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Abstract: With the conventional energy resources new diminishing the employment of renewable energy sources like the wind energy, solar 

energy is need of the time. One of the potential area for micro generation by harnessing wind energy is to use the pressure variations attained 

due vehicle motion by application of innovative lightweight materials and with aid of additive manufacture technology development of a 

compact vertical axis wind turbines h. Present paper discusses the component design of one such novel design of an vertical axis wind turbine 

with four vane profile having micro generation capability. The paper deals with design development of the, top vane holder, bottom vane 

holder, vortex chamber, turbine shaft, coupler shaft and shaft bearing holder. The theoretical design of the components has been done after 

appropriate selection of materials, followed by solid modelling of the components using Unigraphix Nx. The static structural analysis of the 

components has been done using Ansys work bench 16.0. The design of the component suing the theoretical method is thus validated using 

the ansys results. The structural strength of the critical components of vertical axis wind turbine is thus validated using analytical results. 
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I. INTRODUCTION 

 

Apart from the conventional methods of wind energy 

generation there is enough scope for development of low scale 

or micro-generation of energy using wind through application 

of pressure variations due vehicle motion either transport road 

vehicles or, railways. Devices can be effected for harnessing 

wind energy   through the development of a compact design 

vertical axis with turbine that uses lightweight materials and 

the complex geometry of the vanes attained through 

innovative design of the vane holders that can be produced 

without much difficulty using fused deposition method using 

cad design which will make the adoption of these micro 

generator units easy due to their compact size, easy of 

manufacture and low cost. 

A. Schematic of the Compact micro generation capability 

     Vertical Axis Wind Turbine    

 

Fig. 1 : Schematic of  compact VAWT 

The figure above displays the constructional features of the 

proposed compact vertical axis wind turbine where in the 

four vanes are held on the turbine shaft with the help of the 

top vane holder and bottom vane holder. The top and bottom 

vane holders are designed to hold four vanes and the 

combination of the face tapers and vertical axis skew in the 

assembly enables to create the design vane opening angle 

without any special machining process. The vanes are 

fabricated from flexible poly propylene sheets where as the 

top and bottom holders are fabricated by fused deposition 

method which employs a3-d printing machine and ABS 

polymer is used as the material for the vane holders. 

Addition of the vortex chamber will supposedly increase the 

power output of the turbine 
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Fig. 1 : Schematic of vortex chamber 

 

Input data for design through sizing of the VAWT 

The following results for design of the compact vertical axis 

wind turbine are as follows: 

1. The minimum power extracted by the turbine at 

speed of 30 kmph is   12.85 Watt 

2. The minimum power extracted by the turbine at 

speed of 80 kmph is   103.2667 Watt 

3. The rotor diameter is 180 mm the turbine height is 

215 mm, minimum wing width is 25.2 mm 

whereas the minimum wing chord is 50 mm. 

4. The component weight of the turbine vane holder 

is as low as 28.2 gm  

5. Maximum torque @ turbine shaft = 1.12 N-m 

Compact micro generation capability Vertical 

Axis Wind Turbine 

 

II. DESIGN OF TURBINE SHAFT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 : Design of Turbine Shaft 

 

Table 1. MATERIAL SELECTION : -Ref :- PSG (1.10 & 1.24) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD 

STRENGTH (MPa) 

Aluminium 24345 480 310 

 

As per ASME code fsallowable= 87Mpa  

Check for torsional shear failure of shaft 

Te =  fs d3 

   16 

fsact           = 11.13940165  MPa  As;  fsact<fsall    

The Turbine shaft is safe under torsional load 

 

B. Analysis of Turbine shaft  

 

 

 

 

 

 

 

 

 

 
Fig. 4 : Analysis of Turbine shaft 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 : 

 

The maximum von mises stress developed is 4.45 Mpa which 

is well below the allowable stress hence the turbine shaft is 

safe under torsional load. 

