
© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1114

Parallel Processing in MySQLDB Database

Systems
Shahid Akhtar Khan and DR. Suryakant Yadav

Centre for Research and Studies,

Noida International University, Noida.

Abstract

The ever-growing data and its need to process the data with utmost efficiency and cost effectiveness for the
companies has motivated various processing technologies which can handle both traditional relational
database management system as well as unstructured and semi-structured database emerging technologies.
So, there is a need of some strategy which can process the data from these large database systems with ease
and cost effectiveness. In this paper we have discussed and compare between the approaches known as “Lazy
Fetch” and “Parallel Fetch” and demonstrate our assumption by analysing the response time of the queries
executed on MySQLDB databases under AWS Aurora cloud environment and we also discuss the open issues
and challenges raised on parallel data analysis with MySQLDB.

Keywords-AWS Cloud; Amazon Aurora; Lazy Fetch; Parallel Fetch.

1. Introduction

Information technology provides a platform to access the data sets in all multidisciplinary domains endeavors including

scientific, professional, social and so on. As we are working in the era of big data which is increasing at a very high speed

on day basis; it’s management and storage in an explicit way has becomes highly challenging and tedious. The evolution

of highly scalable infrastructures has a major role in the successive progression of storage management systems.

However, various issues have been emerged viz., availability and consistency of datasets, along with the scalability of

environments and its access. The continuous data generation results in an exponential increase in data and therefore,

requires suitable parallelism techniques to process the data efficiently.

Starting from our traditional parallel database management systems, we have popularly known 3 database architectures

classified as shared- everything, shared-disk and shared-nothing architecture. Based on these 3 available parallel

database architectures and its components like processors, memory modules and storage disk. Now, the responsibility

of Hardware vendors is now to develop a model considering these components and how they are connected with each

other.

Objective

To study and investigate the power of parallel processing in MySQLDB database systems, our main focus

is to divide a complex transaction into multiple small transactions and test the same through parallel fetching

technique. We exploit the power of parallel fetch technology in comparison with lazy fetch technology in

database systems to investigate this objective.

2. Research Hypothesis

We took Shapiro-Wilk normality test calculator to test our research hypothesis based on our 1st objective regarding

parallel processing.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1115

Hypothesis Formation:

 Null Hypothesis (H0): There is no significant difference between Lazy and Parallel Fetch technology when it

comes to compare on response time and throughput of the queries when checked on Amazon Arora MySQLDB.

1. Two tailed hypothesis test where after values =! Before values

2. Significant Level α: 0.05

3. Standardized effect size: 0.15

4. µ0: 7.17

Figure 2.1: Test calculation – Shapiro-Wilk normality test

Before values are from the year-wise single queries and after values are results of year-wise parallel queries on same

datasets.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1116

Figure 2.2: Data input in Shapiro-Wilk normality test calculator

Figure 2.3: Results – Normality test

Figure 4: Results – Normality test

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1117

Paired sample T-test, using T distribution (DF=19) (two-tailed) (validation)

1. H0 hypothesis: Since p-value<α, H0 is rejected. The average of After minus before's population is

considered to be not equal to the μ0. In other words, the difference between the average of the After minus

before and μ0 is big enough to be statistically significant.

2. P-value: p-value equals 0.00000, (p(x≤t) = 0.00000). This means that the chance of type1 error (rejecting a

correct H0) is small: 0.000 (0.0%). The smaller the p-value the more it supports H1.

3. The statistics:The test statistic t equals -151.269287, is not in the 95% critical value accepted range: [-2.0930

: 2.0930]. x=-30.42, is not in the 95% accepted range: [6.6500 : 7.6900].

4. Effect size:The observed standardized effect size is large (33.82). That indicates that the magnitude of the

difference between the average and μ0 is large.

Graph 1: T distribution

Graph 2. Delta distribution

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1118

Graph 3: Data Histogram

Test validation The requested test was calculated, it is likely you chose the right test.

 Outliers: Outliers' detection method: Tukey Fence, k=1.5 The data doesn't have outliers.

 Normality assumption:The assumption was checked based on the Shapiro-Wilk Test. (α=0.05) It is assumed

that After minus before is normally distributed (p-value is 0.138), or more accurately, we can't reject the normality

assumption.

Test power Although the priori power is low (0.09770), the H0 is rejected.

So , the null hypothesis is rejected by using Shapiro-Wilk normality test on our paired- T test results (before values-

Single query execution time and after values – parallel query execution time on same data sets.)

