
© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1682

Tracery and Epithet system with scheduling for

contention aware kNN query
D.Sandeep1, Shaik Munsif2, G Narendra Kumar3, C Mahesh4, B Phaneendra Kumar5

1. Asst. Professor, Santhiram Engineering College, Dept. of CSE.

2,3,4,5 B.Tech Student, Santhiram Engineering College, Dept. of CSE.

Abstract-The smart transportation systems, e.G.,

DiDi, Uber, have served as essential travel

equipment for customers, which foster lots of

research for the location-based totally queries on

street network. In particular, given a set O of

items and a question point q on a avenue

network, the okay Nearest Neighbour (kNN)

query returns the k nearest objects in O with the

shortest road community distance to q. In

literature, maximum existing answers for kNN

queries tend to reduce the question time,

indexing storage, or throughput of the kNN

queries even as overlooking the correctness of the

queries resulting from question-query and

update-query conflicts. In our work, we endorse a

grid- primarily based framework on war-aware

kNN queries on moving objects which ambitions

to optimize machine throughput at the same time

as ensuring question correctness. In particular, we

first suggest green index systems and new

question algorithms that significantly enhance the

throughput. We similarly present novel

scheduling algorithms that aim to avoid conflicts

and enhance the system throughput. Moreover,

we devise approximate answers that provide a

controllable trade-off among the warfare of kNN

queries and device throughput. Finally, we

suggest a cost-primarily based dispatching

strategy to assign the kNN effects to the

corresponding queries. Extensive experiments on

real-world facts show the effectiveness and

efficiency of our proposed answers over

alternatives.

Index Terms—Serialisable kNN Query, Conflict-

aware Scheduling, Cost-based Dispatching,

Constrained Minimum Bipartite Matching.

1INTRODUCTION: Given a fixed O of moving items

and a query factor q on a avenue network, the okay

Nearest Neighbor (kNN) question returns the ok

nearest objects in O with the shortest avenue

community distance to q. The kNN query on moving

gadgets finds many essential real global applications.

For instance, in current ride-hailing services like DiDi

and Uber, a vacationer may also request a taxi at

his/her modern location, and DiDi or Uber then needs

to find numerous vehicles in its fleet which might be

the closest to this location. Apart from taxi-hailing,

there are numerous different applications applicable to

kNN query on moving gadgets, such as road-facet

servicing to accidents, police dispatch to the close by

accident, emergency, and crime incident. Consider the

software of police dispatch: when an incident arises,

the police gadget will want to locate the nearby police

patrols and assign one or some patrols based on the

call for to the request as soon as possible. Once a patrol

is assigned to a request, he/she cannot be the end

result of other queries and will now not be available

until he/she finishes the previously assigned task.

In literature, there exists a plethora of research works

[12], [13], [15], [19], [24] that address the kNN queries

on avenue community with recognize to shifting

objects. However, most existing solutions especially

consciousness on reducing the question processing

time to get the kNN results or cutting down the

indexing cost to support efficient update of

transferring objects, whereas in exercise the system

throughput, with a purpose to be laid low with both

update frequency and question performance as proven

in [13], is a far more precious metric whilst evaluating

system performance. On one hand, current state- of-

the-art solutions, e.G., TOAIN [13], as we can display

in our experiments, still do now not offer a good trade-

off some of the throughput, query performance, and

the replace frequency. On

the alternative hand, as we will illustrate shortly,

maximum existing works fail to don't forget the

correctness of the question results, on the way to

detriment the user experience provided by using the

applications using kNN queries. In general, the

correctness issue may be attributed to two essential

factors.

The first factor with a purpose to result in the

correctness issue is the updates of moving objects. In

practice, for most of the moving objects, the places of

objects are up to date periodically, where each update

can be appeared as a snapshot of gadgets’ modern

places. For instance, each car in DiDi reports its

location to the gadget in every 2 four seconds [4].

Generally, let us denote the minimum interval time

that the device can capture the movement of the

gadgets as To. In literature, maximum existing

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1683

solutions construct index structures for those moving

items and then replace the index structures each T

seconds, e.G., each eight seconds as reported in [13]. In

any such case, T > To, i.E., the index replace is much

less common than the updates of moving gadgets, so

that you can undoubtedly affect the correctness of the

kNN query results. Figure 1(a) suggests the impact of

T on kNN queries using the Beijing road network. We

set k = 5, and use the kNN solution at the query time

because the ground-truth. Then, for numerous values

of update time period T for an index structure, ranging

from 1 to sixteen seconds, we compare the average

distance between gadgets returned by way of the kNN

question using the index structure and the query

location to the equivalent within the ground-truth. As

shown in Figure 1(a), whilst T increases, the common

distances for kNN queries additionally increases:

when we go back the kNN question with T = 8, the

common distance of kNN question would growth by

more than 50% as compared to the ground-truth. In

real-world programs like taxi- hailing services, the

growth of the distances commonly indicates longer

ready time, and increasing waiting time via 50% could

be unfavourable to consumer experience. Therefore, it

is crucial to set T near To for real-global applications.

The second aspect that affects the correctness of the

kNN queries is particularly due to the conflicts

between queries. In literature, maximum current

works discard the viable conflicts in kNN queries and

the question answer results have no quality guarantee

at all. In practice, upon getting the kNN results, the

gadget will assign one the objects to the query based

on a certain dispatching strategy. However, none of

the prevailing work do not forget the dispatching

procedure, consequently overlooks the war among

queries. For instance, given a kNN question request by

using a person, the ok taxis returned by using the kNN

queries may additionally all be occupied via

concurrent kNN queries requested by other users.

Because an object within the kNN end result (e.G., a

taxi) for a query q1 can be assigned to a query person

(e.G., a customer), every other query close to q2, whose

end result overlaps with that of q1, might not be

executed until the final touch of q1. Hence, the ready

time of consumer of q2 can be delayed, resulting in a

poor person experience. As shown in Figure 1(b),

when 10,000 queries are processed with the machine

with 50,000 objects, we can take a look at that the war

fee increases sharply with the growth of ok, and

becomes greater than 40% whilstokay = 40. Therefore,

it is essential to recall kNN question conflicts in the

course of the query processing. In the paper, we

formally outline the conflicts of queries and the

serializable kNN queries which assure that the kNN

queries will be battle-aware. The serializable kNN has

robust correctness assurance and in mostrealistic

scenarios, it may not need that robust guarantees. We

therefore further propose approximate serializable

kNN queries which provide a controllable trade off

among the correctness and throughput of kNN

queries. This motivates us to endorse a framework that

advantage high throughput of kNN queries processing

whilst making certain their correctness.

