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Abstract-The smart transportation systems, e.G., 

DiDi, Uber, have served as essential travel 

equipment for customers, which foster lots of 

research for the location-based totally queries on 

street network. In particular, given a set O of 

items and a question point q on a avenue 

network, the okay Nearest Neighbour (kNN) 

query returns the k nearest objects in O with the 

shortest road community distance to q. In 

literature, maximum existing answers for kNN 

queries tend to reduce the question time, 

indexing storage, or throughput of the kNN 

queries even as overlooking the correctness of the 

queries resulting from question-query and 

update-query conflicts. In our work, we endorse a 

grid- primarily based framework on war-aware 

kNN queries on moving objects which ambitions 

to optimize machine throughput at the same time 

as ensuring question correctness. In particular, we 

first suggest green index systems and new 

question algorithms that significantly enhance the 

throughput. We similarly present novel 

scheduling algorithms that aim to avoid conflicts 

and enhance the system throughput. Moreover, 

we devise approximate answers that provide a 

controllable trade-off among the warfare of kNN 

queries and device throughput. Finally, we 

suggest a cost-primarily based dispatching 

strategy to assign the kNN effects to the 

corresponding queries. Extensive experiments on 

real-world facts show the effectiveness and 

efficiency of our proposed answers over 

alternatives. 

Index Terms—Serialisable kNN Query, Conflict-

aware Scheduling, Cost-based Dispatching, 

Constrained Minimum Bipartite Matching. 

1INTRODUCTION: Given a fixed O of moving items 

and a query factor q on a avenue network, the okay 

Nearest Neighbor (kNN) question returns the ok 

nearest objects in O with the shortest avenue 

community distance to q. The kNN query on moving 

gadgets finds many essential real global applications. 

For instance, in current ride-hailing services like DiDi 

and Uber, a vacationer may also request a taxi at 

his/her modern location, and DiDi or Uber then needs 

to find numerous vehicles in its fleet which might be 

the closest to this location. Apart from taxi-hailing, 

there are numerous different applications applicable to 

kNN query on moving gadgets, such as road-facet 

servicing to accidents, police dispatch to the close by 

accident, emergency, and crime incident. Consider the 

software of police dispatch: when an incident arises, 

the police gadget will want to locate the nearby police 

patrols and assign one or some patrols based on the 

call for to the request as soon as possible. Once a patrol 

is assigned to a request, he/she cannot be the end 

result of other queries and will now not be available 

until he/she finishes the previously assigned task. 

In literature, there exists a plethora of research works 

[12], [13], [15], [19], [24] that address the kNN queries 

on avenue community with recognize to shifting 

objects. However, most existing solutions especially 

consciousness on reducing the question processing 

time to get the kNN results or cutting down the 

indexing cost to support efficient update of 

transferring objects, whereas in exercise the system 

throughput, with a purpose to be laid low with both 

update frequency and question performance as proven 

in [13], is a far more precious metric whilst evaluating 

system performance. On one hand, current state- of-

the-art solutions, e.G., TOAIN [13], as we can display 

in our experiments, still do now not offer a good trade-

off some of the throughput, query performance, and 

the replace frequency. On 

the alternative hand, as we will illustrate shortly, 

maximum existing works fail to don't forget the 

correctness of the question results, on the way to 

detriment the user experience provided by using the 

applications using kNN queries. In general, the 

correctness issue may be attributed to two essential 

factors. 

The first factor with a purpose to result in the 

correctness issue is the updates of moving objects. In 

practice, for most of the moving objects, the places of 

objects are up to date periodically, where each update 

can be appeared as a snapshot of gadgets’ modern 

places. For instance, each car in DiDi reports its 

location to the gadget in every 2 four seconds [4]. 

Generally, let us denote the minimum interval time 

that the device can capture the movement of the 

gadgets as To. In literature, maximum existing 
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solutions construct index structures for those moving 

items and then replace the index structures each T 

seconds, e.G., each eight seconds as reported in [13]. In 

any such case, T > To, i.E., the index replace is much 

less common than the updates of moving gadgets, so 

that you can undoubtedly affect the correctness of the 

kNN query results. Figure 1(a) suggests the impact of 

T on kNN queries using the Beijing road network. We 

set k = 5, and use the kNN solution at the query time 

because the ground-truth. Then, for numerous values 

of update time period T for an index structure, ranging 

from 1 to sixteen seconds, we compare the average 

distance between gadgets returned by way of the kNN 

question using the index structure and the query 

location to the equivalent within the ground-truth. As 

shown in Figure 1(a), whilst T increases, the common 

distances for kNN queries additionally increases: 

when we go back the kNN question with T = 8, the 

common distance of kNN question would growth by 

more than 50% as compared to the ground-truth. In 

real-world programs like taxi- hailing services, the 

growth of the distances commonly indicates longer 

ready time, and increasing waiting time via 50% could 

be unfavourable to consumer experience. Therefore, it 

is crucial to set T near To for real-global applications. 

The second aspect that affects the correctness of the 

kNN queries is particularly due to the conflicts 

between queries. In literature, maximum current 

works discard the viable conflicts in kNN queries and 

the question answer results have no quality guarantee 

at all. In practice, upon getting the kNN results, the 

gadget will assign one the objects to the query based 

on a certain dispatching strategy. However, none of 

the prevailing work do not forget the dispatching 

procedure, consequently overlooks the war among 

queries. For instance, given a kNN question request by 

using a person, the ok taxis returned by using the kNN 

queries may additionally all be occupied via 

concurrent kNN queries requested by other users. 

