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Abstract—Frequent item sets mining with 
differential privacy refers to the problem of mining 
all frequent item sets whose supports are above a 
given threshold in a given transactional dataset, with 
the constraint that the mined results should not break 
the privacy of any single transaction. Current 
solutions for this problem cannot well balance 
efficiency, privacy and data utility over large scaled 
data. Toward this end, we propose an efficient, 
differential private frequent item sets mining 
algorithm over large scale data. Based on the ideas of 
sampling and transaction truncation using length 
constraints, our algorithm reduces the computation 
intensity, reduces mining sensitivity, and thus 
improves data utility given a fixed privacy budget. 
Experimental results show that our algorithm 
achieves better performance than prior approaches 
on multiple datasets. 
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I. INTRODUCTION 

In recent years, with the explosive growth of data 

and the rapid development of information 

technology, various industries have accumulated 

large amounts of data through various channels. To 

discover useful knowledge from large amounts of 

data for upper-layer applications (e.g. business 

decisions, potential customer analysis, etc.), data 

mining [1]– [9] has been developed rapidly. It has 

produced a positive impact in many areas such as 

business and medical care. 

Along with the great benefits of these advances, the 

large amount of data also contains privacy sensitive 

information, which may be leaked if not well 

managed. For instance, smart phone applications are 

recording the whereabouts of users through GPS 

sensors and are transferring the data to their servers. 

Medical records are also storing potential 

relationships between diseases and a variety of data. 

Mining on user location data or medical record data 

both provide invaluable information; however, they 

may also leak user privacy. Thus mining knowledge 

under confident privacy guarantees is highly 

expected. 

This paper investigates how to mine frequent item 

sets with privacy guarantee for big data. We consider 

the following 
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application scenario. A company (such as 

information consulting firm) has a large-scale 

dataset. The company would like to make the dataset 

public and therefore allow the public to execute 

frequent item sets mining for getting cooperation or 

profits. But due to privacy considerations, the 

company cannot provide the original dataset directly. 

Therefore, privacy mechanisms are needed to 

process the data, which is the focus of this paper. 
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To ensure privacy of data mining, traditional 

methods are based on k-anonymity and its extended 

models [10]–[16]. These methods require certain 

assumptions; it is difficult to protect privacy when 

the assumptions are violated. The insufficiency of k-

anonymity and its extended models is that there is no 

strict definition of the attack model, and that the 

knowledge of the attacker cannot be quantitatively 

defined. To pursue strict privacy analysis, Dwork 

proposed a strong privacy protection model called 

differential privacy [17]. This privacy definition 

features independence of background knowledge of 

the attacker and proves very useful. 

Frequent pattern mining with privacy protection 

has also received extensive attention. As preliminary 

methods [18] – [24], these works have provided a lot 

of contributions in this area. But with the advance of 

research, these privacy methods have not been able 

to provide effective privacy. In order to overcome 

these difficulties, researches began to focus on the 

differential privacy protection framework [25]–[31]. 

Although guaranteeing privacy temporary, however, 

the balance between privacy and utility of frequent 

item sets mining results needs to be further pursued. 

In this paper, we propose a novel differential 

private frequent item sets mining algorithm for big 

data by merging the ideas of [27], [30], which has 

better performance due to the new sampling and 

better truncation techniques. We build our algorithm 

on FP-Tree for frequent item sets mining. In order to 

solve the problem of building FP-Tree with large-

scale data, we first use the sampling idea to obtain 

representative data to mine potential closed frequent 

item sets, which are later used to find the final 

frequent items in the large-scale data. In addition, we 

employ the length constraint strategy to solve the 

problem of high global sensitivity. Specifically, we 

use string matching ideas to discover the most similar 

string in the source dataset, and implement 

transaction truncation for achieving the lowest 

information loss. We finally add the Laplace noise 

for frequent item sets to ensure privacy guarantees. 

A few challenges exist: First, how to design a 

sampling method to control the sampling error? We 

use the central limit theorem to calculate a reasonable 

sample size to control the error range. After 

obtaining the sample size, the dataset is randomly 

sampled using a data analysis toolkit. The second 

challenge is how to design a good string matching 

method to truncate the transaction without losing 

information as far as possible? We match the 

potential item sets in the sample data to find the most 

similar items and then merge them with the most 

frequent items until the maximum length constraint 

is reached. 

As a result, our algorithm reduces the computation 

intensity and addresses high sensitivity of frequent 

item sets mining. The performance is also 

guaranteed. Through the analysis of privacy, our 

algorithm achieves -differential privacy. Experiment 

results using multiple datasets showed that our 

algorithm achieves better performance than prior 

approaches. 

To summarize, we make the following 

contributions: 

• We propose a differentially private big data 

frequent item sets mining algorithm with high 

utility and low computational intensity. The 

algorithm guarantees the trade-off between data 

utility and privacy. 

• We achieve high data utility by employing the 

large-scale data sampling and length constraint 

strategy, reducing the number of candidate sets 

of frequent item sets and the global sensitivity. 

Experimental results demonstrated the data 

utility. 

• We conduct formal privacy analysis. The 

proposed algorithm achieves -differential 

privacy. 

