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Abstract : Mixing or Stirring process constitutes an important part in process engineering especially in paint manufacture industry. After the  

sizing , design development  of  conical dual blade sinusoidal mixer , the critical components of the dual blade sinusoidal mixer have being 

designed and analysis of the components is done  The paper deals with design development of the components as the worm shaft , worm , 

worm gear, main shaft and the secondary agitator shaft. The theoretical design of the components has been done after appropriate selection 

of materials, followed by solid modelling of the components using Unigraphix Nx. The static structural analysis of the components has been 

done using Ansys work bench 16.0. The design of the component suing the theoretical method is thus validated using the ansys results. The 

structural strength of the critical components of the dual blade sinusoidal mixer is thus ensured. 
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I.  INTRODUCTION 

 

The sizing, design of conical dual blade sinusoidal mixer is 

successfully done in the previous work and the dimensions of 

the stirrer and the tank have being determined.  Estimation of 

the power requirements of the mixer and the motor power is 

selected with factor of safety of 1.5 and 50watt power motor 

is selected and the gear ratio of worm gear box is revised to 

1:80-. The arrangement of the blades of the constituting of an 

worm gear pair. As the designed rpm of 20 the system 

components are designed for the design torque corresponding 

to the designed speed 

 

Input data : 

Motor power = 50 watt , 8000 rpm 

Reduction ratio of pulley system = 5 

Worm shaft torque = 0.3 N-m 

Worm gear ratio = 1:80 

Worm gear torque = 23.9 N-m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 : Schematic of the Conical dual blade sinusoidal  mixer 

 

 

 

 

II. DESIGN OF WORM SHAFT 

 

 

 

 

 

 

 

 

 

 

Fig. 2 : Design of Worm Shaft 

 

Table 1. MATERIAL SELECTION : -Ref :- PSG (1.10 & 1.24) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD STRENGTH 

(MPa) 

EN24 800 680 

As per ASME code fsallowable= 104 Mpa  

Check for torsional shear failure of shaft 

Te =  fs d3 

    16 

fsact           = 0.884079496/mm2    As;  fsact<fsall    

The worm shaft is safe under torsional load 

 

A. Analysis of Worm shaft  

 

 

 

 

 

 

 

 

 
 

 

Fig. 3 : Analysis of Worm shaft 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 
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Fig. 4 : 

The maximum von mises stress developed is 0.969 Mpa which 

is well below the allowable stress hence the worm shaft is safe 

under torsional load 

 

III. DESIGN OF WORM 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 : Design of Worm 

 

 

Table 2. MATERIAL SELECTION : -Ref :- PSG (1.10 & 1.18) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD 

STRENGTH (MPa) 

20MnCr1 1000 760 

 

As per ASME code fsallowable= 110Mpa  

Check for torsional shear failure of shaft 

Td = /16 x fsactx( D4- d4) /D 

fsact           = 0.233236 Mpa   As;  fsact<fsall    

The worm is safe under torsional load 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Analysis of Worm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 : Analysis of worm 

 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 : 

 

The maximum von mises stress developed is 0.056 Mpa which 

is well below the allowable stress hence the worm is safe under 

torsional load 

 

IV. DESIGN OF WORM GEAR 

 

 

 

 

 

 

 

 

 

 

Fig. 7 : Design of worm gear 
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Table 3. MATERIAL SELECTION : -Ref :- PSG (1.10 & 1.40) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD 

STRENGTH (MPa) 

Cast steel 550 460 

 

As per ASME code fsallowable= 110Mpa  

Check for torsional shear failure of shaft 

Td = /16 x fsactx( D4- d4) /D 

fsact           = 1.826  Mpa   As;  fsact<fsall    

The worm gear is safe under torsional load 

 

C. Analysis of Worm Gear: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 : Analysis of Worm Gear 

 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 : 

 