Because an object within the kNN end result (e.G., a 

taxi) for a query q1 can be assigned to a query person 

(e.G., a customer), every other query close to q2, whose 

end result overlaps with that of q1, might not be 

executed until the final touch of q1. Hence, the ready 

time of consumer of q2 can be delayed, resulting in a 

poor person experience. As shown in Figure 1(b), 

when 10,000 queries are processed with the machine 

with 50,000 objects, we can take a look at that the war 

fee increases sharply with the growth of ok, and 

becomes greater than 40% whilstokay = 40. Therefore, 

it is essential to recall kNN question conflicts in the 

course of the query processing. In the paper, we 

formally outline the conflicts of queries and the 

serializable kNN queries which assure that the kNN 

queries will be battle-aware. The serializable kNN has 

robust correctness assurance and in mostrealistic 

scenarios, it may not need that robust guarantees. We 

therefore further propose approximate serializable 

kNN queries which provide a controllable trade off 

among the correctness and throughput of kNN 

queries. This motivates us to endorse a framework that 

advantage high throughput of kNN queries processing 

whilst making certain their correctness. 

2 FRAMEWORK 

In this section, we introduce the general 

framework of our . We first gift the preliminary 

about some definitions and trouble statement. 

Then we introduce the machine model, observed 

by means of the throughput analysis. 

Let G = (V, E) be a directed graph that represents a 

avenue network wherein V is the set of vertices and E 

is the set of road segments on this road community. 

For each edge e=(u,v) 𝜖 E, it is associated with a weight 

w(e), which represents the distance from u to v. Given 

two vertices s,t  𝜖 V, let P={e0,e1, … ei} be a path from 

s to t, then the distance of P is defined as 

∑ 𝑤(𝑒𝑖)𝑙
𝑖=0 .The shortest distance from s to t is defined 

as the minimum distance among all the paths from s to 

t, denoted as dist(s,t).On road networks, objects are 

often moving from on place to another. Typically it is 

difficult to monitor the location of objects 

continuously. Instead, for the objects that include GPSs 

the movement of these objects can be tracked 

periodically with every second.  

Consider a set of M moving objects, where each object 

is located on road segment. Given an object o 𝜖 M 

located on a road segment e0=(u0,v0) such that the 

distance between o and v0 is w(o,v0). Given a query 

point q, which is located on a road segment 

eq=(uq,vq), the distance of vertex uq to q is w(uq,q). 

The distance from o to q is then: 

Dist(q,o)= w(o,v0)+dist(u0,uq)+w(uq,q).       (1) 

Following previous works [13], [19], [24], we assume 

that the query locations and moving gadgets are all 

placed on vertices, ignoring the offset of the items to 

the vertices (resp. The vertices to question locations) 

on the street network. To explain, we are able to 

without  
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difficulty calculate the precise distance from the items to 

the question vicinity in keeping with Equation 1. The 

kNN query is defined as follows. 

Definition 1 (kNN queries).Given a query point q, a set M 

of moving objects on a road network GV, E), and an integer   k 

≤M  , let dist(o, q) denote the distance of object o 𝜖  M  to the 

query location q at the query time. The kNN query returns a 

set R ⊆M of k moving objects such that for all v ∈M \ 

R,dist(v, q) ≥ dist(u, q) for any u ∈R. 

After acquiring the kNN results for a specific query, a 

dispatching scheme will assign one of the results to the 

query. The dispatching scheme of our version will be 

introduced in Section 5. Here, we define such operation 

on moving object as the Oracle Dispatch. 

Definition 2 (Oracle Dispatch). Given a query q and the 

corresponding kNN results Rq, the Oracle Dispatch assigns 

one moving object o ∈Rq to q, and marks o is an unavailable 

object 

Note that if a few queries share the equal objects, it 

would be feasible that one item is assigned to more than 

one queries at some point of dispatching. Next, we 

formally define a strict kNN-query Conflict as follow, 

and we will propose the approximate kNN question as a 

relaxation in Section 4.2. 

Definition  3  (kNN-query Conflict).  Given two kNN  

queriesqa and  qb, let  Rqa   and  Rqb   be  the  kNN  query  

answer  for qaand qb, respectivelyqa conflicts with qb if Rqa 

Rqbconflict ratio ρ between qa and qb is defined as follow 

𝜌 =  

Definition 4 (Update-query conflict). Given an update request 

for a moving object o and a query q with Rq as the 

corresponding kNN results, there exists update-query conflict 

between q and o  if o ∈ Rq. 

Notice that given a kNN question, there usually exists 

capability replace to one of the gadgets in kNN 

consequences by the oracle dispatch. Meanwhile, the 

replace to the kNN is generally unpredictable given that 

the replace may additionally be machine dependent, e.G., 

different systems may assign taxis to query users in unique 

ways, or may additionally contain human interactions, 

e.G., taxi drivers can also pick to accept or refuse the 

experience request. Strictly, if each of the moving object 

within the kNN outcomes is to be had for dispatch, that 

query will don't have any con- flict with others. Therefore, 

given a set of queries having no conflict with each other, 

they can be processed concurrently without any extra aid 

maintenance. Thus we define the serializable kNN queries 

as follow. 

Definition 5 (Serializable kNNs). Given a set Q of kNN queries 

and U updates to the objects, we call these Q  kNN queries and 

U updates are serializable if the objects’ statuses (e.g., available / 

unavailable for the taxis) of their parallel processing results are 

equivalent to those of the sequential processing results. 

To assure the correctness of the kNN queries, we should 

keep away from the kNN query conflicts and question-

replace conflicts. In the case whilst a conflict occurs to a 

query, we want to abort this query and re-run it, which is a 

waste of time. In Section 4, we can present a way to 

manage the conflicts with the intention to lessen the abort 

quotes and consequently enhance the throughput System 

Model.   

2.2 System Model 

Next, we present the system model to handle the kNN 

queries. Figure 1 (c) illustrates the system model to serve 

the correctness-aware kNN queries. It mainly includes two 

parts: the task arrival model and the task handling model. 

Task Arrival Model.Following the previous work [13], we 

count on that the queries arrive at the gadget as a Poisson 

process. In the meantime, we assume that the system is 

periodically tracking the motion of the items, and the 

machine can seize the motion of the objects with each To 

seconds. For instance, To can be the GPS location sparkling 

periodicity. Then, for the moving objects, we count on the 

updates to items are available in batch each T seconds as 

proven in Figure 1 (c). Such an replace arrival model is 

referred to as the batched update version, which is 

likewise used in [13], and it's miles a realistic modelling for 

taxi-hailing services. Notice that T won't be similar to To 

since the update cost can be high and the device, therefore, 

techniques the replace in a more coarse-grained manner. 