2 FRAMEWORK

In this section, we introduce the general

framework of our . We first gift the preliminary

about some definitions and trouble statement.

Then we introduce the machine model, observed

by means of the throughput analysis.

Let G = (V, E) be a directed graph that represents a

avenue network wherein V is the set of vertices and E

is the set of road segments on this road community.

For each edge e=(u,v) 𝜖 E, it is associated with a weight

w(e), which represents the distance from u to v. Given

two vertices s,t 𝜖 V, let P={e0,e1, … ei} be a path from

s to t, then the distance of P is defined as

∑ 𝑤(𝑒𝑖)𝑙
𝑖=0 .The shortest distance from s to t is defined

as the minimum distance among all the paths from s to

t, denoted as dist(s,t).On road networks, objects are

often moving from on place to another. Typically it is

difficult to monitor the location of objects

continuously. Instead, for the objects that include GPSs

the movement of these objects can be tracked

periodically with every second.

Consider a set of M moving objects, where each object

is located on road segment. Given an object o 𝜖 M

located on a road segment e0=(u0,v0) such that the

distance between o and v0 is w(o,v0). Given a query

point q, which is located on a road segment

eq=(uq,vq), the distance of vertex uq to q is w(uq,q).

The distance from o to q is then:

Dist(q,o)= w(o,v0)+dist(u0,uq)+w(uq,q). (1)

Following previous works [13], [19], [24], we assume

that the query locations and moving gadgets are all

placed on vertices, ignoring the offset of the items to

the vertices (resp. The vertices to question locations)

on the street network. To explain, we are able to

without

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1684

difficulty calculate the precise distance from the items to

the question vicinity in keeping with Equation 1. The

kNN query is defined as follows.

Definition 1 (kNN queries).Given a query point q, a set M

of moving objects on a road network GV, E), and an integer k

≤M , let dist(o, q) denote the distance of object o 𝜖 M to the

query location q at the query time. The kNN query returns a

set R ⊆M of k moving objects such that for all v ∈M \

R,dist(v, q) ≥ dist(u, q) for any u ∈R.

After acquiring the kNN results for a specific query, a

dispatching scheme will assign one of the results to the

query. The dispatching scheme of our version will be

introduced in Section 5. Here, we define such operation

on moving object as the Oracle Dispatch.

Definition 2 (Oracle Dispatch). Given a query q and the

corresponding kNN results Rq, the Oracle Dispatch assigns

one moving object o ∈Rq to q, and marks o is an unavailable

object

Note that if a few queries share the equal objects, it

would be feasible that one item is assigned to more than

one queries at some point of dispatching. Next, we

formally define a strict kNN-query Conflict as follow,

and we will propose the approximate kNN question as a

relaxation in Section 4.2.

Definition 3 (kNN-query Conflict). Given two kNN

queriesqa and qb, let Rqa and Rqb be the kNN query

answer for qaand qb, respectivelyqa conflicts with qb if Rqa

Rqbconflict ratio ρ between qa and qb is defined as follow

𝜌 =

Definition 4 (Update-query conflict). Given an update request

for a moving object o and a query q with Rq as the

corresponding kNN results, there exists update-query conflict

between q and o if o ∈ Rq.

Notice that given a kNN question, there usually exists

capability replace to one of the gadgets in kNN

consequences by the oracle dispatch. Meanwhile, the

replace to the kNN is generally unpredictable given that

the replace may additionally be machine dependent, e.G.,

different systems may assign taxis to query users in unique

ways, or may additionally contain human interactions,

e.G., taxi drivers can also pick to accept or refuse the

experience request. Strictly, if each of the moving object

within the kNN outcomes is to be had for dispatch, that

query will don't have any con- flict with others. Therefore,

given a set of queries having no conflict with each other,

they can be processed concurrently without any extra aid

maintenance. Thus we define the serializable kNN queries

as follow.

Definition 5 (Serializable kNNs). Given a set Q of kNN queries

and U updates to the objects, we call these Q kNN queries and

U updates are serializable if the objects’ statuses (e.g., available /

unavailable for the taxis) of their parallel processing results are

equivalent to those of the sequential processing results.

To assure the correctness of the kNN queries, we should

keep away from the kNN query conflicts and question-

replace conflicts. In the case whilst a conflict occurs to a

query, we want to abort this query and re-run it, which is a

waste of time. In Section 4, we can present a way to

manage the conflicts with the intention to lessen the abort

quotes and consequently enhance the throughput System

Model.

2.2 System Model

Next, we present the system model to handle the kNN

queries. Figure 1 (c) illustrates the system model to serve

the correctness-aware kNN queries. It mainly includes two

parts: the task arrival model and the task handling model.

Task Arrival Model.Following the previous work [13], we

count on that the queries arrive at the gadget as a Poisson

process. In the meantime, we assume that the system is

periodically tracking the motion of the items, and the

machine can seize the motion of the objects with each To

seconds. For instance, To can be the GPS location sparkling

periodicity. Then, for the moving objects, we count on the

updates to items are available in batch each T seconds as

proven in Figure 1 (c). Such an replace arrival model is

referred to as the batched update version, which is

likewise used in [13], and it's miles a realistic modelling for

taxi-hailing services. Notice that T won't be similar to To

since the update cost can be high and the device, therefore,

techniques the replace in a more coarse-grained manner.

We assume that the system start time is zero, and at every

time l.T with l 𝜖 𝑁+, the batched updates arrive, and the

system immediately handles the updates before the query

processing. Let Let Tube the time for the batched updates.

For the arrived queries in [l · T, (l + 1)· T), it will then

process the queries based on the updates at time l · T .

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1685

3 0

Notice that if Tu> T , then, the system will have no

throughput at all since it spends all time on the updates of

the objects. Therefore, it is important to balance the update

costs and the query processing time.