Reject the null hypothesis (meaning there is a definite, consequential relationship between the two test results of lazy

v/s parallel fetch on same data sets).

3. Solution Validation, Analysis of Data

APPROACH

Essentially, we are working on to demonstrate between two methodologies in our distributed environment: a

Parallel Fetch Technology and Lazy Fetch Technology. So as to accomplish a typical comprehension, we

currently portray the two systems in the accompanying segment. Subsequently we center around their particular

usage lastly, we assess the exhibition of the two systems and contrast them with one another.

A. Lazy Fetch Strategy

This technique is like notable lethargic bringing procedures, otherwise called on-request getting, sluggish

stacking or conceded stacking, from object-social mappers, for example, Hibernate or others. Here, as opposed

to the equal bring not all segments from the questioned tuples are stacked, yet the whole information from one

parcel.

B. Parallel Fetch Strategy

In this technique, we make one string for every database segment on every customer so as to bring all

information at the same time. Regarding the starting model this implies that we bring all questioned tuples from

http://www.jetir.org/
http://www.statskingdom.com/doc_outliers.html
http://www.statskingdom.com/320ShapiroWilk.html
https://www.thoughtco.com/definition-of-null-hypothesis-and-examples-605436

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1119

the principal segment SUBSCRIBER Partition1 and from the second parcel SUBSCRIBER Partition2 with two

strings in equal. When the customer has gotten all questioned tuples, they are consolidated. We guarantee the

customer side receipt of all questioned tuples with the join() technique [9] that holds up until all strings are done

effectively. This technique synchronizes all strings and ensures that all parcels of a tuple are conveyed to the

customer. However, this synchronization strategy bears the danger of starvation when for example a distant

worker isn't reachable because of organization issues or different causes. Nonetheless, we accept that this

methodology in mix with a specific hanging tight an ideal opportunity for the strings is more appropriate than

getting inadequate information.

4. IMPLEMENTATION

In order to measure the performance of the parallel and the lazy fetching strategy, we implemented both

strategies in a local environment, where we installed all components (2 caches, 2 database partitions and 1

client) on one physical machine. Above that, we measured the performance in a remote environment in which

we connected 3 machines via 1 GB Ethernet, where the client is on one physical machine and the 2 caches and

the 2 database partitions are located in different clouds. Finally, we state the hardware dimensions of every

machine as follows:

So as to quantify the exhibition of the of the parallel and the lazy fetch methodology, we executed the two

methodologies in a datacenter, where we installed all componentss (12 database partitions, cache and 1 thin

client) on one actual machine. Over that, we estimated the presentation in a remote database environment

wherein we associated 3 machines by means of 1 GB Ethernet, where the customer is on one actual machine

and the 2 reserves and the 2 database allotments are situated in various clouds. At long last, we express the

equipment measurements of each machine as follows:

 24xIntel(R) Xeon(R) CPU L5639 @ 2.13GHz

 96 GB RAM

 1xSSD drive =250 GB HDD

 64 Bit CentOS OS

 1 Gbit Internet connection

 Aurora MySQL 5.6 Software

The whole assessment depends on the TPC-W benchmark [10]. We utilized the SUBSCRIBER table, parceled

it vertically into 2 segments (Fig. 4.1) and utilized the TPC-W usage for Aurora MySQL 5.6 from [11].

The parallel query highlight utilizes the major compositional standards of Aurora MySQL: decoupling the

database motor from the capacity subsystem, and decreasing organization traffic by smoothing out

correspondence conventions. Aurora MySQL utilizes these methods to accelerate compose escalated

tasks, for example, re-try log handling. Equal inquiry applies similar standards to understand tasks.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1120

The design of Aurora MySQL equal inquiry contrasts from that of correspondingly named highlights in

other database frameworks. Aurora MySQL equal inquiry doesn't include symmetric multiprocessing

(SMP) thus doesn't rely upon the CPU limit of the database worker. The equal execution occurs in the

capacity layer, autonomous of the Aurora MySQL worker that fills in as the question facilitator.

Of course, without equal inquiry, the handling for an Aurora question includes sending crude information

to a solitary hub inside the Aurora bunch (the head hub) and playing out all further preparing in a solitary

string on that solitary hub. With equal question, a lot of this I/O-concentrated and CPU-serious work is

designated to hubs in the capacity layer. Just the smaller lines of the outcome set are communicated back

to the head hub, with lines previously separated, and segment esteems previously extricated and changed.