We assume that the system start time is zero, and at every 

time l.T with l 𝜖 𝑁+, the batched updates arrive, and the 

system immediately handles the updates before the query 

processing. Let Let Tube the time for the batched updates. 

For the arrived queries in [l · T, (l + 1)· T ), it will then 

process the queries based on the updates at time l · T . 
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Notice that if Tu> T , then, the system will have no 

throughput at all since it spends all time on the updates of 

the objects. Therefore, it is important to balance the update 

costs and the query processing time. 

Task Handling Model. In this, we focus on processing the 

queries and updates with multiple processing units (as  

shown in figure 1(c)) to support concurrent execution (By 

setting the number of processing units as 1, it comes to the 

sequential execution). As mentioned earlier, updates are 

handled at the beginning if each time slot [l . T, (l+1) . T] 

with l 𝜖 𝑁+. For the queries , they are stored on a task 

queue, and a task schedule will assign the queries, to 

different processors. To process the queries, the system 

should finish the queries in response time Tr. This 

guarantees that for the earlier tasks that are not processed 

yet, it will have higher priority during the task scheduling. 

Since the queries are processed in parallel, there may exist 

kNN query conflicts and system includes a conflict handler 

to detect conflicts. . During the processing of a query, the 

conflict handler will detect whether there is a conflict 

between this query and any of the other queries being 

processed. Once a conflict is detected, this query will be 

aborted and the system will rerun the query. Notice that 

there will be no update-query conflict since the updates are 

processed before the queries in every time slot [l T, (l + 1) T 

) with l N +. After obtaining the kNN results for each query, 

the oracle dispatch will assign each query an object based 

on certain strategies, which will be detailedly introduced 

in Section 5. 

2.3 Throughput Analysis 

In this subsection, we present the throughput calculation. 

Derived from TOAIN [13], the device throughput is laid 

low with both query processing time and the object update 

fee. Here, we only show the end result of the throughput 

analysis, in which the details may be located in [10]. 

Assume that the average query processing time for a kNN 

question is tq, the common cost for an update is tu, and the 

quantity of process units is p, then the device throughput, 

a.K.A., the range λ of queries that the system responds per 

unit time slot, satisfies the following 

   (2) 

Alternatively, let λ be the query arrival rate (in number per 

second), tq(resp. Vq) be the average (resp. variance) of 

query time using a single processing unit. Given the 

response time Tr, the average throughput (i.e., the largest 

query arrival rate) λ can be formulated by: 

 

which is the throughput of our  framework. Next, we 

present our framework to assist efficient query processing 

with very small update costs. 

 

3.1 Grid Index for Updates 

We first explain the details of our grid index for updates. 

Given a road network G, we partition the road network 

into 2x2xgrids according to their latitude and longitude. For 

example, given the road network with 12 nodes in Figure 

2, we divide the road network into 8 8 grids. Then, we 

make a one-to-one mapping from h   [0, 22x1] to the grid 

cells by using the Hilbert curves. The main reason to 

maintain the Hilbert curves will be explained in Section 4. 

For now, we just assume that we have a one-to-one 

mapping.. Then for each h ∈ [0, 22x− 1], we maintain a list Lh 

to denote the objects that fall into the corresponding grid 

cell mapping with Hilbert code h. Besides, for each moving 

object, we also maintain which grid cell the object 

currently falls into. Then, when the batched updates come 

at time l · T , we update the list for all the objects and 

update the information of which grid the current object 

falls into. Denote the number of update requests at time l T 

as cu. If cu M , it will bewasteful to rebuild the list every T 

seconds. 

As an alternative, we first replace the grid information for 

the object asking for an replace, i.E., we realize which 

mobile the object presently belongs to. Then, if the item 

moves from one grid to another, we simplest append the 

node into the listing similar to the new grid. This will 

result in redundant information. However, this will no 

longer affect the correctness of the query processing. To 

explain, given that for every item we hold an entry 

indicating the grid that it falls in, in the course of the 

exploration of grid (details in Section 3.2) we can clear out 

the redundant items through checking the corresponding 

entries. Also, to relieve the weight of such redundant data, 

we report the accumulated variety au of updates have 

been made to the grid index, i.E., each time there is an item 

shifting from one grid to another auis increased by one. 

And when au= M , we rebuild the index from scratch. By 

this strategy, we do not need to rebuild the grid index 

every T seconds and the complexity of each batched 

update can be bounded by O( M ), since each update of a 

moving object is at O(1) amortized cost. To explain, the 

cost for each append is O(1) and in total O(au) cost, and to 

rebuild the index for |M | objects, the cost is still O(|M |). 

Since au= |M |, then the total update cost for |M | objects 
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will be O(|M |) which is optimal as by examining the 

location of each object, it already takes O(|M |) cost. 

3.2 Distance Index and kNN query processing 

To answer the kNN queries, a naive answer is to do a 

Dijkstra search [8] from the query point and stops when 

okay nodes are retrieved. However, this answer will incur 

giant question overhead. Our primary remark for kNN 

question is that, in contrast to the objects which might be 

dynamically moving, the nodes on street networks aren't 

moving and we are able to pre-shop the distances between 

distinct nodes with some auxiliary index systems and 

reuse the index structure to answer the question. In the 

literature, there exists a plethora of index schemes for the 

distance queries. For instance, TOAIN integrates the 

Contraction Hierarchy [9] index structure to calculate the 

distances. In our solution, we integrate the contemporary 

distance labeling scheme H2H [16] for our kNN queries. 

We notice that the gap labeling may be modified to every 

other labeling scheme whichever is faster. Therefore, we 

treat the space labeling scheme as a black-field and use 

D(u, v) to indicate using the index to calculate the distance 

from u to v. 