The rest of this paper is organized as follows: 

Section II discusses related works. Section III 

introduces background knowledge about differential 

privacy and basic tools that to be used. Section IV 

presents the proposed algorithm to mine top k 

frequent item sets with differential privacy. Section 

V gives the analysis. Section VI shows the 

performance evaluation on multiple datasets. Section 

VII finally concludes our work. 

II. RELATED WORK 

The privacy issue of frequent item sets mining is a 

main focus of research efforts. We categorize 

relevant work based on the underlying techniques - 

from anonymity to differential privacy. 

Anonymity Approaches. For distributed datasets, 

Clifton et al. proposed a secure multi-party privacy-

protecting association rule mining algorithm [18]. 

The idea is to transform the problem into a secure 

multi-party computation problem under horizontal 

distribution. Vaidya et al. proposed a privacy 

preserving association rule algorithm that uses secure 
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scalar calculation method to find all frequent item 

sets under vertical distribution [19]. In [20], Z Teng 

et al. proposed a hybrid privacy-preserving algorithm 

under vertical distribution. 

For centralized datasets, Wong et al. proposed to 

employ 1-to-n encryption method to change original 

item sets in order to protect data privacy when 

outsourcing frequent item sets mining [21]. Ling et 

al. proposed an algorithm that transforms business 

information into very long binary vector and a series 

of random mapping functions based on bloom filters. 

Later, Tai et al. proposed a k-support anonymity 

based frequent item sets mining algorithm [23]. All 

these methods above sacrifice the precision of 

mining result. 

Differential Privacy Approaches. Because 

traditional approaches are based on heuristics, a solid 

privacy guarantee is missing. Therefore, researchers 

began to investigate frequent item sets mining with 

differential privacy. Bhaskar et al. presented two 

mining algorithms [25], which are representatives of 

frequent item sets mining with differential privacy. 

Later, in order to solve the high dimensional 

challenge of dataset, Li et al. proposed the 

PrivBasisalgorithm that combines θ-basis and 

mapping technique to achieve top-k frequent item 

sets mining [26]. Zeng et al. proposed a greedy 

method of transaction truncation approach by 

limiting the maximum length of transactions of 

dataset [27]. 

Besides researches in the interactive framework, 

differentially private frequent item sets mining is 

also studied in the non-interactive framework [28]–

[30]. Han et al. focused on the issue of top-k query 

privacy in Map Reduce [28]. Chen et al. proposed a 

method that employs a context-free classification 

tree and combines a top-down tree partitioning 

method to publish a dataset [29]. Lee et al. proposed 

a method of using the prefix tree to privately publish 

frequent item sets [30]. Su et al. proposed a 

cryptographic algorithm that divides the dataset 

based on the high global sensitivity [31]. Despite all 

these work, there are still rooms for balancing utility 

and privacy, which is our work here. 

In addition to the above general researches, 

domain-specific frequent item sets mining with 

differential privacy is also studied. Chen et al. 

proposed the top-down prefix tree to publish the 

trajectory dataset [32]. Chen et al. also proposed a 

method for publishing sequence dataset based on 

variable length N-gram models [33]. Bonomi et al. 

analyzed the both above algorithms and proposed a 

two-phase algorithm [34] to improve performance. 

For solving the problem of large frequent sequence 

candidate sets, Xu et al. presented to shrink and 

convert dataset, which reduces the number of 

candidate sets to improve data utility [35]. Shen et al. 

focused on the issue of publishing map dataset [36]. 

Xu et al. studied mining frequent subgraphs with 

differential privacy in a complex large graph based 

on constructing directed lattices [37]. 

III. PRELIMINARIES 

A. Differential Privacy 

Differential privacy as a new type of privacy 

definition is proposed for the privacy of statistical 

databases by Dwork [17]. It defines a very strict 

attack model, and gives a rigorous, quantitative 

representation and proof for the risk of privacy 

disclosure. 

Definition 1. (-Differential Privacy). Let D and D0 

denote any databases which differ by at most one 

record, Range(K) represent the range of a random 

function K. If a random function K satisfies -

differential privacy, for any S ⊆Range(K), we have 

Pr[   (1) 

where is a real number denoting the privacy budget 

parameter. 

The smaller the is, the higher the degree of privacy 

is preserved. The differential privacy protection is 

achieved by adding quantitative noise; the amount of 

required noise depends on the sensitivity. Intuitively, 

the sensitivity quantifies the change of the query 

results caused by deleting any transaction in the 

dataset. 

Definition 2. (Sensitivity). Given any function: Dn→ 

Rk, denote 4f as the sensitivity of f; it is defined as 

follows: for all neighboring databases (i.e., differs 

only in one row) D and D0 

4f = maxD,D0||f (D) − f(D0)||1 (2) 

The sensitivity magnitude of the function is 

determined by the function itself; different functions 

have different sensitivities. For most query functions 

f, the value of 4f is relatively small. The sensitivity is 

then used to control the noise level in differential 

privacy. When the noise is too large, it affects data 

utility. It is worth noting that sensitivity is 

independent of the dataset. 

http://www.jetir.org/
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B. Noise Mechanism 

The main technique of achieving differential 

privacy protection is to add noise. Dwork proposed 

the Laplace mechanism to achieve differential 

privacy. For different situations, the exponent 

mechanism, geometric mechanism and Gaussian 

mechanism were also proposed. The commonly used 

noisy addition mechanisms are the Laplace 

mechanism and the Exponential mechanism. The 

Laplace mechanism is usually for mining algorithms 

that output numeric result; the exponential 

mechanism is mainly applied to algorithms that 

output nonnumerical results. 