The exhibition advantage originates from the decrease in network traffic, decrease in CPU use on the head

hub, and parallelizing the I/O over the capacity hubs. The measure of equal I/O, separating, and projection

is free of the quantity of DB cases in the Aurora bunch that runs the inquiry.

I have created an Aurora MySQL cluster with parallel query, it is MySQL 5.6 compatible database cluster

works with parallel query by using. Created a DB cluster by using the AWS management console and

AWS CLI to carry out my work and tests results. MySQL version

Source: Amazon Aurora DB Cluster

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1121

Figure 4.1: Snapshot of GUI while creating Aurora cluster.

Following Option have been taken while creating the Aurora MySQL5.6 DB Cluster for to test Parallelism

and Storage.

 To get the output in JSON format, AWS cloud property AWS –RDS (Relational Database) has been used .

The following code example shows how.

 aws rds describe property to get the details of the AWS-RDS used which gives us engine information and

the region used is default us-east-2 by using following command: aws rds describe -orderable-db-instance-

options --engine aurora --engine-mode parallelquery --region us-east-2

 AWS management console and AWS CLI has been used to create Amazon Aurora database cluster

 We took following options to while creating cluster: For the --engine option, use aurora.

 --Enigine -Mode ParallelQuery, this option is required while creating DB cluster.

 Enigine Version Aurora 5.6.1 10a

Following command snippet was used to configure the Aurora MySQL DB cluster:

 Create DB cluster --- aws rds create-db-cluster-identifier $CLUSTER_ID

 --Engine -- aurora

 --Engine-mode – parallelquery

 --engine-version – 5.6.1 10a

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1122

 --master-username -- $MASTER_USER_ID

 --master-user-password -- $MASTER_USER_PW

 --db-subnet-group-name -- $SUBNET_GROUP

 --vpc-security-group-ids -- $SECURITY_GROUP

 aws rds create-db-instance --db-instance-identifier ${INSTANCE_ID}-1 \ --engine aurora \ --db-

cluster-identifier $CLUSTER_ID --db-instance-class $INSTANCE_CLASS

After successful creation of Aurora DB Cluster, I have verified that a new DB cluster can use parallel

query.

1. Create or restore a cluster using the preceding techniques.

2. Check that the aurora_pq_supported configuration setting is true.

3. mysql> select @@aurora_pq_supported;

4. +-----------------------+

5. | @@aurora_pq_supported |

6. +-----------------------+

7. | 1 |

8. +-----------------------+

To flip the aurora_pq boundary at the meeting level, for instance through the mysql order line or inside a

JDBC or ODBC application, the order on the standard MySQL customer is set meeting aurora_pq =

{'ON'/'OFF'}. You can likewise add the meeting level boundary to the JDBC setup or inside your

application code to empower or debilitate equal question progressively.

To test the parallel component of the query the schema objects/tables created in such a manner that

PARTITION BY clause should not be considering. In Aurora MySQL The parallel query requires tables

to use the ROW_FORMAT=Compact setting. Also, the parallel query currently (in this configuration)

requires to be nonpartitioned. We have copy all the partition tables data into nonpartitioned tables with

same column definition and indexes. Then rename old and new tables so that the nonpartitioned table is

used by existing queries and ETL workflows

We have changed the blueprint to empower equal inquiry to work with more tables, led tests to affirm if

resemble question brings about a net expansion in execution of inquiries on those tables and ensuring that

the pattern necessity for equal inquiry are generally viable with our objectives.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1123

In common activity, you don't have to play out any extraordinary moves to make favorable position of

equal inquiry. After an inquiry meets the fundamental necessities for equal question, the question analyzer

consequently concludes whether to utilize equal question for every particular question.

In the event that we run tests in a turn of events or test climate, we may locate that equal inquiry isn't

utilized in light of the fact that our tables are excessively little of lines or generally information volume.

The information for the table may likewise be totally in the cradle pool, particularly for tables we made

as of late to perform tests.

For checking and overseeing reason or tuning the DB execution, we have to choose whether parallelism

is being utilized in the suitable settings. We may need to change the database pattern, settings, SQL

questions and reports and even bunch geography and application association settings to exploit parallelism

include.

