Köthe- Toeplitz Duals of Generalized Difference Sequence Spaces

Aradhana Verma ¹, Sudhir Kumar Srivastava², Jai Pratap Singh ³ ^{1,2} Department of Mathematics & Statistics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, INDIA. ³Department of Mathematics B. S. N. V. P. G. College Charbagh, Lucknow-226001, Uttar Pradesh, India.

Abstract: In this paper we introduce the difference sequence spaces $c_0(\Delta_v)$, $c(\Delta_v)$, $l_{\infty}(\Delta_v)$, and $bv(\Delta_v)$. The properties of difference sequence spaces i.e. AK-Property, BK-Space, normality, Schauder basis and Köthe - Toeplitz duals are also the part of our studies. We extended the work done by Kizmaz on the difference sequence spaces $c_0(\Delta)$, $c(\Delta)$ and $l_{\infty}(\Delta)$ and V. K. Bhardwaj and Sandeep Gupta on Cesaro summable difference sequence spaces $C_1(\Delta)$.

Keywords- Difference Sequence Spaces, BK-space, Schauder basis, $\alpha -$, $\beta -$ and $\gamma -$ duals and Köthe - Toeplitz duals.

2010 AMS Classification: 40C05; 40H05; 46A45; 46B20;

Definitions

Let ω denote the linear space of all complex sequence spaces over \mathbb{C} (the field of complex numbers). A vector subspace of ω is called a sequence subspace. l_{∞} , c, c_0 denote the space of all bounded, convergent and null sequence spaces $x = (x_k)$ with complex terms respectively. By *cs* we denote the space of all convergent series and *bv* denotes the space of all sequences of bounded variation.

Throughout this paper, unless otherwise specified we denote \sum_k for $\sum_{k=1}^{\infty}$ and $\lim_{n \to \infty}$.

A complete metric linear space is called a Fréchet space. Let X be a linear subspace of ω st. X is a Fréchet space with continuous coordinate projections. Then we say that X is FK-space. If the metric of a FK-space is given by a complete norm, then we say that X is BK-space.

We say that an FK-space X has AK or has the AK-property, if (e_k) the sequence of unit vectors, is a Schauder basis for X.

A sequence space *X* is called

(i) normal if $y = (y_k) \in X$ whenever $|y_k| < |x_k|$, $k \ge 1$ for some $x = (x_k) \in X\eta$

(ii) monotone if it contains the canonical preimages of its step spaces.

(iii) a sequence algebra if $xy = (x_k y_k) \in X$ whenever $x = (x_k), y = (y_k) \in X$.

(iv) symmetric if $(x_k) \in X \Rightarrow (x_{\pi(k)})$ where π is permutation on \mathbb{N} .

³ jaisinghjs@gmail.com

¹ aradhana2301@yahoo.com, http://orcid.org/0000-0003-4529-5319

² sudhirpr66@rediffmail.com, http://orcid.org/0000-0003-3676-6350

The idea of dual sequence spaces was introduced by Köthe and Toeplitz whose main result concerned $\alpha - duals$, the $\alpha - dual$ of $X \subset \omega$ being defined as-

$$X^{\alpha} = \left\{ a = (a_k) \in \omega : \sum_k |a_k x_k| < \infty \text{ for all } x = (x_k) \in X \right\}$$

They also introduced another kind of duals namely the β – dual by Chilling-worth[12],

$$X^{\beta} = \left\{ a = (a_k) \in \omega : \sum_k a_k x_k \text{ converges for all } x = (x_k) \in X \right\}$$

A still more general notion of dual was introduced by Garling in Kamthan and Gupta[7] as

$$X^{\gamma} = \left\{ a = (a_k) \in \omega : \sup_k \left| \sum_{i=1}^k a_i x_i \right| < \infty \text{ for all } x = (x_k) \in X \right\}$$

A more general notation of dual was introduced by Chandra and Tripathy[16],

$$X^{\eta} = \{a = (a_k) \in \omega : (a_k x_k) \in I_r \text{ for all } x = (x_k) \in X\}$$

Obviously, $\phi \subset X^{\alpha} \subset X^{\beta} \subset X^{\gamma}$, where ϕ is the well-known sequence spaces of finitely non-zero scalar sequences. Also if $X \subset Y$ then $Y^t = X^t$ for $t = \alpha$, β , γ . For any sequence space X, we denote $(X^{\delta})^t$ by $X^{\delta t}$ where $\delta, t = \alpha, \beta$ or γ . It is clear that $X \subset X^{tt}$ where $t = \alpha, \beta$ or γ .