The amount of noise is affected by the sensitivity 

and the privacy budget. Generally, the privacy 

budget is set in advance, then the noise is determined 

by the sensitivity. 

Definition 3. (Laplace Distribution). The probability 

density function of the Laplace distribution with 

scale parameter λ is defined as: 

Pr(   (3) 

Theorem 1. (Laplace Mechanism). Let f :Dn→ R be 

a function with image over real number values. The 

following mechanism K satisfies -differential 

privacy. 

K (D) = f (D) + Lap   (4) 

Where Lap  is a noise with the Laplace 

distribution. 

The noise size is proportional to 4f and is inversely 

proportional to . 

Composability Theorems. In general, a complex 

privacy preserving algorithm requires multiple 

application of different differential privacy 

mechanisms. In this case, in order to ensure that the 

whole process satisfies -differential privacy, it is 

necessary to allocate the privacy budget reasonably. 

The composability theorems of differential privacy 

guarantee the overall privacy. 

Theorem 2. (Sequential Composition). Given a fixed 

dataset, let {A1,A2,...,An} be n mechanisms where 

each Ai provides -differential privacy. A sequential 

application of each mechanism provides

differential privacy. 

Theorem 3. (Parallel Composition). Given disjoint 

datasets, let {A1,A2,...,An} be n mechanisms where 

each Ai provides -differential privacy. A parallel 

application of each mechanism provides 

differential privacy. 

C. Frequent Itemsets Mining 

We now briefly introduce frequent itemsets 

mining. Let TI = {t1,t2,...,tN} be a transactional dataset 

consisting of N transactions, I = {i1,i2,...,in} be a set 

of different items, and X be a subset of I such that X 

⊆I. If X is contained in a transaction and X has k 

items, X is called a k- itemset. The support of an 

itemset is defined as the total number of transactions 

that contains the itemset. 

The task of frequent itemsets mining is to find all 

itemsets that have support greater than a given 

threshold. Frequent itemsets is employed for finding 

association rules for a group of data items. 

Association rules show correlational relations of 

different items, which have numerous practical 

application [38], [39]. Association rule generation is 

usually split up into two separate steps: 1) a 

minimum support threshold is applied to find all 

frequent itemsets in a database; 2) a minimum 

confidence constraint is applied to these frequent 

itemsets in order to form rules. While the second step 

is straightforward, the first step needs more attention. 

Finding all frequent itemsets in a database is 

challenging because it involves searching all possible 

itemsets. The representative algorithms for mining 

frequent itemsets include the Apriori algorithm [38] 

and the FP-Growth algorithm [39]. 

We describe the basics of the FP-Growth algorithm 

[39] which underlies our proposed privacy-

preserving algorithm. The FP-Growth algorithm 

features small database scanning operations: it only 

has two-pass database scanning. In the first pass, the 

algorithm counts occurrence of each item 

(attributevalue pairs), and stores them to a header 

table in descending order. It also builds the NULL 

FP-Tree. In the second pass, it inserts the FP-Tree 

with data items and stores their frequency. Items in 

each instance that do not meet minimum support 

threshold are discarded. The final core data structure 

“FPTree” stores all the information for frequent 

itemsets. Finally, all frequent itemsets can be mined 

from the FP-Tree. 

D. Central Limit Theorem 

In our scheme, we use the central limit theorem for 

reasonable sampling. 
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Theorem 4. Let {X1,X2,,Xn} be a sequence of 

independent and identically distributed random 

variables, whose expectation is µ and variance is σ2, 

a finite value. Let Yn= n X 

be a random variable. Then, the distribution 

functionFn(x) of Ynsatisfies the following: 

 
That is, when n is sufficiently large, the distribution 

approximately follows the normal distribution. For 

random sampling, with the increasing of sample size, 

the distribution of the sampling average also tends to 

be the normal distribution. In our proposed 

algorithm, we employ this theorem to determine our 

sampling strategy. 

E. Problem Statement 

Finally, we state our problem explicitly. Given a 

large scale dataset, a privacy budget , and a minimum 

threshold σ, the task is to design a privacy-preserving 

algorithm that mines top k frequent itemsets whose 

supports are not less than the threshold σ, where k is 

an arbitrary given number. The algorithm should 

have minimum computational cost and high mining 

result utility, besides satisfying -differential privacy. 

IV. PROPOSED ALGORITHM 

A. A Strawman Approach 

In order to better understand the challenges posed 

by differential privacy, we first discuss a basic 

approach. That 

is, first generate all the candidate itemsets, then add 

noise to the support of all candidate itemsets directly, 

and finally select the top k frequent itemsets above a 

given threshold. 