Task Handling Model. In this, we focus on processing the

queries and updates with multiple processing units (as

shown in figure 1(c)) to support concurrent execution (By

setting the number of processing units as 1, it comes to the

sequential execution). As mentioned earlier, updates are

handled at the beginning if each time slot [l . T, (l+1) . T]

with l 𝜖 𝑁+. For the queries , they are stored on a task

queue, and a task schedule will assign the queries, to

different processors. To process the queries, the system

should finish the queries in response time Tr. This

guarantees that for the earlier tasks that are not processed

yet, it will have higher priority during the task scheduling.

Since the queries are processed in parallel, there may exist

kNN query conflicts and system includes a conflict handler

to detect conflicts. . During the processing of a query, the

conflict handler will detect whether there is a conflict

between this query and any of the other queries being

processed. Once a conflict is detected, this query will be

aborted and the system will rerun the query. Notice that

there will be no update-query conflict since the updates are

processed before the queries in every time slot [l T, (l + 1) T

) with l N +. After obtaining the kNN results for each query,

the oracle dispatch will assign each query an object based

on certain strategies, which will be detailedly introduced

in Section 5.

2.3 Throughput Analysis

In this subsection, we present the throughput calculation.

Derived from TOAIN [13], the device throughput is laid

low with both query processing time and the object update

fee. Here, we only show the end result of the throughput

analysis, in which the details may be located in [10].

Assume that the average query processing time for a kNN

question is tq, the common cost for an update is tu, and the

quantity of process units is p, then the device throughput,

a.K.A., the range λ of queries that the system responds per

unit time slot, satisfies the following

 (2)

Alternatively, let λ be the query arrival rate (in number per

second), tq(resp. Vq) be the average (resp. variance) of

query time using a single processing unit. Given the

response time Tr, the average throughput (i.e., the largest

query arrival rate) λ can be formulated by:

which is the throughput of our framework. Next, we

present our framework to assist efficient query processing

with very small update costs.

3.1 Grid Index for Updates

We first explain the details of our grid index for updates.

Given a road network G, we partition the road network

into 2x2xgrids according to their latitude and longitude. For

example, given the road network with 12 nodes in Figure

2, we divide the road network into 8 8 grids. Then, we

make a one-to-one mapping from h [0, 22x1] to the grid

cells by using the Hilbert curves. The main reason to

maintain the Hilbert curves will be explained in Section 4.

For now, we just assume that we have a one-to-one

mapping.. Then for each h ∈ [0, 22x− 1], we maintain a list Lh

to denote the objects that fall into the corresponding grid

cell mapping with Hilbert code h. Besides, for each moving

object, we also maintain which grid cell the object

currently falls into. Then, when the batched updates come

at time l · T , we update the list for all the objects and

update the information of which grid the current object

falls into. Denote the number of update requests at time l T

as cu. If cu M , it will bewasteful to rebuild the list every T

seconds.

As an alternative, we first replace the grid information for

the object asking for an replace, i.E., we realize which

mobile the object presently belongs to. Then, if the item

moves from one grid to another, we simplest append the

node into the listing similar to the new grid. This will

result in redundant information. However, this will no

longer affect the correctness of the query processing. To

explain, given that for every item we hold an entry

indicating the grid that it falls in, in the course of the

exploration of grid (details in Section 3.2) we can clear out

the redundant items through checking the corresponding

entries. Also, to relieve the weight of such redundant data,

we report the accumulated variety au of updates have

been made to the grid index, i.E., each time there is an item

shifting from one grid to another auis increased by one.

And when au= M , we rebuild the index from scratch. By

this strategy, we do not need to rebuild the grid index

every T seconds and the complexity of each batched

update can be bounded by O(M), since each update of a

moving object is at O(1) amortized cost. To explain, the

cost for each append is O(1) and in total O(au) cost, and to

rebuild the index for |M | objects, the cost is still O(|M |).

Since au= |M |, then the total update cost for |M | objects

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1686

will be O(|M |) which is optimal as by examining the

location of each object, it already takes O(|M |) cost.

3.2 Distance Index and kNN query processing

To answer the kNN queries, a naive answer is to do a

Dijkstra search [8] from the query point and stops when

okay nodes are retrieved. However, this answer will incur

giant question overhead. Our primary remark for kNN

question is that, in contrast to the objects which might be

dynamically moving, the nodes on street networks aren't

moving and we are able to pre-shop the distances between

distinct nodes with some auxiliary index systems and

reuse the index structure to answer the question. In the

literature, there exists a plethora of index schemes for the

distance queries. For instance, TOAIN integrates the

Contraction Hierarchy [9] index structure to calculate the

distances. In our solution, we integrate the contemporary

distance labeling scheme H2H [16] for our kNN queries.

We notice that the gap labeling may be modified to every

other labeling scheme whichever is faster. Therefore, we

treat the space labeling scheme as a black-field and use

D(u, v) to indicate using the index to calculate the distance

from u to v.

Given the index structure, a naive answer is to calculate

the space from every item to the question point. However,

this outcomes in needless computational expenses when

you consider that some items some distance faraway from

the query region are unlikely to be the kNN query answer.

Motivated by means of this, we present a grid primarily

based pruning method to reduce the query costs.

KNN Query Algorithm for framework

Query algorithm details. The pseudo-code of the kNN

question algorithm is as proven in Algorithm 1. The main

concept of the question set of rules is to use the Euclidean

distance of the gadgets to avoid expanding the search

space on the street network. We start from the grid of size

1 1, and then gradually increase the grid to 3 3, 5 5, till the

kNN answers are found. Figure 2 (b) suggests an instance

of the grid increasing. In the query set of rules, we

maintain a hard and fast H to denote the set of grids which

have been searched, first of all set to be . We in addition

preserve a fixed NH to indicate the set of grids which can

be associates of H, and initially set to be h (Algorithm 1

Line 1). We in addition maintain a hard and fast C(q) of

candidates to the kNN query answer, first of all set to be .

We then gradually increase the grids to be searched the use

of pruning techniques as follows. At the beginning, we

calculate the distances of all of the items in NH to the

query location q using the distance labeling, and upload

these objects to the candidate set C(q) (Algorithm 1 Lines

6-9). Then, we file the k-th shortest distance some of the

points in the candidate set C(q) as the space top certain UB

for the kNN question (Algorithm 1 Line 11). After that, we

update H to encompass the grids in NH since the grids in

NH were expanded. We further update NH to be the grids

which can be pals of H except the grids in H ((Algorithm 1

Line 12)). Next, we report LB because the Euclidean

distance from the threshold of NH to q. Notice that the

Euclidean distance L2(o, q) from an object o to q is a lower

certain of the shortest distance dist(o, q). Clearly, for all the

nodes in the NH, the shortest distance must be no smaller

than LB. In this way, if LB UB, all the nodes in NH need to

not belong to kNN on the grounds that their distance to q

is already no smaller than at Least k nodes. Therefore, we

terminate the grid expansion (Algorithm 1 Line 5). Finally,

we return the k nodes with the shortest distance in C(q)

and go back them because the kNN query answer.