All through this segment, I have utilized tables from TPC-H dataset especially for Subscribers table. This

tables is having around 40 million columns and following table definition:

+---------------+---------------+------+-----+---------+-------+

| Record | Record_Type | Null |Key |Default | Extra |

+---------------+---------------+------+-----+---------+-------+

| Subscribers_ID| int(11) | NO | PRI | NULL | |

| s_name | varchar(55) | NO | | NULL | |

| s_msisdn | char(25) | NO | | NULL | |

| s_imsi | char(10) | NO | | NULL | |

| s_type | varchar(25) | NO | | NULL | |

| s_imei | int(11) | NO | | NULL | |

| s_handset | char(10) | NO | | NULL | |

| s_vendor | decimal(15,2) | NO | | NULL | |

| s_price | varchar(23) | NO | | NULL | |

+---------------+---------------+------+-----+---------+-------+

So , to check whether our queries is using parallelism techniques , we have checked the same with the help of

explain output .

First we tried by disabling parallel query, as per the explain plan of the query, it is using hash joins rather than

parallel

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1124

+----+-------------+----------+...+-----------+--+

| id | select_type | table |...| rows | Extra|

+----+-------------+----------+...+-----------+--+

| 1 | SIMPLE | Subscribers |...| 6218213 | Using where; Using index; Using temporary; Using filesort |

| 1 | SIMPLE | Handsets |...| 213841403 | Using where; Using join buffer (Hash Join Outer table orders) |

| 1 | SIMPLE | Tac |...| 581199404 | Using where; Using join buffer (Hash Join Outer table Tac) |

+----+-------------+----------+...+-----------+--+

Secondly, After enabling the parallelization, the two where clauses are using parallel query optimization, as

shown in below explain plan of the query.

+----+...+---+

|id |...| Extra |

+----+...+--+

| 1 |...| Using where; Using index; Using temporary; Using filesort |

| 1 |...| Using where; Using join buffer (Hash Join Outer table orders); Using parallel query (5 columns, 1

filters, 1 exprs; 0 extra) |

| 1 |...| Using where; Using join buffer (Hash Join Outer table lineitem); Using parallel query (5 columns, 1

filters, 1 exprs; 0 extra) |

+----+...+--+

Now, we have to check for monitoring techniques to help verify how often the parallel query is used in the given

workloads and side by side checking the performance of the same.

As we are testing on Amazon Aurora, we can use Amazon CloudWatch metrics and global status variables

which is helpful to monitor parallel query execution and give us insights into optimizer statistics and can show

us as to why query is using and not using parallel query while executing. While tracking the counters at DB

instance level we have seen that when we connect with different endpoints we saw different metrics because

each DB instance runs its own set of parallel queries.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1125

Figure 4.2: Amazon Aurora Parallel query DB metrics

Source: https://aws.amazon.com/rds/aurora/faqs/

For the next phase of testing, we have focused on how a parallel query works on SQL constructs that is how a

particular SQL statements using and not using parallel query and how Aurora MySQL react with parallel query.

We likewise have analyze execution issues for a cluster that utilizes parallel query and to see how parallel query

applies for our database workload.

There is number of conditions in the SQL query on which the output and performance of the query

depends. We are taking some of the clauses/conditions/predicates used in SQL query to check our

workload and performance of the queries we have executed while testing the performance of the parallel

query.

4.1.1 Parallel Query – Test and Performance aspects of Clauses and Conditions

I have used following clauses/conditions/predicates in our queries to produce the result and form our

analysis based on the data captured while performing test results.

4.1.2 Parallel Query Execution and Performance

As per the previous readings and experiments, generally MYSQL did not perform well with multiple CPUSs.

There was the time when MySQL shows poorer performance with higher number of CPU cores then with less

number of CPU cores. MySQL 5.6 did overcome this limitation and can scale-up with multiple CPUs but still

one highly intensive query executes on only one CPU with no parallelism.

