Köthe- Toeplitz Duals of Generalized Difference Sequence Spaces

Aradhana Verma ${ }^{1}$, Sudhir Kumar Srivastava², Jai Pratap Singh ${ }^{3}$
1,2 Department of Mathematics \& Statistics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, INDIA.
${ }^{3}$ Department of Mathematics
B. S. N. V. P. G. College Charbagh, Lucknow-226001, Uttar Pradesh, India.

Abstract

In this paper we introduce the difference sequence spaces $c_{0}\left(\Delta_{v}\right), c\left(\Delta_{v}\right), l_{\infty}\left(\Delta_{v}\right)$, and $b v\left(\Delta_{v}\right)$. The properties of difference sequence spaces i.e. AK-Property, BK-Space, normality, Schauder basis and Köthe - Toeplitz duals are also the part of our studies. We extentded the work done by Kizmaz on the difference sequence spaces $c_{0}(\Delta), c(\Delta)$ and $l_{\infty}(\Delta)$ and V. K. Bhardwaj and Sandeep Gupta on Cesaro summable \quad difference sequence spaces $C_{1}(\Delta)$.

Keywords- Difference Sequence Spaces, BK-space, Schauder basis, $\alpha-, \beta-$ and $\gamma-d u a l s$ and Köthe

Definitions

Let ω denote the linear space of all complex sequence spaces over \mathbb{C} (the field of complex numbers). A vector subspace of ω is called a sequence subspace. l_{∞}, c, c_{0} denote the space of all bounded, convergent and null sequence spaces $x=\left(x_{k}\right)$ with complex terms respectively. By $c s$ we denote the space of all convergent series and $b v$ denotes the space of all sequences of bounded variation.

Throughout this paper, unless otherwise specified we denote \sum_{k} for $\sum_{k=1}^{\infty}$ and $\lim _{n}$ for $\lim _{n \rightarrow \infty}$.
A complete metric linear space is called a Fréchet space. Let X be a linear subspace of ω st. X is a Fréchet space with continuous coordinate projections. Then we say that X is FK-space. If the metric of a FK-space is given by a complete norm, then we say that X is BK-space.

We say that an FK-space X has AK or has the AK-property, if (e_{k}) the sequence of unit vectors, is a Schauder basis for X.

A sequence space X is called
(i) normal if $y=\left(y_{k}\right) \in X$ whenever $\left|y_{k}\right|<\left|x_{k}\right|, k \geq 1$ for some $x=\left(x_{k}\right) \in X \eta$
(ii) monotone if it contains the canonical preimages of its step spaces.
(iii) a sequence algebra if $x y=\left(x_{k} y_{k}\right) \in X$ whenever $x=\left(x_{k}\right), y=\left(y_{k}\right) \in X$.
(iv) symmetric if $\left(x_{k}\right) \in X \Rightarrow\left(x_{\pi(k)}\right)$ where π is permutation on \mathbb{N}.
${ }^{1}$ aradhana2301@yahoo.com, http://orcid.org/0000-0003-4529-5319
${ }^{2}$ sudhirpr66@rediffmail.com, http://orcid.org/0000-0003-3676-6350
${ }^{3}$ jaisinghjs@gmail.com

The idea of dual sequence spaces was introduced by Köthe and Toeplitz whose main result concerned α-duals, the α-dual of $X \subset \omega$ being defined as-

$$
X^{\alpha}=\left\{a=\left(a_{k}\right) \in \omega: \sum_{k}\left|a_{k} x_{k}\right|<\infty \text { for all } x=\left(x_{k}\right) \in X\right\}
$$

They also introduced another kind of duals namely the β-dual by Chilling-worth[12],

$$
X^{\beta}=\left\{a=\left(a_{k}\right) \in \omega: \sum_{k} a_{k} x_{k} \text { converges for all } x=\left(x_{k}\right) \in X\right\}
$$