4. FRAMEWORK: CORRECTNESS AWARE

MODELING

In this section, we introduce the concurrent version and

analyze a way to provide accurate answer for the kNN

queries. We first expect that the items will record its

location within the system monitoring periodicity To.

Then, we define T - correct kNN queries as follows

Definition 6 (T -accurate kNN queries). Given a kNN query q

requested at time tq, q is T -correct if the kNN are derived in step

with the distances calculated with the latest index after the batch

update within time slot [tq − T, tq).

Obviously, the bigger T it's far, the less accurate the kNN

queries are. Also, it's miles really worth to note that it is

meaningless to update the index structure too frequently,

i.E., putting index replace periodicity T < To, since we are

able to gain at maximum To-correct kNN queries. To

explain, the minimum batched update periodicity of the

objects we can gain is To, and therefore, by using placing a

small T , we might not have any replace in the periodicity

and the accuracy is similar to the To-correct kNN question

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1687

answers. Obviously, To is typically not pretty large, e.G.,

may be as small as 0.05 second. If the update fee is

excessive, the gadget will spend an excessive amount of

time on the updates. For instance, as we are able to see in

Section 6, the today's TOAIN [13] nonetheless incurs very

high update value to gain low query processing time. In

contrast, our grid-based indexing scheme bears very small

replace cost and achieves a good stability among the

replace value and query efficiency. In particular, whilst we

set the index replace periodicity T = 0.25 seconds, our

nevertheless achieves very excessive throughput and is 4x

faster than TOAIN. By allowing the gadget to gain the

pleasant possible accuracy with out sacrificing the

throughput, we will offer more accurate kNN question

answers and offer better user stories for the applications

using the kNN queries.

4.1 Conflict-Aware Scheduling

To gain the fine feasible throughput, in our model we are

able to use more than one processing gadgets to deal with

queries con- currently. However, as we stated in Section 2,

when more than one kNN queries are processed, we need

to guarantee the kNN queries are processed in a

serializable manner (Ref. Definition 5). To obtain this,

when kNN queries are processed in parallel, we want to

assure that there is no struggle on the kNN queries.

Suppose there may be no scheduling to the coming

queries, the queries may incur too many conflicts and

therefore a high abort rate, degrading the sys- tem

throughput. Therefore, we present a novel scheduling

scheme for the concurrent kNN question processing. A

chal- lenge for scheduling is that the scheduling algorithm

must be light-weight while effective since (i) if the

scheduling is too complex it can dominate the cost and

bring no development to the throughput even supposing

the abort price is reduced, (ii) if the scheduling is very

simple, e.G., using Random assignment, the abort rate can

be nevertheless very high, and does not help improve the

throughput. Facing this dilemma, we present a novel

scheduling algorithm based at the Hilbert curves. The

main idea is that for the query points with near Hilbert

curve numbers, they're highly probably to battle with

every other, even as if the difference of Hilbert curve

numbers are massive for the query points, it's miles highly

possibly that these queries have no conflicts. Therefore, we

schedule the queries which might be less likely to have

conflicts concurrently, ensuing in smaller abort rate. We

endorse two types of scheduling approaches: Hilbert

workload-balanced scheduling and Hilbert distance-

primarily based scheduling. We omit the information for

the interest of space, and they are illustrated in our

convention manuscript [10].

4.2 Approximate kNN queries

As we mentioned in Section 1, some applications there can

also not want strict battle of kNN queries. However, unlike

the present paintings that handles kNN queries

overlooking the conflicts and correctness, we propose an

approximate version of the serializable kNN queries. The

approximation gives a controllable trade-off among the

question correct- ness and gadget throughput.

Definition 7 (ρ-approximate serializable kNN). Given a hard

and fast Q of kNN queries, these Q kNN queries are ρ-

approximate serializable if the queries are processed in parallel

whilst allowing that the kNN answer of a question q bears at

maximum ρ k shared gadgets with different concurrent queries.

As we can see, the ρ-approximate serializable-kNN al-

lows some of the kNN effects to be shared through

different kNN queries. But the ratio of the shared objects

should be lim- ited to a positive degree, i.E., ρ. Fortunately,

in exercise the approximation tuning requires minor

amendment to our war handler. In particular, in

serializable kNN question processing, when an item is

lower back as the answer through a kNN query, then the

current query aborts and re-runs the query from scratch. In

the ρ-approximate serializable kNN question processing, it

counts the number c of gadgets which are shared by means

of different kNN queries and aborts except the number c is

larger than ρ k. As we will see in our experiment, the

approximate definition additionally helps reduce the

conflicts and the abort rate. We will also take a look at the

impact of ρ to the query accuracy and question

throughput.

5 FRAMEWORK: COST-BASED DISPATCH

STRATEGY

In this section, we present the cost-primarily based

dispatch strategies to assign an object to a given query. In

general, after several moving gadgets are retrieved with

the query algorithm, the device will choose one among the

gadgets based on a certain approach because the response

to a given query. Then this item might be marked as an

occupied one, and will be available after it finishes the

request task, e.G., a taxi arrives the destination of a

journey. A naive approach is to randomly select up one

item from the question results. However, such approach

fails to recall the tour distance optimization, which targets

to minimize the total driving distance of moving objects,

thus, reduces the average waiting time of the request tasks.

Hence, we study the the cost-based dispatch strategywhich

is also known as the assignment problem.

5.1 Constrained Minimum Bipartite Matching

Specifically, given a set of moving gadgets and a set of

requests on the road network, we strive to discover a

matching between the moving items and requests such

that the total travel prices of the matched pairs are

minimal. In the ultimate decade, a similar problem has

attracted much interest from many researchers, named the

Minimum Bipartite Matching (MBM) problem, which aims

to find a perfect matching with minimal general distance

among the matched pairs of a service set and a user set in a

dimensional space [23]. In our work, a bipartite graph can

be fashioned with the set of moving gadgets and the query

points wherein the weighted edges represent the road

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1688

network distances between them. However, not like the

conventional MBM hassle wherein for every pair of

vertices from two aspects there exists an edge connecting

them, in our work, we can most effective locate edges from

each query to all its kNN results. Formally, we define the

kNN bipartite graph as follow.