 Aurora MySQL parallel query can overcome this limitation and we have tested our MySQL DB cluster

to chow the same. We used telecom subscriber’s database to test out the parallel execution with very large

tables in this case “SUBSCRIBER” table having around 40 million rows. We here now demonstrating

how parallel query works and side by side to improve the performance of the report queries.

http://www.jetir.org/
https://aws.amazon.com/rds/aurora/faqs/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1126

+---------------+---------------+------+-----+---------+-------+

| Column |Data_Type | Null | Key | Default | Extra |

+---------------+---------------+------+-----+---------+-------+

| Subscribers_ID| int(11) | NO | PRI | NULL | |

| s_name | varchar(45) | NO | | NULL | |

| s_msisdn | char(15) | NO | | NULL | |

| s_imsi | char(15) | NO | | NULL | |

| s_type | varchar(35) | NO | | NULL | |

| s_imei | int(11) | NO | | NULL | |

| StartDate | Date | NO | | NULL | |

| EndDate | Date | NO | | NULL | |

| s_year | year(4) | NO | | NOT NULL| |

| s_handset | char(10) | NO | | NULL | |

| s_vendor | decimal(15,2) | NO | | NULL | |

| s_price | varchar(23) | NO | | NULL | |

+---------------+---------------+------+-----+---------+-------+

We have created subscriber table with above table structure and load data of Airtel subscribers base which

is around 40 million rows and size is 83GB.

Now we executed some queries to demonstrate the execution to find all the subscribers logged into

network year-wise.

1. select s_year, count(*) from subscriber group by s_year

The query is simple and extract around 80 million of rows. Below is the result of query cached.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1127

The query took 38.43 seconds and utilized only 1 CPU core. Hence not using the parallel query functionality

but this query is good candidate for executing in parallel. To make this query to run in parallel, we will create a

shell script which will run 14 parallel queries, and each will count the year-wise data that is each query will run

for one year parallelly.

Following is the output from the shell query

Shell

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1128

Individual output from all parallel query statements

Now we are using bit complex query where we are calculating number of handset counts year-wise since 2000

and excluding SO(SONY) and VI(VIVO) as vendor. As the query has “group by” and “order by” and multiple

ranges in the where clause it will have to create a temporary table:

MySQL

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1129

To increase performance a combined index has been used as comb1 on columns s_handset,yeard and

s_price

Now we have executed the query and splitting it into 14 queries in parallel. The result set is 3 times faster

and we also avoid creating temporary table while executing.

Results: total time is 3 min 17 seconds (3times faster)

Statistics Per query:

By running the query is parallel we got 3 times better response time on the server .

Table: Overall CPU usage of Server

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1130

Year-Wise Single Query Execution time (sec) Parallel Query Execution time (sec)

sql1/2000.log:1 36.42 7.14

sql2/2001.log:1 37.35 7.52

sql3/2002.log:1 37.42 6.58

sql4/2003.log:1 36.56 7.28

sql5/2004.log:1 37.55 7.31

sql6/2005.log:1 37.12 6.49

sql7/2006.log:1 38.33 7.51

sql8/2007.log:1 39.42 7.11

sql9/2008.log:1 36.44 7.21

sql10/2009.log:1 37.36 6.57

sql11/2010.log:1 36.41 7.53

sql12/2011.log:1 38.12 7.1

sql13/2012.log:1 37.42 7.19

sql14/2013.log:1 37.45 8.17

sql15/2014.log:1 36.59 7.56

sql16/2015.log:1 38.22 6.54

sql17/2016.log:1 39.46 7.31

sql18/2017.log:1 39.32 7.43

sql19/2018.log:1 38.12 6.56

sql20/2019.log:1 37.16 7.71

Table 4.1 – Query performance – Lazy v/s Parallel fetch

Graph 4.1- Query performance – Lazy v/s Parallel fetch

Hence, we can say that, splitting a large report into multiple parallel query will enhance the performance

of the simple and complex reports executed on large tables. Scalability can also increase by splitting the

queries on multiple MySQL slave servers.

5. CONCLUSION AND RECOMMENDATIONS

On the basis of our experiments in chapter 4 of this thesis we have seen significant enhancement in performance

results when compared with both lazy and parallel fetch approach and same has been compared between chache

based databases and non-distributed databases.

0.

10.

20.

30.

40.

50.

sql1/2000.log:1 sql6/2005.log:1 sql11/2010.log:1 sql16/2015.log:1

Year-wise Query Execution times (sec)

Parallel Query Execution time (sec)

Single Query Execution time (sec)

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1131

As we have checked our performance results on latest Amazon RDS by using Amazon Aurora MySQL 5.6

database. Earlier MySQL database was not the good candidate when it comes to perform on multiple CPU’s or

we can say that prior to introduction of Amazon Aurora MySQL 5.6 and higher versions, the MySQL works

badly when it comes to multiple CPU’s.

