐼𝛼𝑖
)(𝑥 ≤ (∘𝑖=1

𝑛  𝑥𝑖
∗)∗)} and residuals in  

𝐾𝐼(𝐿) coinsides with the corresponding residuals in 𝐼∗(𝐿). 

2.23. Theorem: Let L  be a *-commutative PCASL in which 𝑥 ≤ 𝑥∗∗, for all  𝑥 ∈ 𝐿. Then the following 

conditions are equivalent: 

               (1)  Every ideal of 𝐿 is a kernel ideal. 

               (2) Every principal ideal of 𝐿 is a kernel ideal. 

               (3) 𝐿 is a Boolean algebra. 

 

 

2.24. Theorem: If  𝑃 is  a partly ordered set bounded above each of whose non-void subsets 𝑅 has an 
infimum, then each non-void subset of 𝑃 will have a supremum, too, and by the definitions ⋂𝑅 =
inf 𝑅,   ⋃𝑅 = sup𝑅, then 𝑃 becomes a complete lattice. 
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2.25. Corollary: If a bounded lattice is complete with respect to one of the lattice operations, it is also 
complete with respect to the other. 
 

2.26. Definition: If we are given a set A,  a mapping   C : Su(A)→ Su(A)  is called a closure operator on A 

if, for  X, Y ⊆ P(A), it satisfies: 

   (1) X ⊆ C(X) 

   (2) 𝐶2(𝑋) =  𝐶(𝑋) 

   (3) X ⊆ Y implies C(X) ⊆ C(Y). 

 A subset X of A is called closed subset if  C(X) = X. The poset of closed subsets of 𝐴 with set inclusion as 

the partial ordering is denoted by 𝐿𝐶 . 

 

2.27. Theorem: Let  𝐶  be a closure operator on a set 𝐴. Then 𝐿𝐶  is a complete lattice with  𝐶(𝐴𝑖) 𝑖∈𝐼
⋀ =

   𝐶(𝐴𝑖) 𝑖∈𝐼
⋂  and  𝐶(𝐴𝑖) 𝑖∈𝐼

⋁ =  𝐶(  𝐴𝑖) 𝑖∈𝐼
⋃  

 
2.28. Definition: If 𝐿,𝑀 are  partially orderd sets a map 𝑓: 𝐿 → 𝑀 is residual if and only if  𝑓 is isotone and 
there exists a unique isotone map 𝑓+:𝑀 → 𝐿 such that 𝑓+ ∘ 𝑓 ≥ 𝑖𝑑𝐿 and 𝑓 ∘ 𝑓+ ≤ 𝑖𝑑𝑀. The unique map 
𝑓+ is called the residual of 𝑓. 
 

3. *-epimorphisms 
 
            In this  section we introduce the concept of  *-epimorphism and prove that if  𝑓: 𝐿 → 𝑀 is a  *-

homomorphism, then  𝑘𝑒𝑟(𝑓) is a kernel ideal of  𝐿. More over we prove that if  𝑓: 𝐿 → 𝑀 is a  *-

epimorphism then the mapping 𝑓 ⃗⃗⃗   : P(L) →P(M) and  𝑓 ⃖⃗⃗⃗ : P(M) → 𝑃(𝐿) preserves kernel ideals.  Also, prove 

that if  𝐿 and 𝑀 are  *-commutative  PCASLs in which 𝑥 ≤ 𝑥∗∗ for all  𝑥 and  if  𝑓: 𝐿 → 𝑀 is  *-

epimorphism then the  𝑓 ⃗⃗⃗  
𝑘 ∶ 𝐾𝐼(𝐿) → 𝐾𝐼(𝑀) is a lattice epimorphism and also prove that 𝑓 ⃗⃗⃗  

𝑘  is dually 

range closed. We prove that complete lattices  𝐾𝐼(𝐿) and 𝐼(𝑆(𝐿)) are isomorphic. We give a necessary and 

sufficient condition the map  𝑓 ⃗⃗⃗  
𝑘  is a *-epimorphism. First, we begin this section with the following 

definition. 

 

 3.1. Definition: Let L, M be pseudo-complemented almost semilattices.  A homomorphism  

  𝑓: 𝐿 → 𝑀 is said to be *-epimorphism if  𝑓 is onto and 𝑓(𝑥∗) =  (𝑓(𝑥))∗, for all  𝑥 ∈ 𝐿. 
 

   In the following we prove  that the kernel of a *-homomorphism is a kernel ideal. 

 

 3.2. Theorem: Let L, M be PCASLs. If  𝑓: 𝐿 → 𝑀 is a *-homomorphism. Then  𝑘𝑒𝑟(𝑓) =  {𝑥 ∈ 𝐿 ∶
𝑓(𝑥) =  0} is a kernel ideal of L.    
 Proof : Suppose  𝑓: 𝐿 → 𝑀 is a *-homomorphism. Since 𝑓(0) =  0, 0 ∈ ker(𝑓). Therefore     

  ker(𝑓) is non-empty subset of  L. Let  𝑥 ∈ ker(𝑓) and 𝑎 ∈ 𝐿. Then  𝑓(𝑥) = 0. Now,  

 Consider 𝑓(𝑥 ∘ 𝑎) = 𝑓(𝑥)  ∘  𝑓(𝑎) =  0 ∘  𝑓(𝑎) =  0. Therefore 𝑥 𝑜 𝑎 ∈ ker(𝑓). Hence 

  ker(𝑓) is an ideal of  L.  Let  𝑥, 𝑦 ∈ ker(𝑓). Then 𝑓(𝑥) =  0, 𝑓(𝑦) =  0. Now, consider   𝑓((𝑥∗ ∘  𝑦∗)∗) =

(𝑓(𝑥∗ ∘  𝑦∗))∗ = (𝑓(𝑥∗) ∘  𝑓(𝑦∗))
∗
=  ((𝑓(𝑥))∗ ∘  (𝑓(𝑦))∗)∗ =   (0∗ ∘ 0∗)∗ = 0∗∗ = 0. Hence   (𝑥∗ ∘

 𝑦∗)∗ ∈ ker(𝑓). Thus ker (𝑓) is an ideal of  𝐿. 

 

          Now, we shall introduce the following notation. Given a mapping 𝑓: 𝐸 → 𝐹, we shall  

 denote by 𝑓 ⃗⃗⃗   : P (E) → 𝑃(𝐹) and  𝑓 ⃖⃗⃗⃗ : P (F) → 𝑃(𝐸), the induced mappings given by the  

 prescriptions 

                       ( ∀ X ⫅  E)𝑓 ⃗⃗⃗  (𝑋) = { 𝑓(𝑥): 𝑥 ∈ 𝑋} =  𝑓(𝑋), 

            ( ∀ Y ⫅  F)𝑓 ⃖⃗⃗⃗ (𝑌) = { 𝑥 ∈ 𝐸 ∶  𝑓(𝑥) ∈ 𝑌} =  𝑓−1(𝑌).  
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Next, we prove that if  𝑓: 𝐿 → 𝑀  is a *-epimorphism, then   𝑓 ⃗⃗⃗    and  𝑓 ⃖⃗⃗⃗  preserve kernel ideal. 

 

3.3. Theorem: Let L, M be PCASLs and let  𝑓: 𝐿 → 𝑀  be a *-epimorphism. Then   𝑓 ⃗⃗⃗    and  𝑓 ⃖⃗⃗⃗  preserve 

kernel ideal. 