The maximum von mises stress developed is 0.056 Mpa which 

is well below the allowable stress hence the worm is safe under 

torsional load 

 

 

 

 

 

 

 

 

 

 

 

 

V. DESIGN OF MAIN SHAFT 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 : Design of main shaft 

 

Table 4. MATERIAL SELECTION : -Ref :- PSG (1.10 & 1.24) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD 

STRENGTH (MPa) 

EN24 800 680 

 

As per ASME code fsallowable= 104 Mpa  

Check for torsional shear failure of shaft 

Te =  fs d3 

   16 

fsact           = 15.21323997  MPa As;  fsact<fsall    

The worm shaft is safe under torsional load 

 

D. Analysis of Main shaft : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 : Analysis of Main shaft 

 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 
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Fig.12 :  

 

The maximum von mises stress developed is 0.969 Mpa which 

is well below the allowable stress hence the worm shaft is safe 

under torsional load 

 

VI. DESIGN OF SECONDARY AGITATOR SHAFT 

 

 

 

 

 

 

 
 

Fig.13 : Design of Secondary Agitator Shaft 

 

Table 5. MATERIAL SELECTION : -Ref :- PSG (1.10 & 1.24) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD STRENGTH 

(MPa) 

EN24 800 680 

 

As per ASME code fsallowable= 104 Mpa  

Check for torsional shear failure of shaft 

Te =  fs d3 

      16 

fsact           = 5.89386331=  MPa As;  fsact<fsall    

The secondary agitator shaft is safe under torsional load 

 

E. Analysis of Secondary agitator shaft : 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14 : Analysis of secondary agitator shaft 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15 : 

 

The maximum von mises stress developed is 0.969 Mpa which 

is well below the allowable stress hence the worm shaft is safe 

under torsional load 

 

Result and Discussion   

 

The following results for design and analysis of critical 

components of the Conical Dual blade sinusoidal mixer  

1. Maximum stress induced by theoretical method in the 

worm shaft is 0.88 Mpa and the maximum Von-mises 

stress determined using Ansys Workbench is 0.0.05 

Mpa , both are well below the allowable limit hence the 

worm shaft is safe under torsional load. 

2. Maximum stress induced by theoretical method in the 

worm is 0.23 Mpa and the maximum Von-mises stress 

determined using Ansys Workbench is 0.05 Mpa , both 

are well below the allowable limit hence the worm 

shaft is safe under torsional load. 

3. Maximum stress induced by theoretical method in the 

worm gear is 1.86 Mpa and the maximum Von-mises 

stress determined using Ansys Workbench is 2.692 

Mpa , both are well below the allowable limit hence the 

worm shaft is safe under torsional load. 

4. Maximum stress induced by theoretical method in the 

main shaft is 15.23 Mpa and the maximum Von-mises 

stress determined using Ansys Workbench is 22.283 

Mpa , both are well below the allowable limit hence the 

worm shaft is safe under torsional load. 

5. Maximum stress induced by theoretical method in the 

secondary agitator shaft is 5.89 Mpa and the maximum 

Von-mises stress determined using Ansys Workbench 

is 8.92 Mpa , both are well below the allowable limit 

hence the worm shaft is safe under torsional load. 

 

Conclusion 

   

 The sizing, design analysis critical components of conical 

dual blade sinusoidal mixer is successfully done and the 

dimensions of the components have being determined.  

Estimation of the maximum stress induced in the components 

of the mixer have being determined by both theoretical method 
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as well as using Ansys Work bench and the results indicate 

that the maximum stress values are well below the permissible 

limit hence the parts are safe under given system of loads.  

 

Future Scope 

The sinusoidal blades geometry determination and structural 

analysis of the twin blade in individual system as well as in 

the integrated form to the main shaft will be done in the 

subsequent work. Similarly the geometry of the secondary 

agitator blade in the individual system as well as in the 

integrated form to the secondary agitator shaft will be done in 

the subsequent work 
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