Definition 10 (Competitive Ratio). The competitive ratio of

an matching algorithm A for the CMBM problem is as follow

Where kBG(M∪Q,D)is the k NN bipartite graph formed via a

set M of moving objects and a set Q of query points that

arrivein an arbitrary order, His the marching return by

algorithm A, and OPT refers to the optimal solution with offline

globalinformation.

To explain, the aggressive ratio measures the value ratio

among the result of an online algorithm and the optimal

result received by using an MBM set of rules in which the

offline data is given in advance. Note that during our

frame- work, there could be a batched update each time

interval T . Thus the aggressive ratio is calculated for the

set Q of queries arriving inside the equal time interval, in

which the places of the moving gadgets do not change

throughout that time interval.

5.2 Greedy Partial Matching Algorithm

A naive algorithm for our CMBM problem is the Greedy

Nearest Neighbor algorithm, which matched every new

arrival question to its currently nearest available moving

object. For example, given the 2NN bipartite graph proven

in Figure 3 (a), the matching result obtained by the Greedy

Nearest Neighbour algorithm

is{(q1,o3),(q2,o4),(q3,o5),(q4,o7),(q5,o6),(q6,o2)}. The total

dispatching cost is at 34, which is much larger than the one

for the optimal solution, and the competitive ratio is2.3.

In fact, the worse case competitive ratio for the Greedy

Nearest Neighbour algorithm is huge, which is proven

to be 2c 1, where c = H is the maximum cardinality

of the matching [11]. However, as discussed in [20], the

idea of greedy is not always the worst, and in practice

works well since the worst case will only appear with a

very small probability. Note that, in our concurrent model,

there will be a batch of queries being processed at the same

time. Thus, we can employ the greedy idea to perform the

matching based on the batched queries and their kNN

results. Consequently, we propose a greedy partial

matching algorithm which finds the optimal solutions for

periodically batched queries.

Note that during our CMBM problem, the cardinality

constraint restricts the wide variety of queries to be served.

If the queries processed simultaneously percentage the

equal kNNs, there might arise the case that a number of

the queries fail to be assigned as their kNNs have been

matched to other queries. Fortunately, as our model can

provide guarantee for the conflict-aware kNN queries, the

maximum cardinality con- straint can be ensured

accordingly. Next, we prove that with the correctness

guarantee,i.e.0≤ρ <1, we can achieve the maximum

cardinality to be the number of queries, i.e.,|H|=|Q|.

That is, for each query we guarantee that there will be a

moving object assigned to it.

Next, we introduce the greedy partial matching algo-

rithm to clear up the constraint minimum bipartite

matching in our model. The primary concept is that we

first carry out a batch of queries concurrently, the ones

arrive the machine in the equal time slot (l T, (l + 1) T

).Then, we generate the kNN bipartite graph primarily

based on the processed queries and the corresponding

results, followed by way of the premiere matching

computation making use of the Hungarical Algorithm [11]

to do the matching of moving objects for the batched

queries. Note that, an object may be marked as unavailable

once it's miles assigned to a question. Be aware that, the

wide variety of batched queries does not need to be the

same as the number of the processing units. In fact, it could

be larger. We notate the wide variety of batched queries

for greedy partial matching as ϕ. To explain, we maintain

a listing for the kNN outcomes of the queries which have

been processed. And after very ϕ number of queries get

their results, we generate the kBG for the ones queries and

objects. Then, we calculate the most useful matching

answer for those batched queries primarily based on the

Hungarical Algorithm. Note that, most effective the

gadgets in the kNN consequences of the batched queries

might be involved within the calculation. Finally, we

update the supply of the matched items, and we iteratively

carry out the question and dispatch in the batched manner.

For example, think that we set varphi = 2 for the queries in

Figure 3. Then the matching result comes to be (q1, o2),

(q2, o3), (q3, o5), (q4, o4), (q5, o6), (q6, o7). And the

dispatching price and competitive ratio are 18 and 1.2

respectively. The grasping partial algorithm receives extra

global information than the greedy nearest neighbor set of

rules, and therefore, can reap better performance in

phrases of competitive ratio. However, the computation

fee is a great deal higher. A particular discussion will be

provided in our experimental study, and we compare the

grasping partial set of rules with two other solutions:

random assign and greedy nearest neighbor algorithms.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1689

6 EXPERIMENTAL STUDY

In this section, we experimentally evaluate our framework

against the state-of-the-art on real-world road networks.

All methods are implemented in C++ and com- piled with

full optimizations. All experiments are conducted on a

Linux machine with two CPUs, each with 10-cores clocked

at 2.90GHz and 192GB memory. We employ the Cilk Plus

scheme for concurrent query processing. We repeat each

set of experiments 10 times and report the average results.

6.1 Experimental Settings Dataset and Query set.

We conduct our experiments on two real street networks:

the Beijing (BJ) avenue community and the New York (NY)

street community, which are also used in [13]. The BJ

network includes 296K nodes and 775K edges; the NY

dataset consist of 264K nodes and 733K edges. For NY, we

attain a real dataset from NYC Open Data [2], which has

18K taxi trajectories. We map the starting point of each

trajectory to the nearest vertex on the road community.

Then, the query locations are 1/2 generated from a

random starting points of the trajectories and half

generated from a random vertex on the street community.

For BJ dataset, we acquire a fixed of Point of Interests

(POIs) from the Open Street Map [3]. Similarly, we map

each POI to the nearest vertex on BJ street community.

Then, query places are half generated from random POIs,

and half of generated from random vertices on road

network. For each scenarios, the starting function of

moving objects are generated uniformly from the road

network. We observe that the identical setting is used in

[13]. In addition, to assess the impact of various sizes of

road networks, we extract three sub-networks from the BJ

dataset following the same approach in [13]. Specifically,

we steadily expand the street community from the center

of the Beijing city to get positive number of nodes and the

corresponding edges. These sub-networks are labeled as

BJ1, BJ2, and BJ3 with growing size of nodes and edges.