Given the index structure, a naive answer is to calculate 

the space from every item to the question point. However, 

this outcomes in needless computational expenses when 

you consider that some items some distance faraway from 

the query region are unlikely to be the kNN query answer. 

Motivated by means of this, we present a grid primarily 

based pruning method to reduce the query costs. 

KNN Query Algorithm for framework 

 

Query algorithm details. The pseudo-code of the kNN 

question algorithm is as proven in Algorithm 1. The main 

concept of the question set of rules is to use the Euclidean 

distance of the gadgets to avoid expanding the search 

space on the street network. We start from the grid of size 

1 1, and then gradually increase the grid to 3 3, 5 5, till the 

kNN answers are found. Figure 2 (b) suggests an instance 

of the grid increasing. In the query set of rules, we 

maintain a hard and fast H to denote the set of grids which 

have been searched, first of all set to be . We in addition 

preserve a fixed NH to indicate the set of grids which can 

be associates of H, and initially set to be h (Algorithm 1 

Line 1). We in addition maintain a hard and fast C(q) of 

candidates to the kNN query answer, first of all set to be . 

We then gradually increase the grids to be searched the use 

of pruning techniques as follows. At the beginning, we 

calculate the distances of all of the items in NH to the 

query location q using the distance labeling, and upload 

these objects to the candidate set C(q) (Algorithm 1 Lines 

6-9). Then, we file the k-th shortest distance some of the 

points in the candidate set C(q) as the space top certain UB 

for the kNN question (Algorithm 1 Line 11). After that, we 

update H to encompass the grids in NH since the grids in 

NH were expanded. We further update NH to be the grids 

which can be pals of H except the grids in H ((Algorithm 1 

Line 12)). Next, we report LB because the Euclidean 

distance from the threshold of NH to q. Notice that the 

Euclidean distance L2(o, q) from an object o to q is a lower 

certain of the shortest distance dist(o, q). Clearly, for all the 

nodes in the NH, the shortest distance must be no smaller 

than LB. In this way, if LB UB, all the nodes in NH need to 

not belong to kNN on the grounds that their distance to q 

is already no smaller than at Least k nodes. Therefore, we 

terminate the grid expansion (Algorithm 1 Line 5). Finally, 

we return the k nodes with the shortest distance in C(q) 

and go back them because the kNN query answer. 

4. FRAMEWORK: CORRECTNESS AWARE 

MODELING 

In this section, we introduce the concurrent version and 

analyze a way to provide accurate answer for the kNN 

queries. We first expect that the items will record its 

location within the system monitoring periodicity To. 

Then, we define T - correct kNN queries as follows 

Definition 6 (T -accurate kNN queries). Given a kNN query q 

requested at time tq, q is T -correct if the kNN are derived in step 

with the distances calculated with the latest index after the batch 

update within time slot [tq − T, tq). 

Obviously, the bigger T it's far, the less accurate the kNN 

queries are. Also, it's miles really worth to note that it is 

meaningless to update the index structure too frequently, 

i.E., putting index replace periodicity T < To, since we are 

able to gain at maximum To-correct kNN queries. To 

explain, the minimum batched update periodicity of the 

objects we can gain is To, and therefore, by using placing a 

small T , we might not have any replace in the periodicity 

and the accuracy is similar to the To-correct kNN question 
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answers. Obviously, To is typically not pretty large, e.G., 

may be as small as 0.05 second. If the update fee is 

excessive, the gadget will spend an excessive amount of 

time on the updates. For instance, as we are able to see in 

Section 6, the today's TOAIN [13] nonetheless incurs very 

high update value to gain low query processing time. In 

contrast, our grid-based indexing scheme bears very small 

replace cost and achieves a good stability among the 

replace value and query efficiency. In particular, whilst we 

set the index replace periodicity T = 0.25 seconds, our  

nevertheless achieves very excessive throughput and is 4x 

faster than TOAIN. By allowing the gadget to gain the 

pleasant possible accuracy with out sacrificing the 

throughput, we will offer more accurate kNN question 

answers and offer better user stories for the applications 

using the kNN queries. 

4.1 Conflict-Aware Scheduling 

To gain the fine feasible throughput, in our model we are 

able to use more than one processing gadgets to deal with 

queries con- currently. However, as we stated in Section 2, 

when more than one kNN queries are processed, we need 

to guarantee the kNN queries are processed in a 

serializable manner (Ref. Definition 5). To obtain this, 

when kNN queries are processed in parallel, we want to 

assure that there is no struggle on the kNN queries. 

Suppose there may be no scheduling to the coming 

queries, the queries may incur too many conflicts and 

therefore a high abort rate, degrading the sys- tem 

throughput. Therefore, we present a novel scheduling 

scheme for the concurrent kNN question processing. A 

chal- lenge for scheduling is that the scheduling algorithm 

must be light-weight while effective since (i) if the 

scheduling is too complex it can dominate the cost and 

bring no development to the throughput even supposing 

the abort price is reduced, (ii) if the scheduling is very 

simple, e.G., using Random assignment, the abort rate can 

be nevertheless very high, and does not help improve the 

throughput. Facing this dilemma, we present a novel 

scheduling algorithm based at the Hilbert curves. The 

main idea is that for the query points with near Hilbert 

curve numbers, they're highly probably to battle with 

every other, even as if the difference of Hilbert curve 

numbers are massive for the query points, it's miles highly 

possibly that these queries have no conflicts. Therefore, we 

schedule the queries which might be less likely to have 

conflicts concurrently, ensuing in smaller abort rate. We 

endorse two types of scheduling approaches: Hilbert 

workload-balanced scheduling and Hilbert distance-

primarily based scheduling. We omit the information for 

the interest of space, and they are illustrated in our 

convention manuscript [10]. 

4.2 Approximate kNN queries 

As we mentioned in Section 1, some applications there can 

also not want strict battle of kNN queries. However, unlike 

the present paintings that handles kNN queries 

overlooking the conflicts and correctness, we propose an 

approximate version of the serializable kNN queries. The 

approximation gives a controllable trade-off among the 

question correct- ness and gadget throughput. 