We discuss the privacy of the above basic 

approach. Assume that Lf is the maximum length of 

the frequent itemsets, is the number of all i-

itemset, and n is the alphabet size. Then the 

sensitivity of the i-itemset’s support is . Assuming 

the privacy budget is distributed evenly, the privacy 

budget for each i-itemset’s support is . Then, by 

adding noise Lap iL , the basic approach 

satisfies -differential privacy for each i-itemset, 

1 ≤ i≤ Lf. Combining the sequential composition 

properties, the basic approach satisfies -differential 

privacy. 

While achieving -differential privacy, the 

drawback is that the utility of the basic approach is 

very low. This is because 

i 

the noise Lapis significantly large that it makes the 

mining results far from accurate. 

B. Overview 

We now describe our newly proposed algorithm, 

called DPFIM, which merges the ideas of [27], [30], 

but employs a different(better) truncation scheme 

and boosts computation efficiency using both 

sampling and truncation. Compared with previous 

work using random truncation, our new string 

similarity-matching-based truncation mechanism has 

better performance than previous work [27], [30], 

which is because string-similarity-matching-based 

truncation preserves more useful frequent itemset 

candidates. The experimental results in Section VI-B 

also confirms the better performance. The algorithm 

is differentially private; it takes a threshold value σ 

and outputs the frequent itemsets with support at 

least σ. The basic idea is as follows: first, compute a 

noisy support for the threshold σ˜ = σ + Lap(·), then 

truncate the original database noisily, finally 

construct a noisy FP-Tree for mining frequent 

itemsets. 

 
Input: : database D, threshold σ, privacy budget

, item universe I 

Output: frequent item sets F˜ and their noisy 

frequencies 

1: sample a smaller database 

D1 ← Transform Database(D) 

2: compute the closed frequent itemsets L and a 

maximal length constraint lmax← Find Frequent 

ItemSets(D1,I,σ,η) 

using a parameter η 

3: shrink the original database 

DS ← Truncate Database(D,L,lmax) 

4: construct a noisy FP-Tree 

T ← BuildNoisyFPTree(  

Algorithm 1 DP-FIM  
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5: compute the frequent itemsetsF˜ and their noisy 

frequencies using 2 by perturbation 

6: return F˜ and their noisy frequencies 

 

Algorithm 1 describes the high-level process of our 

proposed algorithm. It consists of three phases: the 

preprocessing phase, the mining phase, and the 

perturbing phase. 

Preprocessing phase. Given the large-scale dataset, 

we first sample the dataset and then compute the 

closed frequent itemsets in the smaller sample using 

a traditional frequent itemsets mining algorithm. We 

later estimate the length distribution of the sampled 

dataset and obtain the maximum length constraint, 

which is later used to shrink the dataset. Some 

elements out of the closed frequent itemsets are 

removed from the source dataset if their supports are 

below the support threshold. We then employ string 

matching ideas to cut off the transactions in the 

dataset; in this step, the purpose of converting the 

dataset is to shrink the data size and simultaneously 

retain the potential frequent items. 

Mining phase. We then build a noisy FP-Tree over 

the shrunken dataset. We distribute the privacy 

evenly; we also add noise to the real count results. 

Perturbing phase. Add Laplace noise in the 

candidate frequent itemsets and output them. 

We explain some intuitions behind the proposed 

algorithm. To improve mined result utility, it is 

necessary to reduce the amount of noise added. The 

amount of noise depends on the privacy budget and 

the sensitivity of the underlying components of the 

mining function. Given that the privacy budget is set 

in advance, it is key to reduce the sensitivity. 

According to the definition of sensitivity, the 

sensitivity of k itemset’s support relates to , where 

Ck
lis the set of all k itemsets in all transactions with 

l-length. Thus, we can reduce the sensitivity by 

constraining the length of each transaction. 

Specifically, we use the string matching and the 

longest common subsequence idea to perform 

transaction truncation. That is, we find the most 

similar potential itemsets in the source dataset, and at 

the same time achieve the lowest loss of information, 

which improves data utility. 

In this paper, the privacy budget is mainly 

allocated to the mining phase and the perturbing 

phase. Let   

. The value of µ affects the 

performance of our proposed algorithm. Different 

privacy budget assignment strategy may affect the 

accuracy of the algorithm results. 

C. Preprocessing Phase 

At this phase, we first sample the dataset to have a 

rough estimation of the dataset using the central limit 

theorem. We first compute the sample size and then 

use SAS data analysis software for random sampling. 

The samples can reduce the computational intensity 

of the constructed FP-Tree and find the potential 

frequent itemsets of the source dataset. Similar to 

[27], we obtain a maximum length constraint lmax to 

shrink the transactions in the dataset. 

We deduce the sample size now. Fix an item 

modelled as a binomial distribution with occurring 

probability p. Let q = 1 − p, n be the sample size, and 

fn be the occurrences of the item. The normal practice 

is to make the absolute error  not more than a 

small positive δ with its confidence not less than an 

α value (0 < α <1). Then in order to achieve reliable 

sampling, the value of n should satisfy that 

Pr[ . We compute the probability as 

Pr  

  (6) 

Let Zα be the value such that 

  (7) 

whereZα can be directly found on any normal 

distribution table. From Equations 6 and 7, we have 

that n should satisfy 

. Therefore, we have . 