Table 2 suggests the particular sizes for extraordinary

datasets.

Preprocessing Cost. Next, we file the preprocessing cost .

Note that the index includes a grid index for the moving

gadgets and an H2H index for the street network. The

H2H index is a hierarchical 2-hop labeling index [16],

which debts for the essential space consumption of our

index. Table 2 indicates the information of the index length

and preprocessing time for different avenue networks, in

which Space (resp. Time) shows the index length (resp.

Preprocessing time). From the results, we are able to see

that index length is not any greater than 700MB, which can

be easily equipped into the primary reminiscence of

(almost) all current commodity servers. Besides, the

preprocessing time to build the index is likewise very

small.

6.2 Correctness Study

Methods and parameter settings. We compare our

approach in opposition to the state-of-the-art TOAIN to

evaluate the through- put. Since TOAIN is carried out with

single-thread, when comparing towards TOAIN, we repair

p = 1, i.E., the usage of a single thread, for . Since TOAIN

can song the replace price and query performance via

placing their parameters, we use three versions of TOAIN,

denoted as TOAIN-1, TOAIN- 2, and TOAIN-three 3,

whose putting gives high question effi- ciency however

also high update value, medium query performance with

medium replace value, and low question efficiency with

low replace fee, respectively. In other cases, we run our

with complete parallelization the usage of forty threads.

For the grid size, we set the scale to be 100m in all of our

experiment. For our , the parameter settings are proven in

Table 1. When in any other case explicitly specified, the

default settings are proven in boldface.

In this section, we first experimentally evaluate the cor-

rectness of our solution towards the ultra-modern TOAIN.

As referred to in Section 1, there are two factors that will

have an effect on the correctness. The first issue is the

update time T , which influences the correctness of the

query answer. Actually, the current strategies can reduce

the effect of the problem by making the update time to a

small value. Therefore, we will examine the impact of T to

and TOAIN in the subsequent set of experiments while

comparing the performance. The second aspect, in

particular, conflicts amongst queries, that impacts the

correctness of kNN queries, are unnoticed through present

solutions.

To simulate the conflicts, we expect that a batch of kNN

queries arrive and for each query we randomly assign one

of the kNN outcomes to the query. If a question conflicts

with the others, this type of question violates the

serializability. We report the ratio of the quantity of

queries that do not violate kNN serializability over the

whole processed queries as the accuracy. Figure 5 suggests

the accuracy of the kNN queries with the alternate of

question sizes on the two datasets. As we can see, while

the batched question size increases from 20, 000 to 80, 000,

the accuracy of TOAIN will degrade to much less than 50%

considering they do not consider the conflicts. In contrast,

our continuously affords 100% acuracy because it handles

conflicts at some stage in the question processing. Since the

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1690

battle of the queries will result in query fails and want to

rerun the query and brings extra ready time. While such

query fails reach 50%, it will bring about horrific consumer

experience. By coping with the conflicts, avoids such

correctness issues and consequently is a more preferred

choice.

6.3 Throughput study

In this set of experiments, we evaluate the impact of dif-

ferent parameters to the query throughput and TOAIN.

We first have a look at the impact of the update periodicity

T to the query throughput. As we can see from Figure 4,

there is little impact of the update periodicity to the

throughput of our since uses a very powerful index

scheme for updates. In contrast, the throughput of TOAIN

is severely affected by T . For instance, when T is no large

than 4, TOAIN-1 (Ref. Section 6.1 for the details) incurs

zero throughput since it bears high replace price, and

therefore spend all of the time updating the index

structure, leaving no time to method queries. For TOAIN-2

and TOAIN-3, even though their update fees reduce, the

throughputs also degrade due to the fact the reduced

replace fees come at scarifying the question performance.

When T = 0.25, the throughput of our is 4x (resp. 20x)

better than TOAIN-2 (resp. TOAIN-3). Even beneath other

settings, our still provides better throughput. However,

due to the fact a smaller T normally shows a higher

accuracy of the kNN answers, our is extra preferred desire

because it significantly outperforms the modern-day while

providing correct kNN consequences whilst the gadgets

are moving.

Clearly, the query time and update time influences the

throughput of each and TOAIN. Therefore, we fur- ther

investigate the kNN common query time and update time.

For the question time, we randomly generate 100,000

queries and file the common. For the update, we calculate

the av- erage update time of every object the use of 10

batched updates. As we will see from Figure 6, while has

the identical update value as TOAIN (with TOAIN-three),

the question time of is lots smaller than that of TOAIN.

When the query time is similar, TOAIN bears an awful lot

higher udpate cost than. This indicates our framework

gains a miles higher trade-off some of the question

efficiency, update cost, and throughput.

Apart from T , we in addition look into the impact of the

reaction time, the enter parameter ok, and the range of

moving gadgets as shown in Figures 4 (b)-(d). The

foremost observations are that: (i) to offer comparable

reaction time, our always provides higher throughput

than TOAIN in all settings, and the throughput of isn't

always extensively suffering from small reaction time; (ii)

with the boom of okay, the kNN question overhead will

increase, however nevertheless appreciably outperforms

TOAIN while ok reaches 40; (iii) When the range of items

will increase as much as 50, 000, still outperforms TOAIN

in all settings.

6.4 Scheduling and Concurrent Query Processing

In this set of experiments, We first show the throughput

with concurrent query processing with 40 cores in various

settings. The results are shown in Figures 7(a) - (d). The

throughput of with the concurrent query processing is

significantly higher than the single-thread version, which

is expected since it reduces the average query time

significantly by exploring multi-cores. Besides, with the

distance-based scheduling method, the throughput further

improves over the random scheduling based method.

In addition, we evaluate the effectiveness of the pro- posed

approximate kNN queries. We change the parameterρ

(Ref. Sections 2 and 4.2 for the definition.) and see the

impact to the conflicts. Our results in [10] show that by

allowing approximation, we can significantly reduce the

abort rate, and with the increase of ρ, the number of query

aborts significantly reduce. Our distance-based scheduling

method further helps reduce the abort rate. Further, we

also evaluate the scalability performance of GLAD with

vary size of BJ road networks. We draw similar conclusion

as those mentioned in the previous experiments that

GLAD can achieve high system throughput. Besides, it is

highly adaptable to different size of road networks. For the

interest of space, we omit the details of these two sets of

experiments.