A still more general notion of dual was introduced by Garling in Kamthan and Gupta[7] as

$$
X^{\gamma}=\left\{a=\left(a_{k}\right) \in \omega: \sup _{k}\left|\sum_{i=1}^{k} a_{i} x_{i}\right|<\infty \text { for all } x=\left(x_{k}\right) \in X\right\}
$$

A more general notation of dual was introduced by Chandra and Tripathy[16] ,

$$
X^{\eta}=\left\{a=\left(a_{k}\right) \in \omega:\left(a_{k} x_{k}\right) \in I_{r} \text { for all } x=\left(x_{k}\right) \in X\right\}
$$

Obviously, $\phi \subset X^{\alpha} \subset X^{\beta} \subset X^{\gamma}$, where ϕ is the well-known sequence spaces of finitely non-zero scalar sequences. Also if $X \subset Y$ then $Y^{t}=X^{t}$ for $t=\alpha, \beta$, γ. For any sequence space X, we denote $\left(X^{\delta}\right)^{t}$ by $X^{\delta t}$ where $\delta, t=\alpha, \beta$ or γ. It is clear that $X \subset X^{t t}$ where $t=\alpha, \beta$ or γ.
For a sequence space X, if $X=X^{\alpha \alpha}$ then X is called a Köthe space or a perfect space. The notion of difference sequence spaces was introduced by Kizmaz in 1981 as follows:

$$
X(\Delta)=\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta x_{k}\right) \in X\right\}
$$

for $X=l_{\infty}, c, c_{0}$; where $\Delta x_{k}=x_{k}-x_{k+1}$, for all $k \in \mathbb{N}$.

Introduction

The difference sequence spaces have been studied by Cooke[10], Maddox[2] , Colak[4], Orhan[5] and Bektas[12]. Soon after the introduction of the notion of difference sequence space, Orhan[6] ,[7] in 1983, applied the same technique of taking differences to the Cesaro spaces ces ${ }_{p} .1 \leq p \leq \infty$ and $\operatorname{ces}_{\infty}$ of Shiue[4] to introduce the Cesaro difference sequence spaces $C_{p}, 1 \leq p \leq \infty$ and C_{∞}. Malkowsky[1] studied the matrix transformations in difference sequence spaces. Since the initiation of the study of difference sequence spaces by kizmaz[3] , a large number of literature has grown. The work of this paper is an extention of the work done by Kizmaz [3] on the difference sequence spaces $c_{0}(\Delta), c(\Delta)$, and $l_{\infty}(\Delta)$ and V. K. Bhardwaj and Sandeep Gupta[13] on Cesaro summable difference sequence spaces $c_{1}(\Delta)$. Let $v=\left(v_{k}\right)=(1,1,1, \ldots)$ be any fixed sequence of non-zero complex numbers. Now we define

$$
X\left(\Delta_{v}\right)=\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta_{v} x_{k}\right) \in X\right\}
$$

for $X=l_{\infty}, c, c_{0}, C_{1}, b v$; where $\Delta_{v} x_{k}=v_{k} x_{k}-v_{k+1} x_{k+1}$, for all $k \in \mathbb{N}$.
i.e.

$$
\begin{aligned}
l_{\infty}\left(\Delta_{v}\right) & =\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta_{v} x_{k}\right) \in l_{\infty}\right\} ; \\
c\left(\Delta_{v}\right) & =\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta_{v} x_{k}\right) \in c\right\} ; \\
c_{0}\left(\Delta_{v}\right) & =\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta_{v} x_{k}\right) \in c_{0}\right\} ;
\end{aligned}
$$

$$
\begin{aligned}
& C_{1}\left(\Delta_{v}\right)=\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta_{v} x_{k}\right) \in C_{1}\right\} \\
& b v\left(\Delta_{v}\right)=\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta_{v} x_{k}\right) \in b v\right\} .
\end{aligned}
$$