Proof:  Suppose 𝑓: 𝐿 → 𝑀 is a *-epimorphism. First, we shall prove that if 𝐼 is a kernel ideal of  L, then 

𝑓 ⃗⃗⃗  (𝐼) is a kernel ideal of M. Let I be a kernel ideal of L. Since 0 ∈ 𝐼, 𝑓(0) ∈ 𝑓 ⃗⃗⃗  (𝐼). Therefore  𝑓 ⃗⃗⃗  (𝐼) is non-

empty subset of M. Let  𝑓(𝑥) ∈ 𝑓(𝐼) and 𝑦 ∈ 𝑀. Since 𝑓 is onto, there exists 𝑧 ∈ 𝐿 such that 𝑓(𝑧) =  𝑦. 
Now, since 𝑥 ∈ 𝐼, 𝑧 ∈ 𝐿,   𝑥 ∘ 𝑧 ∈ 𝐼. This implies  𝑓(𝑥 ∘ 𝑧) ∈ 𝑓(𝐼). Therefore 𝑓(𝑥) ∘ 𝑦 =  𝑓(𝑥) ∘ 𝑓(𝑧) =
 𝑓(𝑥 ∘ 𝑧) ∈ 𝑓(𝐼). Hence 𝑓(𝐼) is an ideal of 𝑀. Let 𝑓(𝑥), 𝑓(𝑦) ∈ 𝑓(𝐼). Then  𝑥, 𝑦 ∈ 𝐼. Since  𝐼 is a kernel 

ideal, (𝑥∗ ∘  𝑦∗)∗ ∈ 𝐼. This implies 𝑓(𝑥∗ ∘  𝑦∗)∗ ∈ 𝑓(𝐼). It follows that (𝑓(𝑥)∗ ∘  𝑓(𝑦)∗)∗ ∈ 𝑓(𝐼). Hence 𝑓(𝐼) 

is a kernel ideal of 𝑀. Thus 𝑓 ⃗⃗⃗  (𝐼) is a kernel ideal of 𝑀. Suppose  𝐽 is a kernel ideal of 𝑀.   Since 0 =
𝑓(0) ∈ 𝐽, 0 ∈  𝑓−1(J). Therefore 𝑓−1(J) is a non-empty subset of L. Let 𝑥 ∈ 𝑓−1(J) and 𝑎 ∈ 𝐿. This implies  

𝑓(𝑥) ∈ 𝐽 and 𝑓(𝑎) ∈ 𝑓(𝐿) ⊆ 𝑀. It follows that 𝑓(𝑥) ∘ 𝑓(𝑎) ∈ 𝐽 Therefore 𝑓(𝑥 ∘ 𝑎) ∈ 𝐽. Hence 𝑥 ∘ 𝑎 ∈
𝑓−1(J). Thus 𝑓−1(J) is an ideal of  L. Let 𝑥, 𝑦 ∈ 𝑓−1(J). Then 𝑓(𝑥), 𝑓(𝑦) ∈ 𝐽. It follows that ((𝑓(𝑥))∗ ∘
(𝑓(𝑦))∗)∗ ∈ 𝐽. This implies (𝑓(𝑥∗) ∘ 𝑓(𝑦∗))∗ ∈ 𝐽. Therefore (𝑓(𝑥∗ ∘  𝑦∗))∗ ∈ 𝐽. It follows that 𝑓((𝑥∗ ∘

 𝑦∗)∗) ∈ 𝐽. Hence  (𝑥∗ ∘  𝑦∗)∗ ∈ 𝑓−1(J). Thus  𝑓−1(J) is a kernel ideal of L. Therefore  𝑓 ⃖⃗⃗⃗ ( 𝐽) is a kernel 

ideal of  L. 

 

               Note that if  L and M are  *-commutative PCASLs in which 𝑥 ≤ 𝑥∗∗, for all  𝑥 and if 𝑓: 𝐿 → 𝑀 is a 

*-epimorphism, then in view of theorem 3.3, 𝑓 is induces a surjective  reisduated mapping 𝑓 ⃗⃗⃗  
𝑘 ∶ 𝐾𝐼(𝐿) →

𝐾𝐼(𝑀) described by 𝐼 ↦ 𝑓 ⃗⃗⃗  (𝐼) the residual of this being the injective mapping 𝑓 ⃖⃗⃗⃗
𝑘: 𝐾𝐼(𝑀) → 𝐾𝐼(𝐿) 

described by 𝐽 ↦ 𝑓 ⃖⃗⃗⃗ (𝐽). Now, we prove the following. 

 

Theorem 3.4.  Let L, M be a  *-commutative PCASLs in which 𝑥 ≤ 𝑥∗∗, for all  𝑥 and let 𝑓: 𝐿 → 𝑀  is a *-

epimorphism. Then  𝑓 ⃗⃗⃗  
𝑘 is a lattice epimorphism. 

Proof.   Suppose 𝑓: 𝐿 → 𝑀  is a *-epimorphism. Now, we have 𝑓 ⃗⃗⃗  
𝑘 ∶ 𝐾𝐼(𝐿)→KI(M) defined by 𝑓 ⃗⃗⃗  

𝑘(𝐼) =

 𝑓 ⃗⃗⃗    (I) = {𝑓(𝑥): 𝑥 ∈ 𝐼 }, for all 𝐼 ∈ 𝐾𝐼(𝐿). Let  𝐼, 𝐽 ∈ 𝐾𝐼(𝐿). Then clearly, 𝑓 ⃗⃗⃗  
𝑘(𝐼 ∩ 𝐽) =  𝑓 ⃗⃗⃗  

𝑘(𝐼) ∩ 𝑓 ⃗⃗⃗  
𝑘( 𝐽). 

Now, we shall prove that 𝑓 ⃗⃗⃗  
𝑘(𝐼 ∨ 𝐽) =  𝑓 ⃗⃗⃗  

𝑘(𝐼) ∨ 𝑓 ⃗⃗⃗  
𝑘( 𝐽). That is enough to prove that 𝑓(𝐼 ∨ 𝐽) =  𝑓(𝐼) ∨

𝑓( 𝐽). Let 𝑓(𝑥) ∈  𝑓(𝐼 ∨ 𝐽). Then 𝑥 ∈ 𝐼 ∨ 𝐽. This implies 𝑥 ≤ (𝑎∗ ∘ 𝑏∗)∗, where 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽. Hence 𝑓(𝑎) ∈
𝑓(𝐼) and 𝑓(𝑏) ∈ 𝑓( 𝐽). It follows that  (𝑓(𝑎)∗ ∘ 𝑓(𝑏)∗)∗ ∈  𝑓(𝐼) ∨ 𝑓( 𝐽) and hence 𝑓((𝑎∗ ∘ 𝑏∗)∗) ∈  𝑓(𝐼) ∨
𝑓( 𝐽). But, we have 𝑓(𝑥) ≤ 𝑓((𝑎∗ ∘ 𝑏∗)∗). Hence 𝑓(𝑥) ∈  𝑓(𝐼) ∨ 𝑓(𝐽). Thus  𝑓(𝐼 ∨ 𝐽) ⊆ 𝑓(𝐼) ∨ 𝑓(𝐽). 
Conversely, suppose  𝑦 ∈ 𝑓(𝐼) ∨ 𝑓( 𝐽). Since 𝑓 is onto, there exists 𝑥 ∈ 𝐿 such that  𝑓(𝑥) = 𝑦. Now, 𝑓(𝑥) ∈
𝑓(𝐼) ∨ 𝑓( 𝐽). Then 𝑓(𝑥) ≤ ((𝑓(𝑎))∗ ∘ (𝑓(𝑏))∗)∗, for some 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐽. This implies 𝑓(𝑥) ≤
𝑓((𝑎∗ ∘ 𝑏∗)∗), where 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐽. But, we have (𝑎∗ ∘ 𝑏∗)∗ ∈  𝐼 ∨ 𝐽. Therefore 𝑓((𝑎∗ ∘ 𝑏∗)∗) ∈  𝑓(𝐼 ∨ 𝐽). 

It follows that 𝑓(𝑥) ∈ 𝑓(𝐼 ∨ 𝐽). Hence 𝑦 ∈ 𝑓(𝐼 ∨ 𝐽). Therefore  𝑓(𝐼) ∨ 𝑓( 𝐽) ⊆ 𝑓(𝐼 ∨ 𝐽). Thus  𝑓(𝐼) ∨

𝑓( 𝐽) = 𝑓(𝐼 ∨ 𝐽). Therefore 𝑓 ⃗⃗⃗  
𝑘 is a homomorphism.  Let  𝐽 ∈ KI(M). Then we have   𝑓−1(J) is a kernel 

ideal of  L. Therefore  𝑓−1(J) ∈ 𝐾𝐼(𝐿). Now, we shall prove that 𝑓(𝑓−1(J)) =  𝐽.  Let 𝑦 ∈ 𝐽. Since  𝑓 is onto, 

there exists 𝑥 ∈ 𝐿 such that  𝑓(𝑥) =  𝑦. Therefore 𝑓(𝑥) ∈ 𝐽. This implies  𝑥 ∈ 𝑓−1(J). Hence 𝑦 = 𝑓(𝑥) ∈
𝑓(𝑓−1(J)). Therefore   𝐽 ⊆ 𝑓(𝑓−1(J)). Clearly, 𝑓(𝑓−1(J) ) ⊆ 𝐽. Thus  𝑓(𝑓−1(J) ) =  𝐽. It follows that 

𝑓 ⃗⃗⃗  
𝑘(𝑓

−1(J) ) =  𝐽. Thus 𝑓 ⃗⃗⃗  
𝑘 is onto and hence is an epimorphism. 