Apart from the database selection further we require an approach which can works on high number of tuples (

288K in our experiments) , the parallel fetch approach we used in our experiments when compared with non-

parallel approach i.e lazy fetch. We saw significant improvement in performance of the queries and actually it

is 3 times faster when using parallelism.

If we look on the Fig 5.1, we can see the performance comparison of both the approaches and it further shows

that for lower workloads or when the volume of data is nearly upto 250 tuples, the performance of both the

approach is nearly same but when the data volume increases the performance of both parallel and lazy or non-

parallel approach differs and parallel fetch far outclass the lazy fetch or non-parallel fetch approach when it

comes to performance on large datasets.

So we can say that the parallel fetch approach is the answer when we deals with the fast OLAP queries based

on both horizontally and vertically distributed data in distributed and non-distributed databases.

This parallel fetch approach is yet to implement or experimented on new clouds databases like MariaDB or

Postgres databases and it will be good to see how this cache mechanisms works on other cloud databases.

Fig. 5.1. Lazy Fetch v/s Parallel Fetch graphical representation.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1132

References

1. Samaniego, M., Jamsrandorj, U. and Deters, R., 2016, December. Blockchain as a Service for IoT. In 2016

IEEE international conference on internet of things (iThings) and IEEE green computing and

communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart

data (SmartData) (pp. 433-436). IEEE.

2. Islam, M., Dinh, A., Wahid, K. and Bhowmik, P., 2017, April. Detection of potato diseases using image

segmentation and multiclass support vector machine. In 2017 IEEE 30th Canadian conference on electrical

and computer engineering (CCECE) (pp. 1-4). IEEE.

3. Su, H., Cai, Y. and Du, Q., 2016. Firefly-algorithm-inspired framework with band selection and extreme

learning machine for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 10(1), pp.309-320.

4. Goldberg, K., 2011. What is automation?. IEEE transactions on automation science and engineering, 9(1),

pp.1-2.

5. Shakkottai, S., Rappaport, T.S. and Karlsson, P.C., 2003. Cross-layer design for wireless networks. IEEE

Communications magazine, 41(10), pp.74-80.

6. Pawlowski, T., 2016, May. Memory, Storage and Processing in Future Parallel and Distributed Processing

Systems. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (pp. 473-

473). IEEE.

7. Raza, M.U. and XuJian, Z., 2020, May. A Comprehensive Overview of BIG DATA Technologies: A

Survey. In Proceedings of the 2020 5th International Conference on Big Data and Computing (pp. 23-31).

8. Published in: IEEE Journal of Biomedical and Health Informatics (Volume: 21, Issue: 4, July 2017)

Page(s): 1049 – 1057 Date of Publication: 13 June 2016; ISSN Information: PubMed ID: 27323383;

DOI: 10.1109/JBHI.2016.2580145; Publisher: IEEE.

9. Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D. and Moon, B., 2012. Parallel data processing with MapReduce:

a survey. AcM sIGMoD Record, 40(4), pp.11-20.

10. Rackl, G., 2001. Monitoring and managing heterogeneous middleware (Doctoral dissertation, Technische

Universität München).

11. Watson, P. and Townsend, P., 1990, September. The EDS parallel relational database system. In Workshop

on Parallel Database Systems (pp. 149-166). Springer, Berlin, Heidelberg.

12. Buff, H.W., 1988. Why Codd's Rule No. 6 Must be Reformulated. SIGMOD Record, 17(4), pp.79-80.

13. Afrati, F.N. and Ullman, J.D., 2010, March. Optimizing joins in a map-reduce environment. In Proceedings

of the 13th International Conference on Extending Database Technology (pp. 99-110).

http://www.jetir.org/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7963898
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=ShowDetailView&TermToSearch=27323383&ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
https://doi.org/10.1109/JBHI.2016.2580145

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902D62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1133

INTERNET- SOURCES

1. http://www.dbs.ethz.chinternet/

2. docs.amazonaws.cn

3. ecommons.usask.ca

4. http://www.macs.hw.ac.ukinternet/

5. www.cs.cmu.edu

6. www.coursehero.com

7. www.livrozilla.com

8. www.etd.auburn.edu

9. www.aws.amazon.com

http://www.jetir.org/
http://www.dbs.ethz.chinternet/
http://www.macs.hw.ac.ukinternet/
http://www.cs.cmu.edu/
http://www.coursehero.com/
http://www.livrozilla.com/
http://www.etd.auburn.edu/
http://www.aws.amazon.com/