The overall picture regarding inclusion among the already existing spaces $l_{\infty}, c, c_{0}, C_{1}$ and the newly introduced space $l_{\infty}\left(\Delta_{v}\right), c\left(\Delta_{v}\right), c_{0}\left(\Delta_{v}\right), C_{1}\left(\Delta_{v}\right)$ and $b v\left(\Delta_{v}\right)$ as shown below-

				C_{1}	\subset	$C_{1}\left(\Delta_{v}\right)$
				U		U
l_{1}	\subset	$b v\left(\right.$ or $\left.c_{0}\right)$	\subset	c	\subset	l_{∞}
\cap		\cap		\cap		\cap
$l_{1}\left(\Delta_{v}\right)$	\subset	$b v\left(\Delta_{v}\right)\left(\operatorname{or} c_{0}\left(\Delta_{v}\right)\right)$	C	$c\left(\Delta_{v}\right)$	C	$l_{\infty}\left(\Delta_{v}\right)$
						$C_{1}\left(\Delta_{v}\right)$

In section 3, different inclusion relations that are strict are disscussed. Also different topological properties of $C_{1}\left(\Delta_{v}\right)$ are also discussed. Section 4, is devoted to study of Köthe-Toeplitz and γ duals of these spaces.

The Inclusion Relations

Theorem $3.1 l_{\infty} \subset C_{1}\left(\Delta_{v}\right)$, the inclusion being strict.
Proof Let $x=\left(x_{k}\right) \in l_{\infty}$. Then there exists $M>0$ such that $\left|x_{k}-x_{k+1}\right|<M$ for all $k \geq 1$, and so $\frac{1}{k} \sum_{i=1}^{k} \Delta v_{i} x_{i} \rightarrow 0$ as $k \rightarrow \infty$. For strict inclusion, observe that $(k) \in C_{1}\left(\Delta_{v}\right)$ but $k \notin l_{\infty}$.

Theorem 3.2 $C_{1} \subset C_{1}\left(\Delta_{v}\right)$, the inclusion being strict.
Proof For $x=\left(x_{k}\right) \in C_{1}$, we have $\lim _{k} \frac{1}{k} x_{k}=0$, and so $\frac{1}{k} \sum_{i=1}^{k} \Delta v_{i} x_{i} \rightarrow 0$ as $k \rightarrow \infty$. Inclusion is strict in view of the example in theorem 3.1.

Theorem $3.3 b v \subset b v\left(\Delta_{v}\right)$, the inclusion being strict.
Proof Let $x=\left(x_{k}\right) \in b v$. Then $\left(\Delta v_{k} x_{k}\right) \in l_{1} \subset b v$. For strict inclusion, consider the sequence $x=$ $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ where

$$
x_{k}= \begin{cases}0, & \text { for } k=0 \\ k(-1)-(k-1) \frac{1}{2}-(k-2) \frac{1}{2^{2}} \cdots-\frac{1}{2^{k-1}}, & \text { for } k \geq 1\end{cases}
$$

Similarly, $c_{0} \subset c_{0}\left(\Delta_{v}\right), c \subset c\left(\Delta_{v}\right), l_{\infty} \subset l_{\infty}\left(\Delta_{v}\right)$ these inclusions are also strict.

Theorem $3.4 c\left(\Delta_{v}\right) \subset C_{1}\left(\Delta_{v}\right)$, the inclusion being strict.
Proof Inclusion is obvious since $c \subset C_{1}$. To see that the inclusion is strict, consider the sequence $x=$ $\left(x_{k}\right)=(1,2,1,2,1,2, \ldots)$.

Theorem $3.5 l_{1}\left(\Delta_{v}\right) \subset b v\left(\Delta_{v}\right) \subset c\left(\Delta_{v}\right)$, the inclusion being strict.
Proof The result follows from the fact that $l_{1} \subset b v \subset c$. For strict inclusion $l_{1}\left(\Delta_{v}\right) \subset b v\left(\Delta_{v}\right)$, observe
that $(k) \in b v\left(\Delta_{v}\right)$ but $(k) \in l_{1}\left(\Delta_{v}\right)$. Inclusion $b v\left(\Delta_{v}\right) \subset c\left(\Delta_{v}\right)$ is strict as $\left(y_{k}\right)=\left(0,-1,-1+\frac{1}{2},-1+\right.$ $\left.\frac{1}{2}-\frac{1}{3}, \ldots\right) \in c\left(\Delta_{v}\right)$ but does not belong to $b v\left(\Delta_{v}\right)$.