For a sequence space X, if $X = X^{\alpha\alpha}$ then X is called a Köthe space or a perfect space. The notion of difference sequence spaces was introduced by Kizmaz in 1981 as follows:

$$X(\Delta) = \{ x = (x_k) \in \omega : (\Delta x_k) \in X \}$$

for $X = l_{\infty}$, c, c_0 ; where $\Delta x_k = x_k - x_{k+1}$, for all $k \in \mathbb{N}$.

Introduction

The difference sequence spaces have been studied by Cooke[10], Maddox[2], Colak[4], Orhan[5] and Bektas[12]. Soon after the introduction of the notion of difference sequence space, Orhan[6], [7] in 1983, applied the same technique of taking differences to the Cesaro spaces ces_p . $1 \le p \le \infty$ and ces_{∞} of Shiue[4] to introduce the Cesaro difference sequence spaces C_p , $1 \le p \le \infty$ and C_{∞} . Malkowsky[1] studied the matrix transformations in difference sequence spaces. Since the initiation of the study of difference sequence spaces by kizmaz[3], a large number of literature has grown. The work of this paper is an extention of the work done by Kizmaz [3] on the difference sequence spaces $c_0(\Delta), c(\Delta)$, and $l_{\infty}(\Delta)$ and V. K. Bhardwaj and Sandeep Gupta[13] on Cesaro summable difference sequence spaces $c_1(\Delta).$ Let $v = (v_k) = (1, 1, 1, ...)$ be any fixed sequence of non-zero complex numbers. Now we define

$$X(\Delta_v) = \{x = (x_k) \in \omega \colon (\Delta_v x_k) \in X\}$$

for $X = l_{\infty}$, c, c_0 , C_1 , bv; where $\Delta_v x_k = v_k x_k - v_{k+1} x_{k+1}$, for all $k \in \mathbb{N}$. i.e.

 $l_{\infty}(\Delta_{\nu}) = \{x = (x_k) \in \omega : (\Delta_{\nu} x_k) \in l_{\infty}\};$ $c(\Delta_{\nu}) = \{x = (x_k) \in \omega : (\Delta_{\nu} x_k) \in c\};$ $c_0(\Delta_{\nu}) = \{x = (x_k) \in \omega : (\Delta_{\nu} x_k) \in c_0\};$

$$C_1(\Delta_v) = \{ x = (x_k) \in \omega : (\Delta_v x_k) \in C_1 \};$$

$$bv(\Delta_v) = \{ x = (x_k) \in \omega : (\Delta_v x_k) \in bv \}.$$

The overall picture regarding inclusion among the already existing spaces l_{∞} , c, c_0 , C_1 and the newly introduced space $l_{\infty}(\Delta_v)$, $c(\Delta_v)$, $c_0(\Delta_v)$, $C_1(\Delta_v)$ and $bv(\Delta_v)$ as shown below-

In section 3, different inclusion relations that are strict are disscussed. Also different topological properties of $C_1(\Delta_v)$ are also discussed. Section 4, is devoted to study of Köthe-Toeplitz and γ duals of these spaces.

The Inclusion Relations

Theorem 3.1 $l_{\infty} \subset C_1(\Delta_v)$, the inclusion being strict. **Proof** Let $x = (x_k) \in l_{\infty}$. Then there exists M > 0 such that $|x_k - x_{k+1}| < M$ for all $k \ge 1$, and so $\frac{1}{k} \sum_{i=1}^k \Delta v_i x_i \to 0$ as $k \to \infty$. For strict inclusion, observe that $(k) \in C_1(\Delta_v)$ but $k \notin l_{\infty}$.

Theorem 3.2 $C_1 \subset C_1(\Delta_v)$, the inclusion being strict. **Proof** For $x = (x_k) \in C_1$, we have $\lim_k \frac{1}{k} x_k = 0$, and so $\frac{1}{k} \sum_{i=1}^k \Delta v_i x_i \to 0$ as $k \to \infty$. Inclusion is strict in view of the example in theorem 3.1.

Theorem 3.3 $bv \subset bv(\Delta_v)$, the inclusion being strict. **Proof** Let $x = (x_k) \in bv$. Then $(\Delta v_k x_k) \in l_1 \subset bv$. For strict inclusion, consider the sequence $x = (x_0, x_1, x_2, ...)$ where

$$x_k = \begin{cases} 0, & \text{for } k = 0\\ k(-1) - (k-1)\frac{1}{2} - (k-2)\frac{1}{2^2} \dots - \frac{1}{2^{k-1}}, & \text{for } k \ge 1. \end{cases}$$

Similarly, $c_0 \subset c_0(\Delta_v)$, $c \subset c(\Delta_v)$, $l_\infty \subset l_\infty(\Delta_v)$ these inclusions are also strict.

