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Abstract 

 

General family of Stein rule estimators is considered for general linear regression model. The 

approximation to the probability density function of the estimator is derived assuming the disturbances 
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1. Introduction  

                                                                                                                                             

Stein’s counter to the well established overall dominance of the classical least squares (CLS) estimator for 

estimating the coefficient vector in a linear regression model has been a well debated matter in literature. The use 

of Stein-rule estimators in real data problems has also received considerable attention in the literature, e.g., 

Knight et al.(1992,1993,1993a), Bao and Wan(2007), Adkins(1995), Wan et al.((2003)), McClatchey and 

VandenHul(2005), Grauer and Hakansson(2001) and Stevenson(2001). 

 Based on Stein’s philosophy, several shrinkage estimators for the coefficient vector have been proposed 

in the literature; see, Judge et al.(1985) for a detailed account. Most of the studies concerning these estimators 

have been done regarding the optimal choice of these characterizing scalars in order to establish their superiority 

over the classical least squares (CLS) estimators, e.g., Shalabh et al.(2009), Srivastava and Upadhyaya(1977) and 

Ullah and Ullah(1978). Shrinkage estimators possess an implicit optimality with respect to classical least square 

estimator, but the gains of these estimators should be assessed in terms of their concentration around the true 

unknown parameter they aim to estimate. This is important because the two approaches are contradictory in 

nature. The quadratic loss theme emphasizes on the deviations of estimate from the true value while the 

concentration theme revolves around the closeness of estimates around the parameter. The mean squared error 

criterion safeguards from larger deviations of the estimate rather than providing a measure of proximity of the 

estimates to the unknown value. 
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Rao(1981) suggested to employ a proper measure of proximity of estimates to the true value for judging the 

performance of an estimator which is more intrinsic in nature. The two well known measures of concentration of 

estimators are Pitman Nearness and the Probability of Concentration. The Pitman Nearness criterion suffers from 

certain basic drawbacks e.g. lack of transitivity. For detailed discussions on the merits of the two criterion of 

concentration see Robert et al (1993). 

Performance of various shrinkage estimators for the coefficient vector of the linear regression model are judged 

with the concentration Probability criterion. For this purpose the sampling distribution of these estimators is 

required. The exact expressions for the probability density functions of these non linear shrinkage estimators are 

fairly complicated and as such it becomes difficult to evaluate the expression for the probability of concentration 

there from. Therefore the small disturbance  approximation is used to get the approximation of  probability 

density function of these non linear shrinkage estimators and the concentration probability around parameter is 

evaluated there from. Comparisons on concentration probabilities have been done and dominance conditions are 

derived for various prominent shrinkage estimators. The plan of the paper is as follows. In section 2 of the paper, 

we describe the model and estimators, while in section 3 we present the small disturbance approximation of 

probability density function of the proposed general class and derived the  concentration probability of proposed 

general class as well as of the classical least square estimator. Finally, in section 4, we investigate the optimal 

choices for the characterizing scalars for the relative dominance of these estimators over each other. 

 

2.  The Model and Estimators 

Let us postulate a linear regression model 

uxy                               (2.1) 

Where y is a 1T  vector of observations on the variable to be explained, X is a pT   full column rank matrix 

of observation on explanatory variables,  is a 1p  vector of regression coefficients being estimated, and u is a 

1T  vector of disturbances which are assumed to be small and normally distributed with mean vector 0 and the 

variance covariance matrix as TI2 . 

The classical least square (CLS) estimator 0


 which is the best linear unbiased estimator of  , is given by 

  yXXX 
1

0̂        (2.2)                  with 

variance covariance matrix as   12 
XX . 

However, employing Stein’s philosophy, we can improve upon the performance of least squares estimator 

by shrinking it towards the null vector. Let us consider the following class of Stein-rule estimators for  . 
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which is characterized by three non-stochastic scalars K1, K2 and K3. Here )ˆ()(
1

00  XyXy
pT

s 





 is 

the residual sum of squares. 

This class is fairly general in the sense that it encompasses many interesting cases. For example, setting 

K1 = 0, we get the CLS estimator 0


. On the other hand, if we set K1 >0, and K2 = K3 = 0, we obtain a class of 

estimators 
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which is a special case of the class of estimators considered by Srivastava and Upadhyaya(1977). 

 Similarly, by setting K1>0 and K3=0 in (2.3), we get another interesting class of estimators, viz.,  
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which reduces to the well known Double K- class estimator of Ullah and Ullah(1978) if we take K1= K1
* and 

K2=1- K1
*, the properties of which were studied by Vinod(1980), Carter(1981), Menjoge(1984) and Srivastava 

and Chaturvedi(1986). 