      

It can be easily seen that if  𝑓 is a *-epimorphism, then the induced residuated mapping is surjective and so 

is range closed. In the following, we prove the residuated mapping 𝑓 ⃗⃗⃗  
𝑘 is dually range closed. 

 

3.5. Theorem:  If 𝑓: 𝐿 → 𝑀  is a *-epimorphism, then 𝑓 ⃗⃗⃗  
𝑘 ∶ 𝐾𝐼(𝐿) → 𝐾𝐼(𝑀) is dually range closed. 

Proof. Now, we shall prove that 𝑓 ⃗⃗⃗  
𝑘 is dually range closed. That is enough to prove , for every  𝐼 ∈ 𝐾𝐼(𝐿), 

𝑓 ⃖⃗⃗⃗
𝑘(𝑓 ⃗⃗⃗  

𝑘(𝐼))  = 𝑠𝑢𝑝𝐾𝐼(𝐿){𝐼, ker( 𝑓)}. Let  𝐼 ∈ 𝐾𝐼(𝐿). Since 𝑓 ⃗⃗⃗    ,  𝑓 ⃖⃗⃗⃗   preserves kernel ideals, it follows that 

𝑓 ⃖⃗⃗⃗
𝑘(𝑓 ⃗⃗⃗  

𝑘(𝐼)) ∈ 𝐾𝐼(𝐿). Then clearly, 𝑓 ⃖⃗⃗⃗
𝑘(𝑓 ⃗⃗⃗  

𝑘(𝐼)) is an upper bound of  {𝐼, ker( 𝑓)}. Let 𝑥 ∈ 𝑓 ⃖⃗⃗⃗
𝑘(𝑓 ⃗⃗⃗  

𝑘(𝐼)). 
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Then we have 𝑓(𝑥) = 𝑓(𝑖), for some 𝑖 ∈ 𝐼. It follows that  𝑓(𝑥) ≤ 𝑓(𝑖∗∗). Hence we get  𝑓(𝑥) ≤ (𝑓(𝑖∗)∗). 

Let  𝐻 ∈ 𝐾𝐼(𝐿) such that  𝐻 is an upper bound of  {𝐼, ker( 𝑓)}. Then we have 𝐼, ker( 𝑓) ⊆ 𝐻. Now, we shall 

prove that 𝑓 ⃖⃗⃗⃗
𝑘(𝑓 ⃗⃗⃗  

𝑘(𝐼)) ⊆ 𝐻. Let  𝑥 ∈ 𝑓 ⃖⃗⃗⃗
𝑘(𝑓 ⃗⃗⃗  

𝑘(𝐼)).  Then we have  𝑓(𝑥) ∈ 𝑓(𝐼). Hence we can write 𝑓(𝑥) =
𝑓(𝑖), for some  𝑖 ∈ 𝐼.  Now, since  𝑖 ≤ 𝑖∗∗, 𝑓(𝑖) ≤ 𝑓(𝑖∗∗) = 𝑓(𝑖∗) ∗ = (𝑓(𝑖∗))∗.  

Now, consider  𝑓(𝑥 ∘ 𝑖∗) =  𝑓(𝑥) ∘ 𝑓(𝑖∗) ≤ (𝑓(𝑖∗))
∗
∘ 𝑓(𝑖∗). It follows that  𝑓(𝑥 ∘ 𝑖∗) =  0. Hence  𝑥 ∘ 𝑖∗ ∈

ker (𝑓). Therefore  𝑖, 𝑥 ∘ 𝑖∗ ∈ 𝐻. We have   𝑥 ≤ 𝑥∗∗ ≤ (𝑖∗ ∘  𝑥∗)∗.  But (𝑖∗ ∘ 𝑥∗)∗ = (𝑥∗ ∘ 𝑖∗)∗ =
((𝑥 ∘ 𝑖∗)∗ ∘ 𝑖∗)∗ = (𝑖∗ ∘ (𝑥 ∘ 𝑖∗)∗) ∗. It follows that  𝑥 ≤ (𝑖∗ ∘ (𝑥 ∘ 𝑖∗)∗) ∗. Since 𝐻 is  a kernel ideal,  𝑥 ∈ 𝐻. 

Thus 𝑓 ⃖⃗⃗⃗
𝑘(𝑓 ⃗⃗⃗  

𝑘(𝐼))  is the    𝑠𝑢𝑝𝐾𝐼(𝐿){𝐼, ker( 𝑓)}. 
 

 3.6. Corollary:  Let L be a *-commutative PCASL in which 𝑥 ≤ 𝑥∗∗ for all , 𝑥 ∈ 𝐿. If   

   𝐾𝐼𝑓(𝐿) is the set of  all kernel ideals of 𝐿 contains ker (𝑓), then 𝐾𝐼𝑓(𝐿) ≅ 𝐾𝐼(𝐿). 

   Proof.  Proof follows by theorem 3.5. 

  

       Recall that if  𝐿 is a *-commutative PCASL, then the set 𝑆(𝐿) = {𝑎∗∗: 𝑎 ∈ 𝐿} is a Boolean  algebra with 

the original determination of the meet operation  𝑎 ∘ 𝑏 and of the order relation  𝑎 ≤ 𝑏, the Boolean 

complement of an element being its pseudo-complement for these element, the Boolean join operation is 

given by the formula 𝑎 ∨ 𝑏 = (𝑎∗ ∘ 𝑏∗)∗ . It can be easily seen that  𝐼 is an ideal of  a Boolean algebra  𝐵 if 

and only if  𝐼 is a kernel ideal of 𝐵. Now, we prove that  𝐾𝐼(𝐿) is isomorphic with 𝐼𝑆(𝐿). For, this first we 

need the following. 

 

3.7.  Lemma:  Let 𝐿 be a *-commutative PCASL. Define 𝑔: 𝐿 → 𝑆(𝐿) by   𝑔(𝑎) =  𝑎∗∗, for all  𝑎 ∈ 𝐿. 

Then 𝑔 is a  *- epimorphism. 

Proof. Clearly, 𝑔 is well defined. Let 𝑎, 𝑏 ∈ 𝐿. Then 𝑔(𝑎 ∘ 𝑏) = (𝑎 ∘ 𝑏)∗∗ = 𝑎∗∗ ∘ 𝑏∗∗ = 𝑔(𝑎) ∘ 𝑔(𝑏) and  

𝑔(𝑎∗) = 𝑎∗∗∗ = (𝑎∗∗)∗ = (𝑔(𝑎))∗. It follows that  𝑔 is a *-homomorphism. Now, let 𝑎 ∈ 𝑆(𝐿). Then we 

have 𝑎 = 𝑎∗∗ and 𝑔(𝑎) =  𝑎∗∗ = 𝑎. Thus  𝑔 is a *-epimorphism. 

       

     Recall that if 𝐵 is a Boolean algebra, then  𝐼 is an ideal of 𝐵 if and only if  then  𝐼 is a    kernel ideal of 𝐵. 

It follows that  𝐼(𝑆(𝐿)) = 𝐾𝐼(𝑆(𝐿)).  
 

3.8. Theorem:  𝐾𝐼(𝐿) ≅ 𝐼(𝑆(𝐿)). 

Proof. By lemma 3.7. 𝑔: 𝐿 → 𝑆(𝐿) is  a *-epimorphism. Therefore by theorem 3.4. 𝑔 ⃗⃗  ⃗𝑘: 𝐾𝐼(𝐿) → 𝐾𝐼(𝑆(𝐿)) 

is a lattice epimorphism. It follows that 𝑔 ⃗⃗  ⃗𝑘: 𝐾𝐼(𝐿) → 𝐼(𝑆(𝐿)) is a lattice epimorphism.  Now, cosider 

                            Ker(𝑔) = {𝑥 ∈ 𝐿: 𝑔(𝑥) = 0} 
                   = {𝑥 ∈ 𝐿: 𝑥∗∗ = 0} 
                                         = {𝑥 ∈ 𝐿: 𝑥 = 0} 
                                         = {0} 
Therefore 𝐾𝐼(𝐿) is isomorphic to  𝐼(𝑆(𝐿)). 