Definition 7 (ρ-approximate serializable kNN). Given a hard 

and fast Q of kNN queries, these Q kNN queries are ρ-

approximate serializable if the queries are processed in parallel 

whilst allowing that the kNN answer of a question q bears at 

maximum ρ k shared gadgets with different concurrent queries. 

As we can see, the ρ-approximate serializable-kNN al- 

lows some of the kNN effects to be shared through 

different kNN queries. But the ratio of the shared objects 

should be lim- ited to a positive degree, i.E., ρ. Fortunately, 

in exercise the approximation tuning requires minor 

amendment to our war handler. In particular, in 

serializable kNN question processing, when an item is 

lower back as the answer through a kNN query, then the 

current query aborts and re-runs the query from scratch. In 

the ρ-approximate serializable kNN question processing, it 

counts the number c of gadgets which are shared by means 

of different kNN queries and aborts except the number c is 

larger than ρ k. As we will see in our experiment, the 

approximate definition additionally helps reduce the 

conflicts and the abort rate. We will also take a look at the 

impact of ρ to the query accuracy and question 

throughput. 

5 FRAMEWORK: COST-BASED DISPATCH 

STRATEGY 

In this section, we present the cost-primarily based 

dispatch strategies to assign an object to a given query. In 

general, after several moving gadgets are retrieved with 

the query algorithm, the device will choose one among the 

gadgets based on a certain approach because the response 

to a given query. Then this item might be marked as an 

occupied one, and will be available after it finishes the 

request task, e.G., a taxi arrives the destination of a 

journey. A naive approach is to randomly select up one 

item from the question results. However, such approach 

fails to recall the tour distance optimization, which targets 

to minimize the total driving distance of moving objects, 

thus, reduces the average waiting time of the request tasks. 

Hence, we study the the cost-based dispatch strategywhich 

is also known as the assignment problem. 

5.1 Constrained Minimum Bipartite Matching 

Specifically, given a set of moving gadgets and a set of 

requests on the road network, we strive to discover a 

matching between the moving items and requests such 

that the total travel prices of the matched pairs are 

minimal. In the ultimate decade, a similar problem has 

attracted much interest from many researchers, named the 

Minimum Bipartite Matching (MBM) problem, which aims 

to find a perfect matching with minimal general distance 

among the matched pairs of a service set and a user set in a 

dimensional space [23]. In our work, a bipartite graph can 

be fashioned with the set of moving gadgets and the query 

points wherein the weighted edges represent the road 
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network distances between them. However, not like the 

conventional MBM hassle wherein for every pair of 

vertices from two aspects there exists an edge connecting 

them, in our work, we can most effective locate edges from 

each query to all its kNN results. Formally, we define the 

kNN bipartite graph as follow. 

Definition 10 (Competitive Ratio). The competitive ratio of 

an matching algorithm A for the CMBM problem is as follow 

 

Where kBG(M∪Q,D  )is the  k NN bipartite graph formed via a 

set M of moving objects and a set Q of query points that 

arrivein an arbitrary order, His the marching return by 

algorithm A, and OPT refers to the optimal solution with offline 

globalinformation. 

 

To explain, the aggressive ratio measures the value ratio 

among the result of an online algorithm and the optimal 

result received by using an MBM set of rules in which the 

offline data is given in advance. Note that during our 

frame- work, there could be a batched update each time 

interval T . Thus the aggressive ratio is calculated for the 

set Q of queries arriving inside the equal time interval, in 

which the places of the moving gadgets do not change 

throughout that time interval. 

5.2 Greedy Partial Matching Algorithm 

A naive algorithm for our CMBM problem is the Greedy 

Nearest Neighbor algorithm, which matched every new 

arrival question to its currently nearest available moving 

object. For example, given the 2NN bipartite graph proven 

in Figure 3 (a), the matching result obtained by the Greedy 

Nearest Neighbour algorithm 

is{(q1,o3),(q2,o4),(q3,o5),(q4,o7),(q5,o6),(q6,o2)}. The total 

dispatching cost is at 34, which is much larger than the one 

for the optimal solution, and  the  competitive  ratio  is2.3. 

In fact, the worse case competitive ratio for the Greedy 

Nearest  Neighbour  algorithm  is  huge,  which is proven 

to be  2c  1,  where  c  =  H   is  the  maximum  cardinality 

of the matching [11]. However, as discussed in [20], the 

idea of greedy is not always the worst, and in practice 

works well since the worst case will only appear with a 

very small probability. Note that, in our concurrent model, 

there will be a batch of queries being processed at the same 

time. Thus, we can employ the greedy idea to perform the 

matching based on the batched queries and their kNN 

results. Consequently, we propose a greedy partial 

matching algorithm which finds the optimal solutions for 

periodically batched queries. 

Note that during our CMBM problem, the cardinality 

constraint restricts the wide variety of queries to be served. 

If the queries processed simultaneously percentage the 

equal kNNs, there might arise the case that a number of 

the queries fail to be assigned as their kNNs have been 

matched to other queries. Fortunately, as our model can 

provide guarantee for the conflict-aware kNN queries, the 

maximum cardinality con- straint can be ensured 

accordingly. Next, we prove that with the correctness 

guarantee,i.e.0≤ρ <1,  we  can  achieve the maximum 

cardinality to be the number of queries, i.e.,|H|=|Q|. 

That is, for each query we guarantee that there will be a 

moving object assigned to it. 

Next, we introduce the greedy partial matching algo- 

rithm to clear up the constraint minimum bipartite 

matching in our model. The primary concept is that we 

first carry out a batch of queries concurrently, the ones 

arrive the machine in the equal time slot (l T, (l + 1) T 

).Then, we generate the kNN bipartite graph primarily 

based on the processed queries and the corresponding 

results, followed by way of the premiere matching 

computation making use of the Hungarical Algorithm [11] 

to do the matching of moving objects for the batched 

queries. Note that, an object may be marked as unavailable 

once it's miles assigned to a question. Be aware that, the 

wide variety of batched queries does not need to be the 

same as the number of the processing units. In fact, it could 

be larger. We notate the wide variety of batched queries 

for greedy partial matching as ϕ. To explain, we maintain 

a listing for the kNN outcomes of the queries which have 

been processed. And after very ϕ number of queries get 

their results, we generate the kBG for the ones queries and 

objects. Then, we calculate the most useful matching 

answer for those batched queries primarily based on the 

Hungarical Algorithm. Note that, most effective the 

gadgets in the kNN consequences of the batched queries 

might be involved within the calculation. Finally, we 

update the supply of the matched items, and we iteratively 

carry out the question and dispatch in the batched manner. 