 Another interesting possibility is when we choose K1>0 and K2=0 in (2.3), this provides the class of 

estimators as  
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We shall concentrate our attention to the general class ̂  and study its properties under the concentration 

probability criterion. There from we shall explore the optimal choices of the characterizing scalars K1, K2 and K3 

for the relative dominance of the constituent members of this class over each other. 

3. The small disturbance approximation of probability distribution    

 

Before presenting the large sample approximation of the probability distribution function of the class of estimator

̂ , let us introduce the following notations. 

Let us denote by 
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Where r  denotes the estimator in its standardized form on the basis of its leading term analysis, )(r denotes the 

probability density function of a standard normal vector r  in terms of  and     denotes the noncentrality 

parameter. 

Theorem 3.1   The small disturbance approximations for the probability density function of the stochastic vector 

variable r , up to the order )( 2
3

TOp , is given by 
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The small disturbance approximations for the sampling distributions of the estimators 320
ˆ,ˆ,ˆ   and 

also of the least square estimator b can be obtained from (3.2) along with (3.3) by substitution of 

00,0,0 12332  KandKKKK  respectively. This does not disturb the sampling 

behavior of these estimators. 
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The theorem is derived in the appendix 

4. Concentration Probability of estimators 

The concentration of an estimator 
~

 around the true unknown value   is defined in terms of the 

probability of its concentration around  . Thus the concentration probability of estimator 
~

 in the 

neighborhood of   is given by  

            pjmmCP jjj ,.......2,1;
~

Pr
~

Pr)
~

(                          (4.1) 

Where ),......,( 21 pmmmcolm    is an arbitrarily chosen constant vector with jth element as jm , and 

j
~

 and j     being jth elements of the estimator 
~

 and the parameter vector   respectively. This 

gives the concentration of the estimator 
~

 in the region bounded by planes  

 pjm jjj ,.......2,1;
~

  in the p-dimensional Euclidean space. 
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Where  )(z  is the standard multivariate normal density of variable vector z. 

The concentration probability of least square estimator of  b  around   can be shown as  

                   )()( mbCP                                                                                 (4.3) 

Theorem 4.1:  The small disturbance approximation for the concentration probability of estimator ̂  

around   in the region ),.....2,1;( pjmr jj  of the p dimensional Euclidean space, to the order 

)( 3O , is given by 
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Where E  is a diagonal matrix of constants with elements as ).........,( 21 peeediagE   where   
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5. The optimal choice of estimator 

The concentration probability of estimators of least square estimator b and the general class of Stein-

rule estimator ̂  is same up to the order ).(O  However if we go up to the order )( 3O  the 

difference in their concentration is given by 
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Thus the class of estimator ̂  will have greater concentration around    to the order )( 3O , if and 

only if, we have 

0 < 𝐾1 < 2 (
𝑛

𝑛 + 2
) [

𝑡𝑟 𝐸

(
𝛼′𝐸𝛼

𝜃𝑜
)

(
𝐾3 + 𝜃𝑜

𝜃𝑜
) − 2] 

The condition will definitely hold true as long as  
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Assuming without loss of generality peee  .........21  the sufficient condition for dominance of the 

class of shrinkage estimators ̂  over the classical least square estimator is  
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In particular if 
021 ........... mmmm p    the condition (5.3) reduces to 
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This matches exactly with the necessary and sufficient condition of dominance of Stein rule estimator 

over least square estimator under the predictive risk criterion. 

To explore further among the various choices of these estimators within the class of ̂ , we observe that 
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The difference will be positive if and only if  
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Sufficient condition to hold (5.6) good is 
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For selecting the best estimator in the pair )ˆ,ˆ(
~~

20   , the difference in the concentration 

probabilities of estimators 0̂  and 2̂  to the order )( 4O  comes out to be  
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This is positive if and only if we have  
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The sufficient condition for (5.10) to hold true comes out to be 
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The necessary and sufficient condition when  021 ........... mmmm p   comes out to be  
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Thus we summarize that if the characterizing scalar 1K  is chosen as  )2(20 1  pK with

0,0 32  KK  the estimator ̂  will definitely superior to the classical least square estimator b . 

Further, if 1K is chosen   )4(0 1  pK the estimator 0̂  will give the best performance. 

6. Appendix 
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and negative suffixes in   denote the order of terms in probability. Thus, 
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The characteristic function of the random vector r is defined as 
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On expansion and evaluating the respective expectations the approximation for the characteristic 

function of random vector variable r, up to the order )( 2
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Employing this approximation for the characteristic function in the inversion theorem to get the large 

sample approximations for the probability density function )(rf  
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For evaluating the approximation for the concentration probability of estimator ̂  to be close to   we 

apply 
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Evaluating this multiple integral we get the result derived in the theorem. 
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