  

       Recall that if  𝐵 is a complete Boolean algebra, then the set of all ideals in 𝐵 form a Stone lattice. [3] 

 

3.9. Corollary: If  𝑆(𝐿) is complete, then  𝐾𝐼(𝐿) is Stone lattice. 

 

        In the following, we give necessary and sufficient condition that the induced residuated mapping  𝑓 ⃗⃗⃗  
𝑘 

is a *-epimorphism. 
 

3.10. Theorem:  If 𝑓: 𝐿 → 𝑀  is a *-epimorphism, then the following statements are equivalent: 

(1) 𝑓 ⃗⃗⃗  
𝑘 ∶ 𝐾𝐼(𝐿) → 𝐾𝐼(𝑀) is a *-epimorphism 

(2) ker (𝑓) is a principal ideal.  

Proof. (1)⇒(2): Suppose 𝑓 ⃗⃗⃗  
𝑘 ∶ 𝐾𝐼(𝐿) → 𝐾𝐼(𝑀) is a *-epimorphism. Put 𝐴 = ker (𝑓). Then we have ker (𝑓) 

is a kernel ideal of 𝐿 and hence 𝑓(𝐴) is a kernel ideal of 𝑀. It follows that (𝑓(𝐴))∗ is a kernel ideal of  𝑀. 
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Therefore (𝑓(𝐴))∗ ⊆ 𝑀. Conversely, let 𝑚 ∈ 𝑀 and 𝑓(𝑎) ∈ 𝑓(𝐴). Then 𝑎 ∈ 𝐴 = ker (𝑓). This implies 

𝑓(𝑎) =  0. It follows that  𝑚 ∘ 𝑓(𝑎) =  0. Therefore 𝑚 ∈ (𝑓(𝐴))∗. Hence 𝑀 ⊆ (𝑓(𝐴))∗. Thus (𝑓(𝐴))∗ =

𝑀. Now, 𝑓 ⃗⃗⃗  
𝑘(𝐴 ∨ 𝐴∗) =  𝑓 ⃗⃗⃗  

𝑘 (𝐴
∗) = (𝑓 ⃗⃗⃗  

𝑘(𝐴))∗ = (𝑓(𝐴))∗ = M. On the other hand 𝑓 ⃗⃗⃗  
𝑘(𝐿) =  𝑓(𝐿) = 𝑀. It 

follows that 𝐴 ∨ 𝐴∗ = 𝐿. But, we have 𝐴 ∩ 𝐴∗ = {0}. Therefore  𝐴 is complemented. Hence by theorem 

2.23, 𝐴 is principal ideal of 𝐿. Thus ker (𝑓) is a principal ideal of  𝐿. (2) ⇒(1): Suppose ker (𝑓) is a principal 

ideal of  𝐿. That is we can write ker(𝑓) = (𝑎], for some  𝑎 ∈ 𝐿. But, by theorem 3.4.  𝑓 ⃗⃗⃗  
𝑘 is a lattice 

epimorphism. It is enough to prove that 𝑓 ⃗⃗⃗  
𝑘(𝐼

∗) = (𝑓 ⃗⃗⃗  
𝑘(𝐼))

∗, for all  𝐼 ∈ 𝐾𝐼(𝐿). Let  𝑥 ∈ 𝑓 ⃗⃗⃗  
𝑘(𝐼

∗) = 𝑓(𝐼∗). 

This implies 𝑥 = 𝑓(𝑦), for some  𝑦 ∈ 𝐼∗. Therefore  𝑦 ∘ 𝑖 = 0, for all 𝑖 ∈ 𝐼. It follows that  𝑓(𝑦 ∘ 𝑖) =
𝑓(0) = 0, for all 𝑖 ∈ 𝐼. This implies 𝑓(𝑦) ∘ 𝑓(𝑖) = 0, for all 𝑖 ∈ 𝐼. Hence 𝑥 ∘ 𝑓(𝑖) = 0, for all 𝑖 ∈ 𝐼. 

Therefore  

𝑥 ∈ (𝑓 ⃗⃗⃗  
𝑘(𝐼))

∗. Hence  𝑓 ⃗⃗⃗  
𝑘(𝐼

∗) ⊆ (𝑓 ⃗⃗⃗  
𝑘(𝐼))

∗.  Conversely, let  𝑥 ∈ (𝑓 ⃗⃗⃗  
𝑘(𝐼))

∗. This implies  𝑥 ∘ 𝑓(𝑖) = 0, for 

all 𝑖 ∈ 𝐼. Since  𝑓 is onto there exists  𝑧 ∈ 𝐿 such that 𝑓(𝑧) = 𝑥. It follows that  𝑓(𝑧) ∘ 𝑓(𝑖) = 0, for all 𝑖 ∈
𝐼. Hence 𝑓(𝑧 ∘ 𝑖) = 0, for all 𝑖 ∈ 𝐼. Therefore  𝑧 ∘ 𝑖 ∈ ker(𝑓) = (𝑎], for all 𝑖 ∈ 𝐼. It follows that 𝑧 ∘ 𝑖 = 𝑎 ∘
𝑧 ∘ 𝑖, for all 𝑖 ∈ 𝐼. This implies  𝑎∗ ∘ 𝑧 ∘ 𝑖 = 0, for all 𝑖 ∈ 𝐼. Therefore  𝑎∗ ∘ 𝑧 ∈ 𝐼∗. This implies 𝑓(𝑎∗ ∘ 𝑧) ∈
𝑓(𝐼∗). Now, consider 𝑓(𝑎∗ ∘ 𝑧) =  𝑓(𝑎∗) ∘ 𝑓(𝑧) = 𝑓(𝑎)∗ ∘ 𝑥 = 0∗ ∘ 𝑥  (since𝑎 ∈ (𝑎] = ker(𝑓) , 𝑓(𝑎) = 0) 

= 𝑥 

(since 0∗ is unimaximal). Therefore  𝑥 ∈ 𝑓(𝐼∗).  Hence (𝑓 ⃗⃗⃗  
𝑘(𝐼))

∗ ⊆ 𝑓 ⃗⃗⃗  
𝑘(𝐼

∗). Thus 𝑓 ⃗⃗⃗  
𝑘(𝐼

∗) = (𝑓 ⃗⃗⃗  
𝑘(𝐼))

∗. 

Therefore 𝑓 ⃗⃗⃗  
𝑘 is a *-epimorphism. 

  

4.*-filters 

 
     In this section we observe that if F is a filter of PCASL L and  𝑥∗∗ ∈ 𝐹 need not imply  

 𝑥 ∈ 𝐹 by means of example. This motivate us to introduce the concepts of  *-filter and co-kernel of a *-

congruence in PCASL. We prove that if 𝐿 is *-commutative  PCASL in which 𝑥 ≤ 𝑥∗∗ for all  𝑥 ∈ 𝐿 and  𝐾 

is filter of 𝐿, then the relation  𝑆𝐾 on  L defined by (𝑥, 𝑦) ∈ 𝑆𝐾  if and only if  𝑥 ∘ 𝑡 = 𝑦 ∘ 𝑡, for some 𝑡 ∈ 𝐾  
is the smallest *-congruence with  co-kernel  𝐾. Also, we prove that the set 𝐹∗(𝐿) of all *-filters of PCASL 

L is a complete implicative  lattice. Finally, we prove that if 𝐾 is a *-filter of *-commutative PCASL then 

the *-congruence  𝑆𝐾 ∨ 𝜓 is the largest *-congruence with co-kernel 𝐾, where the relation 𝜓 on L defined 

by (𝑥, 𝑦) ∈ 𝜓 if and only if  𝑥∗∗ = 𝑦∗∗ which is a *-congruence. First, we begin this section with the 

following. 

   

        If  F is a filter of PCASL L such that 𝑥 ∈ 𝐹, then it can be easily observed that 𝑥∗∗ ∈ 𝐹. But, converse 

is not true. For, consider the following example. 

4.1. Example: Let 𝐿 = {0, 𝑎, 𝑏, 𝑐}. Now, define a binary operation  ∘ on 𝐿 as follows: 

 

     

 

 

 

 

 

It can be easily seen that L is an ASL and also  L is PCASL under a unary operation * on L defined by 0∗ =
𝑎, 𝑥∗ = 0, for all 𝑥 ≠ 0 ∈ 𝐿. Now, put 𝐹 = {𝑎, 𝑏}. Then clearly F is a filter of  L. Now, consider 𝑐∗∗ =
(𝑐∗)∗ = 0∗ = 𝑎. But, 𝑐 ∉ 𝐹.  This motivate us to introduce *-filter in PCASL in the following. 