Theorem 3.4 $c(\Delta_v) \subset C_1(\Delta_v)$, the inclusion being strict.

Proof Inclusion is obvious since $c \subset C_1$. To see that the inclusion is strict, consider the sequence $x = (x_k) = (1,2,1,2,1,2,...)$.

Theorem 3.5 $l_1(\Delta_v) \subset bv(\Delta_v) \subset c(\Delta_v)$, the inclusion being strict. **Proof** The result follows from the fact that $l_1 \subset bv \subset c$. For strict inclusion $l_1(\Delta_v) \subset bv(\Delta_v)$, observe that $(k) \in bv(\Delta_v)$ but $(k) \in l_1(\Delta_v)$. Inclusion $bv(\Delta_v) \subset c(\Delta_v)$ is strict as $(y_k) = (0, -1, -1 + \frac{1}{2}, -1 + \frac{1}{2} - \frac{1}{3}, \dots) \in c(\Delta_v)$ but does not belong to $bv(\Delta_v)$.

Theorem 3.6 $C_1(\Delta_v)$ and $bv(\Delta_v)$ are BK-space with the norm $||x||_{\Delta_v} = |x_1| + \sup_k \frac{1}{k} |\sum_{i=1}^k \Delta v_i x_i|$, $x = (x_k) \in C_1(\Delta_v)$ and $||x||_{\Delta_v} = |x_1| + |x_2| + \sum_k |\Delta v_k x_k - \Delta v_{k+1} x_{k+1}|$, $x = (x_k) \in bv(\Delta_v)$, respectively.

Proof Since $C_1(\Delta_v)$ and $bv(\Delta_v)$ are Banach spaces with continuous coordinates, that is, $||x^s - x||_{\Delta\vartheta} \rightarrow 0$ implies $|x_k^s - x_k| \rightarrow 0$, for each $k \in \mathbb{N}$, as $s \rightarrow \infty$, they are also BK-spaces.

Theorem 3.7 $bv(\Delta_v)$ does not have the AK-property.

Proof Let $x = (x_k) = (1,2,3,...) \in bv(\Delta_v)$. Consider the n^{th} section of the sequence (x_k) as $x^{[n]} = (1,2,3,...,n,0,0,0,...)$.

Then

 $||x - x^{[n]}||_{b\vartheta} = ||(0,0,0,\dots,n+1,n+2,\dots)||_{b\vartheta}$ = |0| + |0|+...+|n+1| + |n+2|+...

which does not tend to 0 as $n \rightarrow \infty$

Theorem 3.8 $bv(\Delta_v)$ is not monotone. **Proof** Take $(x_k) = (1,1,1,...) \in bv(\Delta_v)$ and $y = y_k$ as

$$y_k = \begin{cases} x_k, & \text{if k is odd} \\ 0, & \text{if k is even} \end{cases}$$

i.e., $(y_k) = (1,0,1,0,1,0,...)$. Then $(\Delta_v y_k) = (1,-1,1,-1,...)$ and so $(y_k) \notin bv(\Delta_v)$.

Theorem 3.9 $bv(\Delta_v)$ is neither symmetric nor a sequence algebra.

Proof Let $(x_k) = (1,2,3,4,...) \in bv(\Delta_v)$ and $(y_k) = (2,1,4,3,6,...)$ e a rearrangement of the terms of the sequence (x_k) . Here $(\Delta_v y_k) = (1, -3, 1, -3, ...) \in bv$ and so $(y_k) \in bv(\Delta_v)$. This shows that $bv(\Delta_v)$ is not a symmetric space.

Lemma 3.10 Let *X* be sequence space. Then we have (i) *X* is perfect \Rightarrow *X* is normal \Rightarrow *X* is monotone. (ii) *X* is normal \Rightarrow $X^{\alpha} = X^{\gamma}$ (iii) *X* is monotone \Rightarrow $X^{\alpha} = X^{\beta}$

corollary 3.11 $bv(\Delta_v)$ is not normal.