Fig. 4: Throughput comparison with TOAIN on NY
dataset

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1691

6.5 Dispatching Solutions

In this section, we report the experiment for three types of

dispatching algorithms: Greedy Partial (GP), Greedy

Nearest Neighbor (GNN), and Random Assign. We eval-

uate the aggressive ratio and the average computational

price of three algorithms, in which the whole offline top-

rated dispatching value for a given set of queries is

calculated by way of the Hungarical Algorithm. Table 3

suggests the comparison of these 3 algorithms. Here, the

overall quantity of queries being processed is 20000, and as

for greedy partial algo- rithm, the parameter ϕ is about to

be a hundred. From the result in Table 3, we can see that,

the GP set of rules beats the other algorithms in phrases of

aggressive ratio, at the same time as its computational fee

is huge. Besides, increasing the range of ok brings little

variation on the aggressive ratio, but results in dramatic

boost of time consumption. We observe from this set of

experiments that both grasping algorithms can obtain

good competitive ratio, that is inline with the analysis in

[20]. Next, we study the competitive ratio for the GP

algorithm varying two parameters. We increase the size of

queries to do matching, even as the batched size is ready as

ϕ = a hundred. As we can see from Table 4, the

competitive ratio growth along with the number of

queries. This is because once the gadgets are assigned to

the previous queries, the queries acting later and closer

might ought to discover further gadgets. The more queries,

the further objects might be assigned, as a way to lead to

the increase of the total price. As for the parameter ϕ,

Table 5 suggests that, when we boom the batched size, the

aggressive ratio will decrease, that is reasonable. However,

the computational fee will increase with larger length of

batched queries to perform the most appropriate matching.

With the support of the concurrent question processing,

our model can intrinsically get more global data in the time

to finish simplest one query. Thus the Greedy Partial set of

rules would work well with a right the dimensions of

batched queries. Consequently, from the results, we have a

look at that ok = 5 or k = 10, and ϕ = one hundred might be

the desired parameter placing for the dispatching solution,

which can offer a better aggressive ratio sacrificing an

appropriate computational cost.

7 RELATED WORK

7.1 kNN Queries

A most sincere answer is the Dijkstra algorithm [8], that's

the maximum famous set of rules for the single source

shortest distance computation algorithm in a graph. The

Dijkstra algorithm needs no additional indexing struc-

ture, but the on-the-fly query processing cost is still too

high. ROAD [7] extends the easy Dijkstra set of rules

through aug- menting a hierarchical shape that walls a

graph into numerous subgraphs and forms a bigger graph

hierarchically. ROAD can speed up the Dijkstra with the

aid of skipping the enlargement of subgraphs which

contain no moving items. However, it'll degenerate to the

Dijkstra algorithm whilst the moving objects are calmly

distributed, accordingly performs poorly. G-tree [24]

adopts a similar graph partition and hierarchical struc-

ture as ROAD at the kNN query, associated with a border

set and corresponding distance matrix on every subgraph.

G-tree solutions kNN query from a top-down way and

calculates the space among vertices primarily based on the

distance matrix that stores the distances between boarders

and vertices. G-tree is more green than ROAD in query

processing however involves extra sizable update price. V-

tree [19] improves G-tree with the aid of appending local

nearest active vertex desk on each subgraph that only

vertices containing moving objects are stored, such that it

can keep away from duplicated computation for

unnecessary vertices.

A most latest work on kNN question on street network is

the TOAIN [13], which is based on the Contraction

Hierarchy (CH) [9]. It builds a SCOB index on the shortcut

graph of the original graph that pre-computes the okay

nearest downhill objects w.R.T. Nodes at the shortcut

graph. TOAIN performs the kNN query with a Dijkstra

search on the shortcut graph from the question vertex and

receives the outcomes from the precomputed nearest

downhill gadgets. TOAIN differs from the

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1692

TABLE 3: Comparison of different algorithms

k
Competitive Ratio Computational Cost (us)

GP GNN Random GP GNN Random

5 3.852 4.018 5.897 12.376 0.006 0.018

10 3.846 4.009 7.810 71.037 0.008 0.020

20 3.845 4.008 10.902 278.055 0.008 0.024

30 3.845 4.007 13.317 686.214 0.010 0.025

40 3.845 4.007 15.149 1247.741 0.012 0.026

TABLE 4: Query size

Competitive Ratio

Query GP

5000 1.233

10000 1.236

15000 2.536

20000 3.846

25000 4.312

TABLE 5: varyφ

Competitive Ratio

ϕ GP

100 3.846

200 3.837

400 3.825

800 3.795

1600 3.776

Preceding solutions not simplest within the index shape

and question method however also in the consideration of

the throughput optimization. However, the correctness

problems are unnoticed in TOAIN (in addition to any

preceding answer). In our work, we suggest a greater

sophisticated device version that takes the correctness

problem into account. Meanwhile, our GLAD is efficient in

both question and update which can extensively accelerate

the system throughput

7.2 Shortest Path Queries

Road community queries have been studied for decades,

specially the shortest direction question for single pair,

which find the shortest direction for two vertices [21], [22],

[24]. Dijkstra set of rules is the most straightforward

manner however renders large price in exploring the

graph. Bidirectional-Dijkstra [17] cuts down the price by

means of invoking two Dijkstra search from the supply

and destination simultaneously. Contraction Hierarchies

(CH) [9] pre-computes the distances among numerous

vertices based on a total order, and add shortcuts at the

graph in order that the Bidirectional-Dijkstra handiest go

to node in ascending order of the nodes, reducing question

time for shortest direction and distance queries . TRN [6] is

an index Based approach that imposes a grid on the road

network, which pre-computes the shortest paths from

within every grid cell to a hard and fast of vertices which

might be deemed critical for the corresponding cell.

Spatially Induced Linkage Cognizance (SILC) [18] pre-

computes the all-pairs shortest paths in the road network,

and stores the shortest paths in a concise form for green

question processing. Apart from the studies work

mentioned above, many other research work were

proposed for shortest queries [21], [22], [25] assuming that

the graph can't be geared up into the memory or there exist

extra constrains.