In practice, the common confidence level is 95% 

and 99%, corresponding to the Zα value being 1.96 

and 2.58. Therefore, in the maximum tolerance error 

of 1% case with confidence of 95% or 99%, the 

corresponding sample size calculated is 9604 and 

16641. That is, for large-scale datasets, we only need 

to deal with the sample, which can achieve the same 

accuracy. In the experiments, we confirm the 

effectiveness of the above sampling approach. The 
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works [40], [41] also demonstrated the effectiveness 

of the sampling approach in association rule mining. 

Using the sampled dataset, we then employ a 

classical frequent itemsets mining algorithm (here 

using the Apriori algorithm) to obtain the set of 

closed frequent itemsets L, which is a maximal set in 

the sense that no super set satisfies the support 

threshold requirement. We list the details in 

Algorithm 2. 

Algorithm 2 FindFrequentItemSets(D1,I,σ,η) 

Input: sampled data set D1, threshold σ, item universe 

I, truncation percentage variable η 

Output: closed frequent item sets L, and a maximal 

length constraint lmax 

1: let L = ∅ 

2: invoke the Apriori algorithm: for all 1-item set L1 

in the 

D 1 do 

3: if L1.support ≥ σ then 

4: k=2, C1 = L1 

5: Ck= all candidate k-item sets from Ck−1 

6: for each transaction t in D1 do 

7: Ct = all subsets of Ck contained in the trans- 

Action t 

8: for each candidate C in Ct do 

9: C.support+ + 

10: end for 

11: end for 

12: if C.support≥ σ then 

13: add C to Lk 

14: L+ = Lk 

15: end if 

16: k + + 

17: end if 

18: estimate distribution of D1, getting the 

distribution {z 1,...,zi,...,zn}, where ziis the number 

of transactions with length i in D1 

l 

19: lmax= the smallest integer such that (P zi)/|D1| ≥ η 

i=1 

20: obtain all closed frequent item sets L and the 

maximal length constraint lmax. 

21: return L, lmax 

 

In Algorithm 2, we use the sampled dataset to find 

the potential itemsets in the source dataset, without 

paying attention to the support count. Again, note 

that the closed frequent item sets is that if there exists 

superset of itemset X with support at least the 

threshold, then the itemset X is not a closed frequent 

itemset. 

For the value of maximum length constraint lmax in 

Algorithm 2, we refer to [27] to estimate the 

distribution of transaction length {z1,...,zi,...,zn} in a 

sampled dataset using a heuristic method. That is, 

starting from the itemset with length 1, incrementally 

calculate zi and summarize until 

l 

the formula (P z i)/|D1| ≥ η is satisfied. We get the 

smallest 

i=1 

i value as a maximum length constraint lmax. We note 

that the maximum length constraint lmax value affects 

the performance of the proposed algorithm. Thus the 

value of η is also very important. In the experimental 

evaluation section, we will discuss the effect of η on 

our algorithm. 

Algorithm 3 describes the detailed process by 

which we get the shrunken dataset. Given the closed 

frequent itemsets L and the length constraint lmax, we 

compute all 1-itemsets L1 with the support ≥ σ, and 

sort the itemset in descending order by support. For 

each transaction in the original dataset, each 

transaction is sorted and transformed according to 

the length constraint lmax. The unnecessary elements 

are eliminated, finally obtaining the shrunken 

dataset. Given a transaction t = {i1,i2,...,in} that 

violates the length constraint, we employ the closed 

frequent itemsets set to find the most similar string to 

execute truncation using the idea of string matching. 

We keep the frequent itemsets as much as possible in 

the truncated transactions. Specifically, we use the 

longest common subsequence(LCS) algorithm [42] 

to find the most similar truncated transaction. The 

intuition is that it can preserve maximal useful 

information. 

Based on the truncated dataset obtained in the 

preprocessing phase, the size is greatly reduced. We 

note that the use of length constraint to cut off the 

Algorithm 3 TruncateDatabase ( D, L ,l max )  

Input: database D item sets , closed frequent L , maximal Algorithm 4 BuildNoisyFPTree ( D S , 1 ,l max )  

http://www.jetir.org/


© 2019 JETIR February 2019, Volume 6, Issue 2                                                  www.jetir.org (ISSN-2349-5162) 

JETIR1902E36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1654 
 

dataset leads to the loss of some information. We try 

to lose the lowest information. In the experimental 

section, we further discuss it. length constraint lmax 

Output: shrunken database DS 

1: for all 1-item set L1 with frequencies ≥ σ in the 

alphabet 

I do 

2: sort L1 in decreasing order according to D 

3: end for 

4: for each potentially item set X ∈ L do 

5: generate the set of contained items S 

6: L0+ = decreasing order (X,L1) 

7: end for 

8: let DS = ∅ 

9: for each transaction t ∈D do 

10: add t0 = TruncateTransaction(lmax,t) to DS 

11: end for 

12: return shrunken database DS 

13: function TruncateTransaction(lmax,t) 

14: t0 = t ∩ S 

15: if |t0| >lmaxthen 

16: truncate each transaction 

17: return t0 = StringMatching(lmax,t
0) 

18: else 

19: return t0 

20: end if 

21: end function 

22: function StringMatching(lmax,t
0) 