 

4.2. Definition: Let L be a PCASL. Then a filter of L is said to be a *-filter if  𝑥∗∗ ∈ 𝐹, then 𝑥 ∈ 𝐹. 

4.3.Example: Let 𝐴 = {0, 𝑎) and 𝐵 = {0, 𝑏1, 𝑏2} are two discrete ASLs. Let 𝐿 = 𝐴 × 𝐵 =
 {(0,0), (0, 𝑏1), (0, 𝑏2), (𝑎, 0), (𝑎, 𝑏1), (𝑎, 𝑏2)}. Define a binary operation ∘ on L as follows: 

 

° (0,0) (0, 𝑏1) (0, 𝑏2) (𝑎, 0) (𝑎, 𝑏1) (𝑎, 𝑏2) 

° 0 a b c 

0 0 0 0 0 

a 0 a b c 

b 0 a b c 

c 0 c c c 
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(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 

(0, 𝑏1) (0,0) (0, 𝑏1) (0, 𝑏2) (0,0) (0, 𝑏1) (0, 𝑏2) 

(0, 𝑏2) (0,0) (0, 𝑏1) (0, 𝑏2) (0,0) (0, 𝑏1) (0, 𝑏2) 

(𝑎, 0) (0,0) (0,0) (0,0) (𝑎, 0) (𝑎, 0) (𝑎, 0) 

(𝑎, 𝑏1) (0,0) (0, 𝑏1) (0, 𝑏2) (𝑎, 0) (𝑎, 𝑏1) (𝑎, 𝑏2) 

(𝑎, 𝑏2) (0,0) (0, 𝑏1) (0, 𝑏2) (𝑎, 0) (𝑎, 𝑏1) (𝑎, 𝑏2) 

  

Then clearly, (𝐿,∘) is an ASL. Now, define a unary operation * on L by (0,0)∗ = (𝑎, 𝑏1), (0, 𝑏1)
∗ =

(0, 𝑏2)
∗ = (𝑎, 0), (𝑎, 0)∗ = (0, 𝑏1) and (𝑎, 𝑏1)

∗ = (𝑎, 𝑏2)
∗ = (0, 0). Then clearly  *  is  a pseudo-

complementation on L. Now, put 𝐹 = {(𝑎, 𝑏1), (𝑎, 𝑏2)}. Then clearly, F is a  

*-filter of  L. 

 

       Recall that if 𝜃 is a congruence relation on an ASL L, then the congruence class of the element 0 with 

respect to 𝜃 is called kernel of  𝜃. Also, note that if 𝜃 is an arbitrary  

*-congruence on PCASL L and 𝑚1,𝑚2 are any two unimaximal elements in L. Then 𝜃𝑚1
= 𝜃𝑚2

 is not 

known and investigation is going on. In the following we define co-kernel of a *-congruence on PCASL. 

 

4.4. Definition: Let L be a PCASL and 𝜃 be a *-congruence on L. Then the congruence class of the element 

0∗ with respect to 𝜃 is called co-kernel of  𝜃. 

 

       Turning our attention to filters, we prove that every filter of a PCASL is a co-kernel of a *-congruence. 

For, this first we need the following lemmas. 

 

4.5. Lemma: Let  L be a PCASL and K be a non-empty subset of L which is closed under  ∘. Define a 

relation 𝑆𝐾 on L by (𝑥, 𝑦) ∈ 𝑆𝐾 if and only if  𝑥 ∘ 𝑡 = 𝑦 ∘ 𝑡, for some 𝑡 ∈ 𝐾 is a *-congruence on L. 

Proof. Clearly, 𝑆𝐾 is reflexive and symmetric. Let (𝑥, 𝑦), (𝑦, 𝑧) ∈ 𝑆𝐾. Then 𝑥 ∘ 𝑡1 = 𝑦 ∘ 𝑡1, 𝑦 ∘ 𝑡2 = 𝑧 ∘ 𝑡2, 

for some 𝑡1, 𝑡2 ∈ 𝐾. This implies  𝑡1 ∘ 𝑡2 ∈ 𝐾. Now, consider 𝑥 ∘ (𝑡1 ∘ 𝑡2) = ((𝑥 ∘ 𝑡1) ∘ 𝑡2) = ((𝑦 ∘ 𝑡1) ∘

𝑡2) = ((𝑡1 ∘ 𝑦) ∘ 𝑡2) = (𝑡1 ∘ (𝑦 ∘ 𝑡2)) = (𝑡1 ∘ (𝑧 ∘ 𝑡2)) = ((𝑡1 ∘ 𝑧) ∘  𝑡2) = ((𝑧 ∘ 𝑡1) ∘ 𝑡2) = 𝑧 ∘ (𝑡1 ∘ 𝑡2). 

Therefore  (𝑥, 𝑧) ∈ 𝑆𝐾. Hence 𝑆𝐾 is an equivalence relation on L. Let (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑆𝐾. Then  𝑎 ∘ 𝑡1 = 𝑏 ∘
𝑡1, 𝑐 ∘ 𝑡2 = 𝑑 ∘ 𝑡2, for some 𝑡1, 𝑡2 ∈ 𝐾. Now, consider (𝑎 ∘ 𝑐) ∘ (𝑡1 ∘ 𝑡2) = ((𝑎 ∘ 𝑐) ∘ 𝑡1)  ∘ 𝑡2 = ((𝑎 ∘
(𝑐 ∘ 𝑡1)) ∘ 𝑡2 = (𝑎 ∘ (𝑡1 ∘ 𝑐)) ∘ 𝑡2 = ((𝑎 ∘ 𝑡1) ∘ 𝑐) ∘ 𝑡2 = (𝑎 ∘ 𝑡1) ∘ (𝑐 ∘ 𝑡2) = (𝑏 ∘ 𝑡1) ∘ (𝑑 ∘ 𝑡2) = ((𝑏 ∘

𝑡1)  ∘ 𝑑) ∘ 𝑡2 = (𝑏 ∘ (𝑡1 ∘ 𝑑)) ∘ 𝑡2 = (𝑏 ∘ (𝑑 ∘ 𝑡1)) ∘ 𝑡2 = ((𝑏 ∘ 𝑑) ∘ 𝑡1) ∘ 𝑡2 = (𝑏 ∘ 𝑑) ∘  (𝑡1 ∘ 𝑡2). Thereore 

(𝑎 ∘ 𝑐, 𝑏 ∘ 𝑑) ∈ 𝑆𝐾. Hence  𝑆𝐾 is an ASL congruence on L. Let (𝑥, 0) ∈ 𝑆𝐾. Then 𝑥 ∘ 𝑡 = 0 ∘ 𝑡, for some 𝑡 ∈
𝐾. This implies 𝑥 ∘ 𝑡 = 0. It follows that  𝑥∗ ∘ 𝑡 = 𝑡. Since 0∗ is unimaximal, 𝑥∗ ∘ 𝑡 = 0∗ ∘ 𝑡. Therefore  

(𝑥∗, 0∗) ∈ 𝑆𝐾. Therefore  𝑆𝐾 is a  *-congruence on L. 

 

4.6. Corollary: Let  L be a PCASL and K be a filter of L. Then 𝑆𝐾 is a  *-congruence on L. 

 

4.7. Lemma: Let L be a PCASL and K be a filter of L. Then for any two unimaximal elements   𝑚1, 𝑚2 ∈
𝐿, the congruence classes (𝑆𝐾)𝑚1

, (𝑆𝐾)𝑚2
of 𝑚1, 𝑚2 respectively are equal. 

Proof. We have the congruence class of  an element 𝑥 ∈ 𝐿 with respect to the congruence relation  𝑆𝐾, that 

is (𝑆𝐾)𝑥 = { 𝑥 ∈ 𝐿: (𝑥, 𝑥) ∈ 𝑆𝐾}. Suppose 𝑚1 and  𝑚2 be two unimaximal elements in L. Let  𝑦 ∈ (𝑆𝐾)𝑚1
. 