For example, think that we set varphi = 2 for the queries in 

Figure 3. Then the matching result comes to be (q1, o2), 

(q2, o3), (q3, o5), (q4, o4), (q5, o6), (q6, o7). And the 

dispatching price and competitive ratio are 18 and 1.2 

respectively. The grasping partial algorithm receives extra 

global information than the greedy nearest neighbor set of 

rules, and therefore, can reap better performance in 

phrases of competitive ratio. However, the computation 

fee is a great deal higher. A particular discussion will be 

provided in our experimental study, and we compare the 

grasping partial set of rules with two other solutions: 

random assign and greedy nearest neighbor algorithms. 
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6 EXPERIMENTAL STUDY 

In this section, we experimentally evaluate our framework 

against the state-of-the-art on real-world road networks. 

All methods are implemented in C++ and com- piled with 

full optimizations. All experiments are conducted on a 

Linux machine with two CPUs, each with 10-cores clocked 

at 2.90GHz and 192GB memory. We employ  the Cilk Plus 

scheme for concurrent query processing. We repeat each 

set of experiments 10 times and report the average results. 

6.1 Experimental Settings Dataset and Query set. 

We conduct our experiments on two real street networks: 

the Beijing (BJ) avenue community and the New York (NY) 

street community, which are also used in [13]. The BJ 

network includes 296K nodes and 775K edges; the NY 

dataset consist of 264K nodes and 733K edges. For NY, we 

attain a real dataset from NYC Open Data [2], which has 

18K taxi trajectories. We map the starting point of each 

trajectory to the nearest vertex on the road community. 

Then, the query locations are 1/2 generated from a 

random starting points of the trajectories and half 

generated from a random vertex on the street community. 

For BJ dataset, we acquire a fixed of Point of Interests 

(POIs) from the Open Street Map [3]. Similarly, we map 

each POI to the nearest vertex on BJ street community. 

Then, query places are half generated from random POIs, 

and half of generated from random vertices on road 

network. For each scenarios, the starting function of 

moving objects are generated uniformly from the road 

network. We observe that the identical setting is used in 

[13]. In addition, to assess the impact of various sizes of 

road networks, we extract three sub-networks from the BJ 

dataset following the same approach in [13]. Specifically, 

we steadily expand the street community from the center 

of the Beijing city to get positive number of nodes and the 

corresponding edges. These sub-networks are labeled as 

BJ1, BJ2, and BJ3 with growing size of nodes and edges. 

Table 2 suggests the particular sizes for extraordinary 

datasets. 

Preprocessing Cost. Next, we file the preprocessing cost  . 

Note that the  index includes a grid index for the moving 

gadgets and an H2H index for the street network. The 

H2H index is a hierarchical 2-hop labeling index [16], 

which debts for the essential space consumption of our  

index. Table 2 indicates the information of the index length 

and preprocessing time for different avenue networks, in 

which Space (resp. Time) shows the index length (resp. 

Preprocessing time). From the results, we are able to see 

that index length is not any greater than 700MB, which can 

be easily equipped into the primary reminiscence of 

(almost) all current commodity servers. Besides, the 

preprocessing time to build the  index is likewise very 

small. 

 

6.2 Correctness Study 

Methods and parameter settings. We compare our 

approach in opposition to the state-of-the-art TOAIN to 

evaluate the through- put. Since TOAIN is carried out with 

single-thread, when comparing towards TOAIN, we repair 

p = 1, i.E., the usage of a single thread, for . Since TOAIN 

can song the replace price and query performance via 

placing their parameters, we use three versions of TOAIN, 

denoted as TOAIN-1, TOAIN- 2, and TOAIN-three 3, 

whose putting gives high question effi- ciency however 

also high update value, medium query performance with 

medium replace value, and low question efficiency with 

low replace fee, respectively. In other cases, we run our 

with complete parallelization the usage of forty threads. 

For the grid size, we set the scale to be 100m in all of our 

experiment. For our , the parameter settings are proven in 

Table 1. When in any other case explicitly specified, the 

default settings are proven in boldface. 

In this section, we first experimentally evaluate the cor- 

rectness of our solution towards the ultra-modern TOAIN. 

As referred to in Section 1, there are two factors that will 

have an effect on the correctness. The first issue is the 

update time T , which influences the correctness of the 

query answer. Actually, the current strategies can reduce 

the effect of the problem by making the update time to a 

small value. Therefore, we will examine the impact of T to  

and TOAIN in the subsequent set of experiments while 

comparing the performance. The second aspect, in 

particular, conflicts amongst queries, that impacts the 

correctness of kNN queries, are unnoticed through present 

solutions. 

To simulate the conflicts, we expect that a batch of kNN 

queries arrive and for each query we randomly assign one 

of the kNN outcomes to the query. If a question conflicts 

with the others, this type of question violates the 

serializability. We report the ratio of the quantity of 

queries that do not violate kNN serializability over the 

whole processed queries as the accuracy. Figure 5 suggests 

the accuracy of the kNN queries with the alternate of 

question sizes on the two datasets. As we can see, while 

the batched question size increases from 20, 000 to 80, 000, 

the accuracy of TOAIN will degrade to much less than 50% 

considering they do not consider the conflicts. In contrast, 

our continuously affords 100% acuracy because it handles 

conflicts at some stage in the question processing. Since the 
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battle of the queries will result in query fails and want to 

rerun the query and brings extra ready time. While such 

query fails reach 50%, it will bring about horrific consumer 

experience. By coping with the conflicts,  avoids such 

correctness issues and consequently is a more preferred 

choice. 