23: given t0, find the most similar item set Lkfrom L 

24: select t00 = Lk∩ t0 

25: if |t00| = lmaxthen 

26: return t0 = t00 

27: else 

28: add the most frequent (lmax− |t00|)-item set to 

t00 

29: return t0 = t00 

30: end if 

31: end function 

 
D. Mining Phase 

Algorithm 3 describes the detailed algorithm. After 

the preprocessing phase, we get the shrinking dataset 

which has smaller number of transactions and 

smaller dimension to build a noisy FP-Tree. Because 

computing support directly destroys the privacy, we 

initialize the FP-Tree with count Lap on each 

node, and then iteratively update the count. In the 

process of building the tree, the privacy budget 

adopts the average allocation strategy, and the 

privacy budget 1is based on the depth h of the FP-

Tree (i.e. the optimal item set length). Each level is 

allocated the budget of , adding Laplace noise 

Lap . For the noisy FP-Tree, each item of the 

transaction corresponds to a node. Thus, when a 

transaction (single path) in a tree is removed or 

added, only one path is changed, so the sensitivity at 

this phase is 

M f = max
D,D0 ||f(D) − f(D0)||1 = 1 (8) 

Input: shrunken database D S, privacy budget 1, 

maximal length constraint l max 

Output: noisy FP-Tree T and F 

1: scan the transaction dataset D S; get the set of 

frequent items V and its support for each item; 

sort all the frequent items in V in descending 

order which is denoted as L 

2: insert a virtual root R(T) to FP-Tree T 

3: let  

4: for each transaction t in dataset D S do 

5: for each item u in t sorted using the order of 

L do 

6: initialize the count of each node with Lap(¯) 

7: create a possible new node v as u’s child 

8: iteratively update the count for v with c˜(v) = 

support(v) + Lap(¯) 

9: if c˜(v) ≥ σ˜ then 

10: add v to T as u’s child 

11: end if 

12: end for 

13: end for 

14: obtain the noisy FP-Tree T 

15: generate all top k frequent itemsetsF by FP-

Growth algorithm 

16: return T and F 
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E. Perturbing Phase 

This phase is simple, relatively. Based on the noisy 

FPTree, mine all the frequent itemsets that satisfy the 

threshold σ˜, select all the top k frequent itemsets, add 

the noise Lap where C contains the final 

candidates sets and n represents the size of the 

dataset. Finally, output the result. 

V. ANALYSIS 

The algorithm consists of three phases: the 

preprocessing 

phase, the mining phase, and the perturbing phase. 

For the preprocessing phase, it is irrelevant with 

privacy disclosure to calculate the support in the 

source dataset. We give the results of the privacy 

analysis in the latter two phases. The privacy 

guarantee of the entire algorithm is given by the 

sequential composition property of differential 

privacy. 

Theorem 5. The proposed scheme achieves -

differential privacy. 

Proof. In the mining phase, the noisy FP-tree is 

constructed by the truncated dataset. In order to 

reduce the amount of noise added in the tree 

contrunction process, the length constraint is used to 

obtain the truncated dataset. Since an itemset with a 

length of lmaxcan get  different k-itemsets, it is 

crucial to achieve sensitivity 1 when increasing or 

deleting a transaction. This is achieved in the noisy 

FP-Tree. When removing or adding a transaction 

(single path) in the tree, it only changes 1 path for the 

overall value, then the sensitivity at this stage is 1. 

Therefore, it satisfies 11-differential privacy to add 

Lap  to the support of each node of the noisy FP-

Tree, where . Because the above process 

repeats lmaxtimes, the whole process then satisfies

differential privacy. 

In the perturbing phase, the noise is added to the 

true support of the selected frequent itemsets to 

achieve the purpose of privacy protection. In this 

case, the sensitivity of the support of |F0| is 4f = |F0|. 

When increasing or deleting a transaction, it affects 

most of the support of |F0| frequent itemsets by 1. 

Therefore, it satisfies 2-differential privacy when 

adding Lap  to the support of |F0|. 

According to the sequential composition theorem 2, 

the DP- 

FIM algorithm satisfies -differential privacy where 

=1 + 

2.   

The DP-FIM algorithm also preserves high utility. 

Both sampling and truncation do not hurt the 

frequent items. We show the utility in the following 

experimental evaluations. 

VI. EXPERIMENTS 

In this section, we evaluate the performance of our 

algorithm. To illustrate the effectiveness of the our 

algorithm, we also compare it with two state-of-art 

algorithms SmartTruncation(ST) [27] and 

PrivBasis(PB) [26] in the same conditions. One 

algorithm is the basis of our algorithm while the 

other is totally different; this arrangement is to have 

a broader comparison. 

A. Experiment Setup 

1) Implementation: We implement our 

algorithm using C++ on a PC with CPU Intel Core 

i7-4790k, processor base frequency 4.00GHz, RAM 

8G. In the experiments, we specifically take  

 

0.75,0.8,0.85,0.9,0.95, and k = 50,100 to 

parameterize our experiments. We run our algorithm 

10 times and report the average values as stable 

performance indicators. 

 

 

 

 

 

TABLE I 
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DATASET CHARACTERISTICS 

Dataset |D| |I| max|

t| 

avg|

t| 

Kosarak(KOS

) 

9900

02 

4127

0 

249

8 

8.1 

BMS-

POS(POS) 

5155

97 

1657 164 6.5 

Accidents(AC

C) 

3401

83 

468 51 33.