Then (𝑦,𝑚1) ∈ 𝑆𝐾. This implies  𝑦 ∘ 𝑡 =  𝑚1 ∘ 𝑡, for some 𝑡 ∈ 𝐾. It follows that  𝑚2 ∘ (𝑦 ∘ 𝑡) =  𝑚2 ∘
(𝑚1 ∘ 𝑡).  Since 𝑚2 is unimaximal, 𝑦 ∘ 𝑡 =  𝑚2 ∘ 𝑡. Therefore (𝑦,𝑚2) ∈ 𝑆𝐾. Hence  𝑦 ∈ (𝑆𝐾)𝑚2

.  Thus  

(𝑆𝐾)𝑚1
⊆ (𝑆𝐾)𝑚2

. Similarly, we can prove that (𝑆𝐾)𝑚2
⊆ (𝑆𝐾)𝑚1

. Therefore (𝑆𝐾)𝑚1
= (𝑆𝐾)𝑚2

 

 

4.8. Lemma: Let L be a PCASL and K be a filter of L. Then for any unimaximal element 𝑚 in L, (𝑆𝐾)𝑚 is 

a filter. 

Proof. We have  (𝑆𝐾)𝑚 = { 𝑥 ∈ 𝐿 ∶ (𝑥,𝑚) ∈ 𝑆𝐾}. Then clearly  𝑥 ∈ (𝑆𝐾)𝑚. Therefore (𝑆𝐾)𝑚 is non-empty 

subset of L. Let 𝑥, 𝑦 ∈ (𝑆𝐾)𝑚. Then (𝑥,𝑚), (𝑦,𝑚) ∈ 𝑆𝐾. This implies           (𝑥 ∘ 𝑦, 𝑚) ∈ 𝑆𝐾. Therefore  
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𝑥 ∘ 𝑦 ∈ (𝑆𝐾)𝑚. Again, let 𝑥 ∈ (𝑆𝐾)𝑚 and  𝑎 ∈ 𝐿 such that 𝑎 ∘ 𝑥 = 𝑥. This implies  (𝑥,𝑚) ∈ 𝑆𝐾. It follows 

that 𝑥 ∘ 𝑡 = 𝑚 ∘ 𝑡, for some 𝑡 ∈ 𝐾. Therefore  𝑎 ∘ 𝑥 ∘ 𝑡 = 𝑎 ∘ 𝑚 ∘ 𝑡. It follows that  𝑥 ∘ 𝑡 = 𝑚 ∘ 𝑎 ∘ 𝑡. Since 

𝑚 is unimaximal, 

𝑥 ∘ 𝑡 = 𝑎 ∘ 𝑡. Therefore (𝑥, 𝑎) ∈ 𝑆𝐾 and (𝑥,𝑚) ∈ 𝑆𝐾. This implies  (𝑎,𝑚) ∈ 𝑆𝐾.  Hence 𝑎 ∈ (𝑆𝐾)𝑚.  Thus 

(𝑆𝐾)𝑚 is a filter. 

 

4.9. Theorem: Let L be a PCASL and K be a filter of L. Then the  co-kernel of  𝑆𝐾 is 𝐾. Moreover  𝑥 ≤
𝑥∗∗, for all  𝑥 ∈ 𝐿 then 𝑆𝐾 is the smallest *-congruence with co-kernel K. 

Proof. Suppose 𝑥 ∈ (𝑆𝐾)0∗. Then (𝑥, 0∗) ∈ 𝑆𝐾. This implies  𝑥 ∘ 𝑡 = 0∗ ∘ 𝑡, for some 𝑡 ∈ 𝐾. 

 Since  0∗ is unimaximal,  𝑥 ∘ 𝑡 = 𝑡. It follows that 𝑥 ∈ 𝐾, since K is filter. Therefore (𝑆𝐾)0∗ ⊆ 𝐾. 

Conversely, suppose  𝑥 ∈ 𝐾. Since 0∗ ∘ 𝑥 = 𝑥 = 𝑥 ∘ 𝑥 and 𝑥 ∈ 𝐾. It follows that  (0∗, 𝑥) ∈ 𝑆𝐾. Therefore  

𝑥 ∈ (𝑆𝐾)0∗. Hence  𝐾 ⊆ (𝑆𝐾)0∗. Thus (𝑆𝐾)0∗ = 𝐾. Suppose 𝑥 ≤ 𝑥∗∗, for all 𝑥 ∈ 𝐿. Let 𝜃 be a *-congruence 

on L with co-kernel K. i.e; 𝜃0∗ = 𝐾. Now, we shall prove that 𝑆𝐾 ⊆ 𝜃. Let (𝑥, 𝑦) ∈ 𝑆𝐾. Then 𝑥 ∘ 𝑡 = 𝑦 ∘ 𝑡, 

for some 𝑡 ∈ 𝐾 = 𝜃0∗ . This implies (𝑡, 0∗) ∈  𝜃. Hence (𝑥 ∘ 𝑡, 𝑥 ∘ 0∗) ∈  𝜃. It follows that (𝑥 ∘ 𝑡, 0∗ ∘ 𝑥) ∈
 𝜃, since  𝑥 ≤ 𝑥∗∗, 𝑥 ∘ 𝑥∗∗ = 𝑥∗∗ ∘ 𝑥  and hence 0∗ ∘ (𝑥 ∘ 𝑥∗∗) =  0∗ ∘ (𝑥∗∗ ∘ 𝑥), we get 𝑥 ∘ 0∗ = 0∗ ∘ 𝑥. 

Therefore (𝑥 ∘ 𝑡, 𝑥) ∈ 𝜃. Similarly, we can prove that (𝑦 ∘ 𝑡, 𝑦) ∈ 𝜃. It follows that (𝑥, 𝑦) ∈ 𝜃. Thus 𝑆𝐾 is 

the smallest *-congruence with co-kernel K. 

        

       We shall denote the set of  *-filters of a PCASL L by 𝐹∗(𝐿). The following results, which show how 

the notation of a *-filters in a natural way, will allow us to investigate the structure of  𝐹∗(𝐿). First, we need 

the following. 

 

4.10. Lemma: If  𝐹 is a filter of a PCASL L, then 𝛼(𝐹) = { 𝑥 ∈ 𝐿 ∶  𝑥∗ ∈ 𝐹} is an ideal of  𝐿. Moreover, 

𝛼(𝐹) is a kernel ideal of  𝐿. 

Proof. Suppose  𝐹 is a filter of 𝐿. Since 0∗ ∈ 𝐹, 0 ∈ 𝛼(𝐹). Therefore  𝛼(𝐹) is non-empty subset of 𝐿. Let  

𝑎 ∈ 𝛼(𝐹) and  𝑡 ∈ 𝐿. Then 𝑎∗ ∈ 𝐹 and  𝑡 ∈ 𝐿. Now, we have  𝑡 ∘ 𝑎 ≤ 𝑎. It follows  that 𝑎∗ ≤ (𝑡 ∘ 𝑎)∗ =
(𝑎 ∘ 𝑡)∗. This implies  (𝑎 ∘ 𝑡)∗ ∈ 𝐹. Therefore  𝑎 ∘ 𝑡 ∈ 𝛼(𝐹).  Hence  𝛼(𝐹) is an ideal of 𝐿. Let  𝑎, 𝑏 ∈
𝛼(𝐹). Then 𝑎∗, 𝑏∗ ∈ 𝐹 and hence 𝑎∗ ∘ 𝑏∗ ∈ 𝐹. Now, ((𝑎∗ ∘ b∗)∗)∗ = (𝑎∗ ∘ b∗)∗∗ = 𝑎∗∗∗ ∘ 𝑏∗∗∗ = 𝑎∗ ∘ 𝑏∗ ∈
𝐹. Therefore  ((𝑎∗ ∘ b∗)∗ ∈ 𝛼(𝐹). Thus 𝛼(𝐹) is a kernel ideal of  𝐿. 