6.3 Throughput study 

In this set of experiments, we evaluate the impact of dif- 

ferent parameters to the query throughput    and TOAIN. 

We first have a look at the impact of the update periodicity 

T to the query throughput. As we can see from Figure 4, 

there is little impact of the update periodicity to the 

throughput of our  since  uses a very powerful index 

scheme for updates. In contrast, the throughput of TOAIN 

is severely affected by T . For instance, when T is no large 

than 4, TOAIN-1 (Ref. Section 6.1 for the details) incurs 

zero throughput since it bears high replace price, and 

therefore spend all of the time updating the index 

structure, leaving no time to method queries. For TOAIN-2 

and TOAIN-3, even though their update fees reduce, the 

throughputs also degrade due to the fact the reduced 

replace fees come at scarifying the question performance. 

When T = 0.25, the throughput of our  is 4x (resp. 20x) 

better than TOAIN-2 (resp. TOAIN-3). Even beneath other 

settings, our  still provides better throughput. However, 

due to the fact a smaller T normally shows a higher 

accuracy of the kNN answers, our  is extra preferred desire 

because it significantly outperforms the modern-day while 

providing correct kNN consequences whilst the gadgets 

are moving. 

Clearly, the query time and update time influences the 

throughput of each and TOAIN. Therefore, we fur- ther 

investigate the kNN common query time and update time. 

For the question time, we randomly generate 100,000 

queries and file the common. For the update, we calculate 

the av- erage update time of every object the use of 10 

batched updates. As we will see from Figure 6, while has 

the identical update value as TOAIN (with TOAIN-three), 

the question time of  is lots smaller than that of TOAIN. 

When the query time is similar, TOAIN bears an awful lot 

higher udpate cost than. This indicates our framework 

gains a miles higher trade-off some of the question 

efficiency, update cost, and throughput. 

Apart from T , we in addition look into the impact of the 

reaction time, the enter parameter ok, and the range of 

moving gadgets as shown in Figures 4 (b)-(d). The 

foremost observations are that: (i) to offer comparable 

reaction time, our  always provides higher throughput 

than TOAIN in all settings, and the throughput of  isn't 

always extensively suffering from small reaction time; (ii) 

with the boom of okay, the kNN question overhead will 

increase, however  nevertheless appreciably outperforms 

TOAIN while ok reaches 40; (iii) When the range of items 

will increase as much as 50, 000,  still outperforms TOAIN 

in all settings. 

 

6.4  Scheduling and Concurrent Query Processing 

In this set of experiments, We first show the throughput    

with concurrent query processing with 40 cores   in various 

settings. The results are shown in Figures 7(a) - (d). The 

throughput of with the concurrent query processing is 

significantly higher than the single-thread version, which 

is expected since it reduces the average query time 

significantly by exploring multi-cores. Besides, with the 

distance-based scheduling method, the throughput further 

improves over the random scheduling based method. 

In addition, we evaluate the effectiveness of the pro- posed 

approximate kNN queries. We change the parameterρ 

(Ref. Sections 2 and 4.2 for the definition.) and see the 

impact to the conflicts. Our results in [10] show that by 

allowing approximation, we can significantly reduce the 

abort rate, and with the increase of ρ, the number of query 

aborts significantly reduce. Our distance-based scheduling 

method further helps reduce the abort rate. Further, we 

also evaluate the scalability performance of GLAD with 

vary size of BJ road networks. We draw similar conclusion 

as those mentioned in the previous experiments that 

GLAD can achieve high system throughput. Besides, it is 

highly adaptable to different size of road networks. For the 

interest of space, we omit the details of these two sets of 

experiments. 

 

 

 

Fig. 4: Throughput comparison with TOAIN on NY 
dataset 
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6.5 Dispatching Solutions 

In this section, we report the experiment for three types of 

dispatching algorithms: Greedy Partial (GP), Greedy 

Nearest Neighbor (GNN), and Random Assign. We eval- 

uate the aggressive ratio and the average computational 

price of three algorithms, in which the whole offline top-

rated dispatching value for a given set of queries is 

calculated by way of the Hungarical Algorithm. Table 3 

suggests the comparison of these 3 algorithms. Here, the 

overall quantity of queries being processed is 20000, and as 

for greedy partial algo- rithm, the parameter ϕ is about to 

be a hundred. From the result in Table 3, we can see that, 

the GP set of rules beats the other algorithms in phrases of 

aggressive ratio, at the same time as its computational fee 

is huge. Besides, increasing the range of ok brings little 

variation on the aggressive ratio, but results in dramatic 

boost of time consumption. We observe from this set of 

experiments that both grasping algorithms can obtain 

good competitive ratio, that is inline with the analysis in 

[20]. Next, we study the competitive ratio for the GP 

algorithm varying two parameters. We increase the size of 

queries to do matching, even as the batched size is ready as 

ϕ = a hundred. As we can see from Table 4, the 

competitive ratio growth along with the number of 

queries. This is because once the gadgets are assigned to 

the previous queries, the queries acting later and closer 

might ought to discover further gadgets. The more queries, 

the further objects might be assigned, as a way to lead to 

the increase of the total price. As for the parameter ϕ, 

Table 5 suggests that, when we boom the batched size, the 

aggressive ratio will decrease, that is reasonable. However, 

the computational fee will increase with larger length of 

batched queries to perform the most appropriate matching. 

With the support of the concurrent question processing, 

our model can intrinsically get more global data in the time 

to finish simplest one query. Thus the Greedy Partial set of 

rules would work well with a right the dimensions of 

batched queries. Consequently, from the results, we have a 

look at that ok = 5 or k = 10, and ϕ = one hundred might be 

the desired parameter placing for the dispatching solution, 

which can offer a better aggressive ratio sacrificing an 

appropriate computational cost. 