8 

Retail(RET) 8816

2 

1647

0 

76 10.

3 

mushroom(M

US) 

8124 119 23 23 

Fig. 1. Transaction Length Distribution 

2) Datasets: We use five public datasets in this 

experiment: Accidents(ACC) [43], Kosarak(KOS), 

Mushroom(MUS) [44] , BMS-POS (POS) [44], and 

Retail [43]. The characteristics of the datasets are 

summarized in Table I, where max|t| is the maximum 

record size and avg |t| is the average record size. 

The length of all datasets is shown in Fig. 1. These 

transaction datasets have different data patterns, e.g. 

Accidents dataset is a dense dataset while BMS-POS 

and Retail are sparse datasets. It can be seen that the 

Kosarak dataset is mainly a set of short transactions 

while the Accidents dataset is the opposite. For the 

Mushroom dataset, all transactions have the same 

length as in Table I; thus we do not draw its length 

distribution. 

3) Performance metrics: In the experiment, we 

focus on the following two commonly used data 

utility performance metrics [26], [27] to measure the 

performance of our algorithm. The first is F-Score 

which measures accuracy; the second is RE which 

measures error. 

Definition 4. (F-Score). Let F and F 0 be the set of 

actual and published frequent itemsets, respectively. 

The F-Score is defined as follows 

F-Score   (9) 

where  and . 

Definition 5. (Relative Error) The relative error of 

published frequent item sets F0 is defined as 

0 

RE = median(10) 

TABLE III F-SCORE 
AND RE ON VARYING ’S IN 
DIFFERENT DATASETS 

(a) F-Score vs. in different datasets 

privacy 

budget  

Mushroom Retail 

0.1 0.84 0.58 

0.25 0.94 0.68 

0.5 0.94 0.72 

0.75 0.96 0.74 

1.0 0.98 0.76 

(b) RE vs. in different datasets 

privacy 

budget  

Mushroom Retail 

0.1 0.0428 0.176 

0.25 0.0323 0.152 

0.5 0.015 0.146 

0.75 0.01 0.138 

1.0 0.004 0.111 

wheresup0
X(supX) is the noisy(actual) support of 

itemsetX. 

For the above two utility measures, the larger F-

Score is, the closer the frequent itemsets to the real 

itemsets; it indicates that the utility of the algorithm 

is higher. The smaller the RE is, the smaller the error 

is; it also indicates that the utility of the algorithm is 

higher. 

 

B. Performance Comparison 

We compare the performance of our algorithm 

with stateof-art algorithms using F-Score and 

Relative Error. We first analyze the impact of 

different privacy budgets over the performance 
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indicators. Then we discuss the mining result errors 

with different thresholds. For performance, we note 

again that the larger the F-Score is, the higher the 

data utility is, and that the smaller the relative error 

is, the higher the data utility is. 

Table II gives the description of the parameters and 

the default values in the experiment. Unless 

otherwise specified, the parameters in the experiment 

are taken according to Table 

II. 

1) Effect of Privacy Budget: In Figures 2 and 3, we 

show the performance comparison of DP-FIM, PB 

and ST algorithms under different privacy budget. 

We allocate the total privacy budget as follows:

 and . In this section, we present the 

experimental results when varies. The value of 

frequent itemset size k is set to be 50 and 100; the 

maximal length constraint parameter η is set to be 

0.85, which is based on the best value that can be 

obtained in the experiment. The detailed results are 

also listed in Table III. 

Figures 2 and 3 shows how F-Score and RE 

changes with the increasing of for the DP-FIM, the 

PB, and the ST algorithms. In general, when other 

parameter values are kept at their default values, the 

curve of F-Score rises with the privacy parameters’ 

increases; the RE curve on the contrary goes 

downward. This indicates that when the privacy 

budget increases, the added amount of noise becomes 

smaller, and the quality of the frequent itemsets 

becomes higher. 

It can be found that our algorithm obtains high F-

Score and low relative error; thus, our algorithm has 

high utility. We also observe that the more the 

number of output frequent itemsets have, the poorer 

the performance becomes. This means that the more 

itemsets are outputted, the more budgets are used for 

each itemset as well with the more added noise. Thus 

the utility of the dataset deteriorates as the output 

itemsets increases. 

In addition, our algorithm is basically stable; that 

is, the curve was in a flat-state shape. This is in line 

with our expectation. But when is higher than 0.25, 

the precisions for Mushroom datasets have reached 

90%; while in the Retail dataset, when takes 1.0, the 

value of the F-Score does not reach 100%. This 

shows that our algorithm performance is different for 

different datasets. Perhaps this is because the 

Mushroom dataset has the same length, which 

reduces the amount of information loss in the case of 

truncated transactions compared to the Retail dataset. 

Comparing with state-of-art algorithms, we find 

that our algorithm obtains better performance (higher 

F-Score and lower relative error) than ST under the 

same privacy budget as in Fig. 2. For PB, our 

algorithm performance better in FScore and relative 

error when more privacy is needed. In other cases, 

the two algorithms are roughly comparable in F-

Score and relative error. 