7.3 Online Minimum Bipartite Matching

The online minimal bipartite matching trouble is ap- plied

to a wide variety of applications, e.G., challenge

assignment in crowd sourcing and taxi dispatching, and

has been drastically studied. Some of the famous

algorithms for online minimal bipartite matching

encompass Greedy [11], Permutation [11], HST-Greedy

[14], and HST-Reassignment [5]. The Greedy matches each

new arrival query to its modern nearest neighbor, which is

efficient but leads to big competitive ratio. Permutation

applies Hungarical Algorithm to compute the correct

matching to locate the unmatched provider for the brand

new arrival question. Both HST- Greedy and HST-

Reassignment are randomized algorithms, where HST

refers to hierarchically separated tree built on carrier

providers. HST-Greedy reveals the nearest issuer primarily

based on tree metric to a question. HST-Reassignment

develops a reassignment technique to enhance the local

optimal trap as a result of greedy. Both HST-Greedy and

HST-Reassignment can obtain a good aggressive ratio

while want extra index strictures and preprocessing cost.

8. CONCLUSIONS

In this paper, we present a comprehensive study on

correctness-aware kNN queries, which aims at optimizing

the system throughput while guaranteeing the correct-

ness of the kNN queries on moving objects. We develop

an efficient framework GLAD which provide high sys-

tem throughput while guaranteeing the query correctness.

The GLAD framework includes effective index structures

and novel scheduling algorithms to improve the system

throughput. We further propose approximate solutions

that provide a controllable trade-off between correctness

and throughput of kNN queries. Extensive experiments on

real- world road network show that our solutions are

several times faster than the state-of-the-art. Finally, we

propose an effective cost-based dispatching strategy for

our model to minimize the overall travelling cost from the

moving objects to the query locations.

REFERENCES

[1] https://news.thomasnet.com/fullstory/gps-receiver-

provides- 20-hz-update-rate-587490.

[2] https://opendata.cityofnewyork.us/.

[3] https://www.openstreetmap.org/.

[4] Didichuxing. https://gaia.didichuxing.com/.

http://www.jetir.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR1902E39 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1693

[5] N. Bansal, N. Buchbinder, A. Gupta, and J. S. Naor. A

randomized o (log 2 k)-competitive algorithm for

metric bipartite matching. Algorithmica, 68(2):390–403,

2014.

[6] H. Bast, S. Funke, and D. Matijevic´. Transit:

ultrafast shortest- path queries with linear-time

preprocessing. In 9th DIMACS Implementation

Challenge—Shortest Path, 2006.

[7] U. Demiryurek, F. Banaei-Kashani, and C. Shahabi.

Efficient continuous nearest neighbor query in spatial

networks using euclidean restriction. In International

Symposium on Spatial and Temporal Databases, pages 25–

43. Springer, 2009.

[8] E. W. Dijkstra. A note on two problems in connexion

with graphs.

Numerische mathematik, 1(1):269–271, 1959.

[9] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.

Contrac- tion hierarchies: Faster and simpler

hierarchical routing in road networks. In International

Workshop on Experimental and Efficient Algorithms, pages

319–333. Springer, 2008.

[10] D. He, S. Wang, X. Zhou, and R. Cheng. An efficient

framework for correctness-aware knn queries on road

networks. In Data Engineering (ICDE), 2019 IEEE 35th

International Conference on, pages 1298–1309. IEEE, 2019.

[11] B. Kalyanasundaram and K. Pruhs. Online weighted

matching.

Journal of Algorithms, 14(3):478–488, 1993.

[12] M. Kolahdouzan and C. Shahabi. Voronoi-based k

nearest neigh- bor search for spatial network databases.

In Proceedings of the Thirtieth international conference on

Very large data bases-Volume 30, pages 840–851. VLDB

Endowment, 2004.

[13] S. Luo, B. Kao, G. Li, J. Hu, R. Cheng, and Y. Zheng.

Toain: a throughput optimizing adaptive index for

answering dynamic k nn queries on road networks.

Proceedings of the VLDB Endowment, 11(5):594–606, 2018.

[14] A. Meyerson, A. Nanavati, and L. Poplawski.

Randomized online algorithms for minimum metric

bipartite matching. In Proceedings of the seventeenth

annual ACM-SIAM symposium on Discrete algo- rithm,

pages 954–959. Society for Industrial and Applied

Mathe- matics, 2006.

[15] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The v*-

diagram: a query-dependent approach to moving knn

queries. Proceedings of the VLDB Endowment, 1(1):1095–

1106, 2008.

[16] D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, and Q.

Zhu. When hierarchy meets 2-hop-labeling: Efficient

shortest distance queries on road networks. In

SIGMOD, pages 709–724, 2018.

[17] I. Pohl. Bidirectional and heuristic search in path

problems. Technical report, 1969.

[18] H. Samet, J. Sankaranarayanan, and H. Alborzi.

Scalable network distance browsing in spatial

databases. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, pages 43–

54. ACM, 2008.

[19] B. Shen, Y. Zhao, G. Li, W. Zheng, Y. Qin, B. Yuan, and

Y. Rao. V-tree: Efficient knn search on moving objects

with road-network constraints. In Data Engineering

(ICDE), 2017 IEEE 33rd Interna- tional Conference on,

pages 609–620. IEEE, 2017.

[20] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu.

Online minimum matching in real-time spatial data:

experiments and analysis. Proceedings of the VLDB

Endowment, 9(12):1053–1064, 2016.

[21] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou.

Efficient route planning on public transportation

networks: A labelling approach. In Proceedings of the

2015 ACM SIGMOD International Conference on

Management of Data, pages 967–982. ACM, 2015.

[22] S. Wang, X. Xiao, Y. Yang, and W. Lin. Effective

indexing for approximate constrained shortest path

queries on large road net- works. Proceedings of the

VLDB Endowment, 10(2):61–72, 2016.

[23] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao. On

efficient spatial matching. In Proceedings of the 33rd

international conference on Very large data bases, pages

579–590. VLDB Endowment, 2007.

[24] R. Zhong, G. Li, K.-L. Tan, L. Zhou, and Z. Gong. G-

tree: An efficient and scalable index for spatial search

on road networks. IEEE Transactions on Knowledge and

Data Engineering, 27(8):2175– 2189, 2015.

[25] A. D. Zhu, X. Xiao, S. Wang, and W. Lin. Efficient

single-source shortest path and distance queries on

large graphs. In SIGKDD, pages 998–1006, 2013.

http://www.jetir.org/