7 RELATED WORK 

7.1 kNN Queries 

A most sincere answer is the Dijkstra algorithm [8], that's 

the maximum famous set of rules for the single source 

shortest distance computation algorithm in a graph. The 

Dijkstra algorithm needs no additional indexing struc- 

ture, but the on-the-fly query processing cost is still too 

high. ROAD [7] extends the easy Dijkstra set of rules 

through aug- menting a hierarchical shape that walls a 

graph into numerous subgraphs and forms a bigger graph 

hierarchically. ROAD can speed up the Dijkstra with the 

aid of skipping the enlargement of subgraphs which 

contain no moving items. However, it'll degenerate to the 

Dijkstra algorithm whilst the moving objects are calmly 

distributed, accordingly performs poorly. G-tree [24] 

adopts a similar graph partition and hierarchical struc- 

ture as ROAD at the kNN query, associated with a border 

set and corresponding distance matrix on every subgraph. 

G-tree solutions kNN query from a top-down way and 

calculates the space among vertices primarily based on the 

distance matrix that stores the distances between boarders 

and vertices. G-tree is more green than ROAD in query 

processing however involves extra sizable update price. V- 

tree [19] improves G-tree with the aid of appending local 

nearest active vertex desk on each subgraph that only 

vertices containing moving objects are stored, such that it 

can keep away from duplicated computation for 

unnecessary vertices. 

A most latest work on kNN question on street network is 

the TOAIN [13], which is based on the Contraction 

Hierarchy (CH) [9]. It builds a SCOB index on the shortcut 

graph of the original graph that pre-computes the okay 

nearest downhill objects w.R.T. Nodes at the shortcut 

graph. TOAIN performs the kNN query with a Dijkstra 

search on the shortcut graph from the question vertex and 

receives the outcomes from the precomputed nearest 

downhill gadgets. TOAIN differs from the 
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TABLE 3: Comparison of different algorithms 

k 
Competitive Ratio Computational Cost (us) 

GP GNN Random GP GNN Random 

5 3.852 4.018 5.897 12.376 0.006 0.018 

10 3.846 4.009 7.810 71.037 0.008 0.020 

20 3.845 4.008 10.902 278.055 0.008 0.024 

30 3.845 4.007 13.317 686.214 0.010 0.025 

40 3.845 4.007 15.149 1247.741 0.012 0.026 

 

TABLE 4: Query size 

Competitive Ratio 

# Query GP 

5000 1.233 

10000 1.236 

15000 2.536 

20000 3.846 

25000 4.312 

 

TABLE 5: varyφ 

Competitive Ratio 

ϕ GP 

100 3.846 

200 3.837 

400 3.825 

800 3.795 

1600 3.776 

 

Preceding solutions not simplest within the index shape 

and question method however also in the consideration of 

the throughput optimization. However, the correctness 

problems are unnoticed in TOAIN (in addition to any 

preceding answer). In our work, we suggest a greater 

sophisticated device version that takes the correctness 

problem into account. Meanwhile, our GLAD is efficient in 

both question and update which can extensively accelerate 

the system throughput 

7.2 Shortest Path Queries 

Road community queries have been studied for decades, 

specially the shortest direction question for single pair, 

which find the shortest direction for two vertices [21], [22], 

[24]. Dijkstra set of rules is the most straightforward 

manner however renders large price in exploring the 

graph. Bidirectional-Dijkstra [17] cuts down the price by 

means of invoking two Dijkstra search from the supply 

and destination simultaneously. Contraction Hierarchies 

(CH) [9] pre-computes the distances among numerous 

vertices based on a total order, and add shortcuts at the 

graph in order that the Bidirectional-Dijkstra handiest go 

to node in ascending order of the nodes, reducing question 

time for shortest direction and distance queries . TRN [6] is 

an index Based approach that imposes a grid on the road 

network, which pre-computes the shortest paths from 

within every grid cell to a hard and fast of vertices which 

might be deemed critical for the corresponding cell. 

Spatially Induced Linkage Cognizance (SILC) [18] pre-

computes the all-pairs shortest paths in the road network, 

and stores the shortest paths in a concise form for green 

question processing. Apart from the studies work 

mentioned above, many other research work were 

proposed for shortest queries [21], [22], [25] assuming that 

the graph can't be geared up into the memory or there exist 

extra constrains. 

7.3 Online Minimum Bipartite Matching 

The online minimal bipartite matching trouble is ap- plied 

to a wide variety of applications, e.G., challenge 

assignment in crowd sourcing and taxi dispatching, and 

has been drastically studied. Some of the famous 

algorithms for online minimal bipartite matching 

encompass Greedy [11], Permutation [11], HST-Greedy 

[14], and HST-Reassignment [5]. The Greedy matches each 

new arrival query to its modern nearest neighbor, which is 

efficient but leads to big competitive ratio. Permutation 

applies Hungarical Algorithm to compute the correct 

matching to locate  the unmatched provider for the brand 

new arrival question. Both HST- Greedy and HST-

Reassignment are randomized algorithms, where HST 

refers to hierarchically separated tree built on carrier 

providers. HST-Greedy reveals the nearest issuer primarily 

based on tree metric to a question. HST-Reassignment 

develops a reassignment technique to enhance the local 

optimal trap as a result of greedy. Both HST-Greedy and 

HST-Reassignment can obtain a good aggressive ratio 

while want extra index strictures and preprocessing cost. 

8. CONCLUSIONS 

In this paper, we present a comprehensive study on 

correctness-aware kNN queries, which aims at optimizing 

the system throughput while guaranteeing the correct- 

ness of the kNN queries on moving objects. We develop    

an efficient framework GLAD which provide high  sys-  

tem throughput while guaranteeing the query correctness. 

The GLAD framework includes effective index structures 

and novel scheduling algorithms to improve the system 

throughput. We further propose approximate solutions 

that provide a controllable trade-off between correctness 

and throughput of kNN queries. Extensive experiments on 

real- world road network show that our solutions are 

several times faster than the state-of-the-art. Finally, we 

propose an effective cost-based dispatching strategy for 

our model to minimize the overall travelling cost from the 

moving objects to the query locations. 
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