Theorem 3.12 $C_1(\Delta_v)$ is not separable. **Proof** Let *A* be the of all sequence $x_a, x_b, x_c, ...$ where

$$x_a = (k+a)_k = (1+a, 2+a, ...), \quad x_b = (k+b)_k = (1+b, 2+b, ...), ...$$

with $|a - b| > \frac{1}{2}$; $a, b \in \mathbb{R}$. Clearly, $A \subset C_1(\Delta_v)$ and A is uncountable. Let D be any dense set in $C_1(\Delta_v)$. Define a map $f: A \to D$ as follows:

Let $x_a \in A \subset C_1(\Delta_v)$. As *D* is dense in $C_1(\Delta_v)$, so there exists some $z_{x_a} \in D$ such that $||x_a - z_{x_a}||_{\Delta_v} < \frac{1}{4}$. We set $f(x_a) = z_{x_a}$. For $x_a, x_b \in A$, we have

$$\begin{aligned} \|x_a - x_b\|_{\Delta_v} &= |(x_a - x_b)_1| + sup_k \frac{1}{k} |\sum_{i=1}^k \Delta (v_a x_a - v_b x_b)_i| \\ &= |(1+a) - (1+b)| + sup_k \frac{1}{k} |\sum_{i=1}^k \Delta (v_a x_a - v_b x_b)_i| \\ &\ge |a - b| \\ &> \frac{1}{2} \end{aligned}$$

Now

$$\begin{aligned} \|x_a - x_b\|_{\Delta_{\nu}} &\leq \|x_a - z_{x_a}\|_{\Delta_{\nu}} + \|z_{x_a} - x_b\|_{\Delta_{\nu}} \\ \|z_{x_a} - x_b\|_{\Delta_{\nu}} &\geq \|x_a - x_b\|_{\Delta_{\nu}} - \|x_a - z_{x_a}\|_{\Delta_{\nu}} \\ &> \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \end{aligned}$$

and already we have $||x_b - z_{x_b}|| < \frac{1}{4}$, therefore $z_{x_a} \neq z_{x_b}$. Hence f is one-one. As $f(A) \subset D$. So D is uncountable. Thus, $C_1(\Delta_v)$ has no countable dense set.

Corollary 3.13 $C_1(\Delta_v)$ does not have a Schauder basis.

Corollary 3.14 $C_1(\Delta_v)$ does not have the AK-property.

Theorem 3.15 $C_1(\Delta_v)$ is not normal and hence neither perfect nor convergence free. **Proof** Taking $x = (x_k) = (k-1)$ and $y = (y_k) = (-1)^k (k-1)$, we see that $x \in C_1(\Delta_v)$ but $y \notin C_1(\Delta_v)$ although $|y_k| \le |x_k|, k \ge 1$ and so $C_1(\Delta_v)$ is not normal. It is well known that every perfect space, and also every convergence free space, is normal and Consequently $C_1(\Delta_v)$ is neither perfect nor convergence free.

Theorem 3.16 $C_1(\Delta_v)$ is neither monotone nor a sequence algebra. **Proof** Take $x = (x_k) = (k) \in C_1(\Delta_v)$. Consider $y = (y_k)$ where

 $y_k = \begin{cases} x_k, & \text{if } k \text{ is odd} \\ 0, & \text{if } k \text{ is even} \end{cases}$

i.e, y = (1,0,3,0,5,...). Then $(\Delta_v y_k) = (1,-3,3,-5,...)$ and $(\Delta_v y_k) \notin C_1$, i.e. $y_k \notin C_1(\Delta_v)$ and hence $C_1(\Delta_v)$ is not monotone. To see that $C_1(\Delta_v)$ is not sequence algebra, take x = y = (k) and observe that $x, y \in C_1(\Delta_v)$ but $xy = (k^2) \notin C_1(\Delta_v)$.

Köthe - Toeplitz duals

Theorem 4.1

$$[C_1(\Delta_v)]^{\alpha} = \{a = (a_k) : \sum_k k |a_k| < \infty\} = D_1$$

Proof Let $a = (a_k) \in D_1$. For any $x = (x_k) \in C_1(\Delta_v)$, we have i.e.,

$$\frac{1}{k}(v_1x_1 - v_{k+1}x_{k+1}) \in c$$

and so there exists some M > 0 such that $|x_k| \le M(k-1) + x_1$ for $k \ge 1$ and hence $\sup_k \frac{1}{k} |x_k| < \infty$, which implies that

$$\sum_{k} |a_{k}x_{k}| = \sum_{k} (k|a_{k}|) (k^{-1}|x_{k}|) < \infty$$

Thus, $a = (a_k) \in [C_1(\Delta_v)]^{\alpha}$. Conversely, let $a = (a_k) \in [C_1(\Delta_v)]^{\alpha}$. Then $\sum_k |a_k x_k| < \infty$ for all $x = (x_k) \in [C_1(\Delta_v)]^{\alpha}$. Taking $x_k = k$ for all $k \ge 1$, we have $x = (x_k) \in [C_1(\Delta_v)]^{\alpha}$. when $\sum_k k |a_k| < \infty$. Similarly we can show that,