 

III. TOP VANE HOLDER 
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Fig. 6 : Top Vane Holder Geometry 

 

Table 2. MATERIAL SELECTION: -Ref :- PSG (1.10 & 1.18) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD STRENGTH 

(MPa) 

ABS Polymer 66 48 

 

 

 

As per ASME code fsallowable= 12Mpa  

Check for torsional shear failure of shaft 

Td = /16 x fsactx( D4- d4) /D 

fsact           = 2.161575248  Mpa   As;  fsact<fsall    

The top vane holder is safe under torsional load 

 

C. Analysis Top vane Holder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 : Analysis of top vane Holder 

 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 : 

 

The maximum von mises stress developed is 4.45 Mpa which 

is well below the allowable stress hence the turbine shaft is 

safe under torsional load 

 

 

 

 

IV. BOTTOM VANE HOLDER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 : Bottom van holder 

 

Table 3. MATERIAL SELECTION : -Ref :- PSG (1.10 & 1.18) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD 

STRENGTH (MPa) 

ABS Polymer 66 48 

 

As per ASME code fsallowable= 12Mpa  

Check for torsional shear failure of shaft 

Td = /16 x fsactx( D4- d4) /D 

fsact           = 2.268933353 Mpa   As;  fsact<fsall    
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The top vane holder is safe under torsional load 

 

D. Analysis of Bottom vane Holder: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 : Analysis of bottom van holder 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 : 

 

The maximum von mises stress developed is 0.312 Mpa which 

is well below the allowable stress hence the turbine  shaft is 

safe under torsional load 

 

V. VORTEX CHAMBER 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 : Vortex Chamber 

 

Table 4. MATERIAL SELECTION : -Ref :- PSG (1.10 & 1.18) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD STRENGTH 

(MPa) 

ABS Polymer 66 48 

 

As per ASME code fsallowable= 12Mpa  

Check for torsional shear failure of shaft 

Td = /16 x fsactx( D4- d4) /D 

fsact           = 0.128668458Mpa   As;  fsact<fsall    

The vortex chamber is safe under torsional load 

 

 

 

 

 

 

E. Analysis of Vortex chamber : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 : Analysis of Vortex chamber 

 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14 :  

 

The maximum von mises stress developed is 2.328 Mpa which 

is well below the allowable stress hence the vortex chamber is 

safe under torsional load 
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VI. DESIGN OF COUPLER SHAFT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15 : Design of Coupler Shaft 

 

Table 5. MATERIAL SELECTION : -Ref :- PSG (1.10 & 1.24) 

DESIGNATION 
ULTIMATE TENSILE 

STRENGTH (MPa) 

YEILD 

STRENGTH (MPa) 

Aluminium 24345 480 310 

 

As per ASME code fsallowable= 87Mpa  

Check for torsional shear failure of shaft 

Te =  fs d3 

   16 

fsact           = 18.13865525 

MPa  As;  fsact<fsall    

The Coupler shaft is safe under torsional load 

 

 

F. Analysis of Coupler shaft : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16 : Analysis of coupler shaft 

 

The component geometry was developed using Unigraphix 

NX and step file was used as input to ansys workbench, the 

boundary conditions and loading was done as shown in figure 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17 : 

 

The maximum von mises stress developed is 29.29 Mpa which 

is well below the allowable stress hence the coupler shaft is 

safe under torsional load 

 

Result and Discussion 

 

The following results for design and analysis of critical 

components of the Vertical axis wind turbine 

1. Maximum stress induced by theoretical method in the 

turbine shaft is 11.3 Mpa and the maximum Von-mises 

stress determined using Ansys Workbench is 4.48 Mpa 

, both are well below the allowable limit hence the 

worm shaft is safe under torsional load. 

2. Maximum stress induced by theoretical method in the 

top vane holder is 2.16  Mpa and the maximum Von-

mises stress determined using Ansys Workbench is 

0.7174 Mpa , both are well below the allowable limit 

hence the top vane holder is safe under torsional load. 

3. Maximum stress induced by theoretical method in the 

bottom vane holder is 2.26 Mpa and the maximum 

Von-mises stress determined using Ansys Workbench 

is 0.319 Mpa , both are well below the allowable limit 

hence the bottom vane holder is safe under torsional 

load. 

4. Maximum stress induced by theoretical method in the 

vortex chamber is 0.126 Mpa and the maximum Von-

mises stress determined using Ansys Workbench is 

2.33 Mpa , both are well below the allowable limit 

hence the vortex chamber is safe under torsional load. 

5. Maximum stress induced by theoretical method in the 

coupler shaft is 18.13 Mpa and the maximum Von-

mises stress determined using Ansys Workbench is 

29.29 Mpa , both are well below the allowable limit 

hence the Coupler shaft is safe under torsional load. 
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Conclusion 

 

The sizing, design analysis critical components of vertical axis 

wind turbine is successfully done and the dimensions of the 

components have being determined.  Estimation of the 

maximum stress induced in the components of the mixer have 

being determined by both theoretical method as well as using 

Ansys Work bench and the results indicate that the maximum 

stress values are well below the permissible limit hence the 

parts are safe under given system of loads.  
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