 

4.11. Lemma: If  𝐼 is a kernel ideal of a PCASL L, then 𝛽(𝐼) = { 𝑥 ∈ 𝐿 ∶  𝑥∗ ∈ 𝐼} is a *-filter of 𝐿. 

Proof. Suppose 𝐼 is a kernel ideal of L. Since (0∗)∗ = 0∗∗ = 0 ∈ 𝐼, 0∗ ∈ 𝛽(𝐼). Therefore 𝛽(𝐼) is non-empty  

subset of 𝐿. Let  𝑥, 𝑦 ∈ 𝛽(𝐼). Then  𝑥∗, 𝑦∗ ∈ 𝐼. Since  𝐼 is a kernel ideal, (𝑥∗∗ ∘ 𝑦∗∗)∗ ∈ 𝐼. This implies  

(𝑥 ∘ 𝑦)∗∗∗ ∈ 𝐼. It follows that (𝑥 ∘ 𝑦)∗ ∈ 𝐼. Therefore  𝑥 ∘ 𝑦 ∈ 𝛽(𝐼). Let  𝑥 ∈ 𝛽(𝐼) and 𝑡 ∈ 𝐿 such that  𝑡 ∘
𝑥 = 𝑥. Since 𝑡 ∘ 𝑥 = 𝑥, 𝑡∗ ∘ 𝑡 ∘ 𝑥 = 𝑡∗ ∘ 𝑥.  Therefore  𝑡∗ ∘ 𝑥 = 0.  Hence  𝑥 ∘ 𝑡∗ = 0. It follows that  

𝑥∗ ∘ 𝑡∗ = 𝑡∗. Again, since 𝑥∗ ∈ 𝐼, 𝑥∗ ∘ 𝑡∗ ∈ 𝐼. Therefore  𝑡∗ ∈ 𝐼. Hence 𝑡 ∈ 𝛽(𝐼). Therefore 𝛽(𝐼) is a filter of  

𝐿. Now, let 𝑥∗∗ ∈ 𝛽(𝐼). Then 𝑥∗ = 𝑥∗∗∗ ∈ 𝐼. Hence  𝑥 ∈ 𝛽(𝐼). Thus  𝛽(𝐼) is a *-filter. 

 

          It can be easily seen that the set  𝐹(𝐿) of al  filters of a PCASL L form a complete lattice with respect 

to set inclusion. We can therefore  define a mapping 𝛼 ∶ 𝐹(𝐿) → 𝐾𝐼(𝐿) by 𝐹 ↦ 𝛼(𝐹) and  𝛽 ∶ 𝐾𝐼(𝐿) →
𝐹(𝐿) by 𝐼 ↦ 𝛽(𝐼). In the following we prove that 𝛼 is residuated mapping with residual map  𝛽. 

 

4.12. Theorem:  𝛼 is residuated with residual map 𝛽. 

Proof. Clearly,  , 𝛽 are isotone  mappings. Also, we have  𝛽(𝛼(𝐹)) = { 𝑥 ∈ 𝐿 ∶  𝑥∗ ∈ 𝛼(𝐹)} = { 𝑥 ∈ 𝐿 ∶

 𝑥∗∗ ∈ 𝐹}. Let 𝑥 ∈ 𝐹. Then we have 𝑥∗∗ ∘ 𝑥 = 𝑥. It follows that 𝑥∗∗ ∈ 𝐹. Therefore  𝑥 ∈ 𝛽(𝛼(𝐹)). Hence  

𝐹 ⊆ 𝛽(𝛼(𝐹) ). Let 𝐼 ∈ 𝐾𝐼(𝐿). Then consider (𝛽(𝐼)) = { 𝑥 ∈ 𝐿 ∶  𝑥∗ ∈ 𝛽(𝐼)} = { 𝑥 ∈ 𝐿 ∶  𝑥∗∗ ∈ 𝐼} = 𝐼.  

Hence 𝛼 is residuated  and the residual of 𝛼 is 𝛽. 

 

4.13. Corollary:  𝛽(𝛼(𝐹)) = 𝐹 if and only if 𝐹 is *-filter.  
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Proof. Suppose  𝛽(𝛼(𝐹)) = 𝐹 and suppose  𝑥∗∗ ∈ 𝐹. Then  𝑥 ∈ 𝛽(𝛼(𝐹)) = 𝐹. Hence 𝑥 ∈ 𝐹. Thus 𝐹 is a *-

filter. Conversely, suppose 𝐹 is  *-filter. We shall prove that  𝛽(𝛼(𝐹)) = 𝐹. We have 𝐹 ⊆ 𝛽(𝛼(𝐹)). Let 

𝑥 ∈ 𝛽(𝛼(𝐹)). Then  𝑥∗∗ ∈ 𝐹. Therefore 𝑥 ∈ 𝐹. Hence 𝛽(𝛼(𝐹)) ⊆ 𝐹. Thus  𝛽(𝛼(𝐹)) = 𝐹. 

 

        It follows from theorem 4.12, then  𝛽 ∘  𝛼 is a closure operator on the complete lattice 𝐹(𝐿). Using the 

corollary 4.13, of theorem 4.12, we can therefore assert: 

 

4.14. Theorem: The set  𝐹∗(𝐿) of *-filters of  𝐿, ordered by set inclusion is a complete lattice in which the 

lattice operations are as follows: if (𝐹𝜆)𝜆∈∆ is a family of *-filters of L,  then 𝑖𝑛𝑓𝐹∗(𝐿){𝐹𝜆: 𝜆 ∈ ∆} = 


F , 

𝑠𝑢𝑝𝐹∗(𝐿){𝐹𝜆: 𝜆 ∈ ∆} = (𝛽 ∘ 𝛼) (


F ). 

Proof. Proof follows by theorem 2.22. 

 

     Recall that 𝐾𝐼(𝐿) is a complete implicative lattice. In the following we prove that 𝐹∗(𝐿) is complete 

implicative lattice. 

 

4.15. Theorem: 𝐹∗(𝐿) ≅ 𝐾𝐼(𝐿). 

Proof. In view of lemma 4.12,  𝛽 induces an isotone mapping 𝛽 ̂: 𝐾𝐼(𝐿) →  𝐹∗(𝐿). Now, define 𝛼 ̂: 𝐹∗(𝐿) →

𝐾𝐼(𝐿) by 𝛼 ̂(𝐹) = 𝛼(𝐹), for all 𝐹 ∈ 𝐹∗(𝐿). Then by theorem 4.13, it follows that 𝛽 ̂ ∘ 𝛼 ̂ and  𝛼 ̂ ∘ 𝛽 ̂ are 

identity mappings. Thus  𝛼 ̂, 𝛽 ̂ are mutually inverses. Thus 𝐹∗(𝐿) is isomorphic to  𝐾𝐼(𝐿). 

 

4.16. Corollary:  𝐹(𝑆(𝐿)) ≅ 𝐹∗(𝐿) ≅ 𝐾𝐼(𝐿) ≅ 𝐼(𝑆(𝐿)). 

Proof. Proof follows by the theorem 3.8, apply theorem 4.15. to both 𝐿, 𝑆(𝐿). 

 

4.17. Corollary: Suprema in 𝐹∗(𝐿) are given by   𝑠𝑢𝑝𝐹∗(𝐿){𝐹𝜆: 𝜆 ∈ ∆} = { 𝑥 ∈ 𝐿 ∶  𝑥∗∗ ∈ ⋁ 𝐹𝜆𝜆∈Δ }. 

Proof. By theorem 4.15. we have 𝑠𝑢𝑝𝐹∗(𝐿){(𝐹𝜆: 𝜆 ∈ ∆} = 𝛽 ̂(𝑠𝑢𝑝𝐾𝐼(𝐿){𝛼 ̂(𝐹𝜆): 𝜆 ∈ ∆}). Now, we have 𝑥 ∈

𝛼 ̂(𝐹𝜆) if and only if  𝑥∗ ∈ 𝐹𝜆 and  by theorem 2.22,  

 𝑠𝑢𝑝𝐾𝐼(𝐿){𝛼 ̂(𝐹𝜆): 𝜆 ∈ ∆} = { 𝑥 ∈ 𝐿 ∶ (∃ 𝜆1, 𝜆2, … , 𝜆𝑛 ∈△)(∃𝑥𝑖 ∈ 𝛼 ̂(𝐹𝜆𝑖
)(𝑥 ≤ (∘𝑖=1

𝑛  𝑥𝑖
∗)∗)}. 

                                              = { 𝑥 ∈ 𝐿 ∶ (∃ 𝜆1, 𝜆2, … , 𝜆𝑛 ∈△)(∃𝑥𝑖
∗ ∈ 𝐹𝜆𝑖

)(𝑥 ≤ (∘𝑖=1
𝑛  𝑥𝑖

∗)∗)}. 