$$[l_{\infty}(\Delta_{\nu})]^{\alpha} = \{a = (a_{k}): \sum_{k} k |a_{k}| < \infty\} = D_{1}$$
$$[c(\Delta_{\nu})]^{\alpha} = \{a = (a_{k}): \sum_{k} k |a_{k}| < \infty\} = D_{1}$$
$$[c_{0}(\Delta_{\nu})]^{\alpha} = \{a = (a_{k}): \sum_{k} k |a_{k}| < \infty\} = D_{1}$$
$$[b\nu(\Delta_{\nu})]^{\alpha} = \{a = (a_{k}): \sum_{k} k |a_{k}| < \infty\} = D_{1}$$

i.e.,

$$[l_{\infty}(\Delta_{\nu})]^{\alpha} = [c(\Delta_{\nu})]^{\alpha} = [c_0(\Delta_{\nu})]^{\alpha} = [b\nu(\Delta_{\nu})]^{\alpha} = [C_1(\Delta_{\nu})]^{\alpha} = D_1$$

So, we conclude that α – *duals* of difference sequence spaces $[l_{\infty}(\Delta_{\nu})]$, $[c(\Delta_{\nu})]$, $[c(\Delta_{\nu})]$, $[b\nu(\Delta_{\nu})]$ and $[C_1(\Delta_{\nu})]$ coincide.

Theorem 4.2

$$[C_1(\Delta_v)]^{\alpha\alpha} = \{a = (a_k): sup_k \frac{1}{k} |a_k| < \infty\} = D_2$$

The result follows in view of Theorem 4.1 and the fact ([10], Theorem 4.3) that $[C_1(\Delta)]^{\alpha\alpha} = D_2$

Acknowledgement:- The first author is greatfull to CSIR for all the financial support provided in the form of JRF.

References

- [1] Malkowsky, E., Mursaleen, M. Suantai,S.(2007), *The dual space of sets of difference sequence spaces of order m and matrix transformation*, Acta Math. Sin **23(3)**, 521-532.
- [2] Maddox, I. J.(1988), *Elements of functional analysis*, 2nd edn. Cambridge University Press, Cambridge.

- [3] Kizmaz H.(1981), On Certain Sequence spaces, Canad. Math. bull. Vol. 24(2).
- [4] Colak, R(1989), *On some generalized sequence spaces*, Commun. fac. Sci. University. Ank. Ser. A1 Math. Stat. **38**, 35-46.
- [5] Orhan, C.(1983), *Cesaro difference sequence spaces and related matrix transformation*, Comm. Fac.Sci. Univ. Ankara. Ser. A1 Math., **32**, 55-63.
- [6] Orhan, C.(1984), *Matrix transformation on Cesaro difference sequence spaces*, Comm. Fac.Sci. Univ. Ankara. Ser. A1 Math., **33**, 1-8.
- [7] Kamthan, P. K. Gupta, M (1988): Sequence spaces and series, Dekker, Newyork.
- [8] S. Gupta and V. K. Bhardwaj(2018), Köthe Toeplitz duals and Matrix Transformation of Generalized Difference Sequence Spaces, Electronic Journal of mathematics analysis and applications, 6(2), 255-265.
- [9] Köthe, G. and Toeplitz, O.(1934), *Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen*, J.Reine Angew. Math., **171**,193-226.
- [10] Cooke, R. G.(1950), Infinite Matrices and sequence spaces. Macmillan and Co., London.
- [11] Chillingworth, H. R.(1958), *Generalized dual sequence spaces.* Ned. Akad. Wet. Indag. Math. **20**, 307-315.
- [12] Bektas, C. A., Et., M., Colak, R(2004), *Generalized difference sequence spaces and their dual spaces*, J. Math. Anal. Appl. **292**, 423-432.
- [13] Vinod K. Bhardwaj and Sandeep Gupta,(2013), *Cesaro summable difference sequence spaces*, Journal of Inequalities and Applications, .
- [14] Shiue, J. S. (1970), On the Cesaro sequence spaces, Tamkang J. Math. 1, 19-25.
- [15] M. Et. and R. Colak, (1995), On some generalized difference sequence spaces, Soochow, J. Math., 21(4), 377-386.
- [16] Tripathy, B. C. Esi, A. and Tripathy, B.(2005), *On a new type of generalized difference Cesaro sequence spaces*, Soochow J. Math. **31(3)**, 333-340.