2) Effect of Threshold: We also compare the 

performance of DP-FIM, PB and ST under different 

threshold settings using the Accidents and Retail 

datasets as examples. The results are shown in Fig. 

4. The threshold in the experiment is set relative to 

the size of the entire dataset. We set the privacy 

budget as 1.0, the maximum length constraint 

parameter as η = 0.85. 

It can be seen from the experimental results that 

with the threshold increasing, the charts present a 

trend of growth; that is, increased threshold results in 

higher utility. On the Accidents and Retail datasets, 

compared with ST, it has better performance than the 

ST on the F-Score and RE metrics; this is because our 

transaction truncation processing method can 

effectively retain the potential frequent information 

when truncating the long transactions. Thus the 

performance is generally better than ST. 

For the PB case, our algorithm again performs 

better in F- 
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Score. However, it is also worth noting that in some 

datasets (i.e. Accidents) our algorithm is slightly less 

accurate with regard to RE. This may be because that 

RE is related to support. Each frequent item is 

included in the θ-basis in the PB algorithm and the 

amount of noise added is greatly resisted. Thus PB 

achieves better results in RE. In addition, for the 

trade-off between privacy and data utility, our 

algorithm and the ST algorithm first truncate the 

dataset and then add noise. Taking further account of 

privacy requirements, it loses information inevitably. 

However, our algorithm still remains potential 

frequent itemsets as far as possible; the 

corresponding F-Score and RE are also reasonable 

good for practical uses. 

C. More Detailed Performance Results 

We further report more performance results when 

varying other parameters of our algorithm. 

1) Effect of Maximal Length Constraint: Figure 5 

shows the performance over the maximum length 

constraint. We vary 

Fig. 2. Performance vs. Privacy Budget 

( a ) Mushroom:F-Score ( b ) Mushroom:RE 

( c ) Retail:F-Score ( d ) Retail:RE 

( a ) F-Score vs.  in different datasets ( b ) RE vs.  in different datasets 
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Fig. 3. F-Score and RE on varying ’s in different datasets 

 

 

TABLE II EXPERIMENT PARAMETERS 

Parameters Description Default 

values 

 

k 

50 

Fig. 4. Performance vs. Threshold 

parameterη from 0.75 to 0.95 and keep other 

parameters at their default values, i.e.,  and k = 

50. Figure 5 displays how F-Score and RE vary 

under different η values with other parameters at 

their default values. We can observe that with the 

increasing of η, the F-Score and RE do not increase 

or decrease monotonically. Initially, the RE decrease 

when η increases; this is because the increment of η 

allows to retain more information from the database. 

However, after a certain threshold, the RE becomes 

larger with the increasing of η. This is because when 

η gets larger, the noise added to each level grows 

quickly. The same analysis also applies to F-Score. 

( a ) Accidents:F-Score ( b ) Accidents:RE 

( c ) Retail:F-Score ( d ) Retail:RE 
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We observe that when the constraint parameter η is 

small, the quality of frequent itemsets is relatively 

poor, as expected. This is because the smaller the η 

is, the more the lost information is. Even in the worst 

case, RE is still below 0.15, which is acceptable. For 

larger η, the performance behaves differently on 

different datasets. For example, on the Accidents 

dataset, when η breaks through 0.9, the F-Score is 

becoming smaller. This is in line with our 

expectation because achieving differential privacy 

needs to add noise. The larger the length of a record 

in the database is, the more noise it is to be added to 

the output, which leads to poor performance. From 

the experimentation, we empirically find that a good 

choice for the parameter η is 0.85. 

2) Effect of the Total Number of Output Frequent 

Itemsets :Figure 6 and Table IV presents the 

performance of our scheme when varying the 

number of output frequent itemsets. For all datasets, 

the worst F-Score achieves 0.7. In most cases, the F-

Score is higher than 0.9. For relative error, the worst 

error is 0.158 while most errors are below 3%. These 

high F-Score 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Performance vs. Maximal Length Constraint 

 

TABLE IV F-SCORE 
AND RE ON VARYING k IN 
DIFFERENT DATASETS 

(a) F-Score vs. k in different datasets 

k Mushroom Retail Accidents 

25 0.98 0.90 0.94 

50 0.98 0.76 0.94 

100 0.98 0.76 0.93 

150 0.93 0.73 0.92 

200 0.92 0.68 0.90 

(b) RE vs. k in different datasets 

k Mushroom Retail Accidents 

( a ) F-Score  ( b ) RE  

( a ) F-Score vs. k in different datasets ( b ) RE vs. k in different datasets 
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25 0.005 0.055 0.019 

50 0.004 0.05 0.017 

100 0.011 0.111 0.018 

150 0.015 0.136 0.023 

200 0.023 0.158 0.028 

and low relative error indicate that our algorithm has 

high utility. 

VII. CONCLUSIONS 

In this paper, we propose a novel differentially 

private algorithm for frequent itemsets mining. The 

algorithm features better data utility and better 

computation efficiency. Various experimental 

evaluations validate that the proposed algorithm has 

high F-Score and low relative error. A lesson learned 

is that fine tuned parameters lead to better 

differentially private frequent itemsets mining 

algorithms with regard to data utility. 
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