Therefore  𝛽 ̂(𝑠𝑢𝑝𝐾𝐼(𝐿){𝛼 ̂(𝐹𝜆): 𝜆 ∈ ∆}) 

                                             = 𝛽 ̂{ 𝑥 ∈ 𝐿 ∶ (∃ 𝜆1, 𝜆2, … , 𝜆𝑛 ∈△)(∃𝑥𝑖
∗ ∈ 𝐹𝜆𝑖

)(𝑥 ≤ (∘𝑖=1
𝑛  𝑥𝑖

∗)∗)}. 

        = 𝛽 {𝑥 ∈ 𝐿 ∶ (∃ 𝜆1, 𝜆2, … , 𝜆𝑛 ∈△)(∃𝑥𝑖
∗ ∈ 𝐹𝜆𝑖

)(𝑥 ≤ (∘𝑖=1
𝑛  𝑥𝑖

∗)∗)}. 

                     = {𝑥 ∈ 𝐿 ∶ (∃ 𝜆1, 𝜆2, … , 𝜆𝑛 ∈△)(∃𝑥𝑖
∗ ∈ 𝐹𝜆𝑖

)(𝑥∗ ≤ (∘𝑖=1
𝑛  𝑥𝑖

∗)∗)}. 

Thus we have 
    𝑠𝑢𝑝𝐹∗(𝐿){(𝐹𝜆: 𝜆 ∈ ∆} = {𝑥 ∈ 𝐿 ∶ (∃ 𝜆1, 𝜆2, … , 𝜆𝑛 ∈△)(∃𝑦𝑖 ∈ 𝐹𝜆𝑖

)(𝑥∗ ≤ (∘𝑖=1
𝑛 𝑦𝑖 )

∗)}. 

     = {𝑥 ∈ 𝐿 ∶ (∃ 𝜆1, 𝜆2, … , 𝜆𝑛 ∈△)(∃𝑦𝑖 ∈ 𝐹𝜆𝑖
)((∘𝑖=1

𝑛 𝑦𝑖  )
∗∗ ≤ 𝑥∗∗)} 

     = {𝑥 ∈ 𝐿 ∶ (∃ 𝜆1, 𝜆2, … , 𝜆𝑛 ∈△)(∃𝑦𝑖 ∈ 𝐹𝜆𝑖
)(∘𝑖=1

𝑛 𝑦𝑖
∗∗) ≤ 𝑥∗∗)} 

     = {𝑥 ∈ 𝐿 ∶ (∃ 𝜆1, 𝜆2, … , 𝜆𝑛 ∈△)(∃𝑦𝑖 ∈ 𝐹𝜆𝑖
) (∘𝑖=1

𝑛 𝑦𝑖) ≤ 𝑥∗∗)}. 

     ={ 𝑥 ∈ 𝐿 ∶  𝑥∗∗ ∈ ⋁ 𝐹𝜆𝜆∈Δ }. 
 
Finally, we prove the following. 
 
4.8. Theorem:  Let  L be a *-commutative PCASL. If  K is a *-filter of L, then the  
*-congruence  SK ∨ 𝜓  has co-kernel K. In this case  SK ∨ 𝜓 is the largest such  
*-congruence 

 
Proof. Suppose K is a *-filter. Clearly, SK ∨ 𝜓  is a *-congruence on L. Now, we shall prove that co-
kernel of 𝑆𝐾 ∨ 𝜓  is K. Let  𝑥 ∈ (𝑆𝐾 ∨ 𝜓)0∗.  Then (𝑥, 0∗) ∈ 𝑆𝐾 ∨ 𝜓.  This implies  (𝑥∗, 0∗∗) ∈ 𝑆𝐾 ∨ 𝜓. It 
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follows that  𝑥∗∗ ∘ 𝑡 = 0∗ ∘ 𝑡, for some   𝑡 ∈ 𝐾. Hence 𝑥∗∗ ∘ 𝑡 = 𝑡, since 0∗ is unimaximal element. 
Therefore 𝑥∗∗ ∈ 𝐾, since 𝑡 ∈ 𝐾. Hence  𝑥 ∈ 𝐾, since K is a *-filter. Thus (𝑆𝐾 ∨ 𝜓)0∗ ⊆ 𝐾. Conversely, 
suppose 𝑥 ∈ 𝐾. Since  0∗ ∈ 𝐾. It follows that (𝑥, 0∗) ∈ 𝑆𝐾, since 𝑥 ∘ 𝑥 = 𝑥 = 0∗ ∘ 𝑥. Hence (𝑥, 0∗) ∈ 𝑆𝐾 ∨
𝜓. Therefore 𝑥 ∈ (𝑆𝐾 ∨ 𝜓)0∗ .  Hence 𝐾 ⊆ (𝑆𝐾 ∨ 𝜓)0∗ Thus (𝑆𝐾 ∨ 𝜓)0∗ = 𝐾.  Suppose  𝜃 is a *-
congruence with co-kernel K. Now we shall prove that 𝜃 ⊆ 𝑆𝐾 ∨ 𝜓.  Let  (𝑥, 𝑦) ∈ 𝜃. Since 
(𝑥∗, 𝑥∗), (𝑦∗, 𝑦∗) ∈ 𝜃, (𝑥 ∘ 𝑥∗, 𝑦 ∘ 𝑥∗) ∈ 𝜃. It follows that  (0, 𝑦 ∘ 𝑥∗) ∈ 𝜃. Therefore  (𝑦 ∘ 𝑥∗, 0) ∈ 𝜃. Hence  
((𝑦 ∘ 𝑥∗)∗, 0∗) ∈ 𝜃.  It follows that (𝑥∗ ∘ 𝑦)∗ ∈ 𝜃0∗  = K. Similarly, we can prove that (𝑥 ∘ 𝑦∗)∗ ∈ 𝜃0∗ = 𝐾. It 

follows that (𝑥∗ ∘ 𝑦)∗ ∘ (𝑥 ∘ 𝑦∗)∗ ∈ 𝐾. Put 𝑡 = (𝑥∗ ∘ 𝑦)∗ ∘ (𝑥 ∘ 𝑦∗)∗. Then 𝑡 ∈ 𝐾. Consider  𝑥∗∗ ∘ 𝑡 =  𝑥∗∗ ∘
((𝑥∗ ∘ 𝑦)∗ ∘ (𝑥 ∘ 𝑦∗)∗) =  (𝑥∗∗ ∘ (𝑥∗ ∘ 𝑦)∗) ∘ (𝑥 ∘ 𝑦∗)∗ = 𝑥∗∗ ∘ (𝑥 ∘ 𝑦∗)∗ = 𝑥∗∗ ∘ (𝑥 ∘ 𝑦∗)∗∗∗ = 𝑥∗∗ ∘
((𝑥 ∘ 𝑦∗)∗)∗∗ = (𝑥 ∘ (𝑥 ∘ 𝑦∗)∗)∗∗ =  (𝑥 ∘ (𝑦∗ ∘ 𝑥)∗)∗∗ = ((𝑦∗ ∘ 𝑥)∗ ∘ 𝑥)∗∗ = (𝑦∗∗ ∘ 𝑥)∗∗ = 𝑥∗∗ ∘ 𝑦∗∗. 
Therefore  𝑥∗∗ ∘ 𝑡 = 𝑥∗∗ ∘ 𝑦∗∗. Similarly, we can prove that  𝑦∗∗ ∘ 𝑡 = 𝑥∗∗ ∘ 𝑦∗∗. It follows that 𝑥∗∗ ∘ 𝑡 =
𝑦∗∗ ∘ 𝑡. Hence (𝑥∗∗, 𝑦∗∗)  ∈ 𝑆𝐾. But, we have (𝑥, 𝑥∗∗), (𝑦∗∗, 𝑦) ∈ 𝜓. Therefore there exists a finite sequence  

𝑥, 𝑥∗∗, 𝑦∗∗, 𝑦 such that  (𝑥, 𝑥∗∗) ∈ 𝜓, (𝑥∗∗, 𝑦∗∗) ∈ 𝑆𝐾, (𝑦
∗∗, 𝑦) ∈ 𝜓. Therefore  (𝑥, 𝑦) ∈ 𝑆𝐾 ∨ 𝜓. Hence  𝑆𝐾 ∨

𝜓 is the largest *-congruence with co-kernel  𝐾 
 
4.9. Corollary:  If K is a *-filter then  (𝑥, 𝑦) ∈ 𝑆𝐾 ∨ 𝜓 ⇔ (𝑥∗ ∘ 𝑦)∗ ∘ (𝑥 ∘ 𝑦∗)∗. 
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