Theorem 3.6 $C_{1}\left(\Delta_{v}\right)$ and $b v\left(\Delta_{v}\right)$ are BK-space with the norm $\|x\|_{\Delta_{v}}=\left|x_{1}\right|+$ $\sup _{k} \frac{1}{k}\left|\sum_{i=1}^{k} \Delta v_{i} x_{i}\right|, \quad x=\left(x_{k}\right) \in C_{1}\left(\Delta_{v}\right)$ and $\|x\|_{\Delta_{v}}=\left|x_{1}\right|+\left|x_{2}\right|+\sum_{k}\left|\Delta v_{k} x_{k}-\Delta v_{k+1} x_{k+1}\right|, \quad x=$ $\left(x_{k}\right) \in b v\left(\Delta_{v}\right)$, respectively.
Proof Since $C_{1}\left(\Delta_{v}\right)$ and $b v\left(\Delta_{v}\right)$ are Banach spaces with continuous coordinates, that is, $\left\|x^{s}-x\right\|_{\Delta v} \rightarrow$ 0 implies $\left|x_{k}^{s}-x_{k}\right| \rightarrow 0$, for each $k \in \mathbb{N}$, as $s \rightarrow \infty$, they are also BK-spaces.

Theorem $3.7 b v\left(\Delta_{v}\right)$ does not have the AK-property.
Proof Let $x=\left(x_{k}\right)=(1,2,3, \ldots) \in b v\left(\Delta_{v}\right)$. Consider the $n^{\text {th }}$ section of the sequence $\left(x_{k}\right)$ as $x^{[n]}=$ $(1,2,3, \ldots, n, 0,0,0, \ldots)$.
Then
which does not tend to 0 as $n \rightarrow \infty$
Theorem $3.8 b v\left(\Delta_{v}\right)$ is not monotone.
Proof Take $\left(x_{k}\right)=(1,1,1, \ldots) \in b v\left(\Delta_{v}\right)$ and $y=y_{k}$ as

$$
y_{k}= \begin{cases}x_{k}, & \text { if } \mathrm{k} \text { is odd } \\ 0, & \text { if } \mathrm{k} \text { is even }\end{cases}
$$

i.e., $\left(y_{k}\right)=(1,0,1,0,1,0, \ldots)$. Then $\left(\Delta_{v} y_{k}\right)=(1,-1,1,-1, \ldots)$ and so $\left(y_{k}\right) \notin b v\left(\Delta_{v}\right)$.

Theorem $3.9 b v\left(\Delta_{v}\right)$ is neither symmetric nor a sequence algebra.
Proof Let $\left(x_{k}\right)=(1,2,3,4, \ldots) \in b v\left(\Delta_{v}\right)$ and $\left(y_{k}\right)=(2,1,4,3,6, \ldots)$ e a rearrangement of the terms of the sequence $\left(x_{k}\right)$.Here $\left(\Delta_{v} y_{k}\right)=(1,-3,1,-3, \ldots) \in b v$ and so $\left(y_{k}\right) \in b v\left(\Delta_{v}\right)$. This shows that $b v\left(\Delta_{v}\right)$ is not a symmetric space.

Lemma 3.10 Let X be sequence space. Then we have
(i) X is perfect $\Rightarrow X$ is normal $\Rightarrow X$ is monotone.
(ii) X is normal $\Rightarrow X^{\alpha}=X^{\gamma}$
(iii) X is monotone $\Rightarrow X^{\alpha}=X^{\beta}$
corollary $3.11 b v\left(\Delta_{v}\right)$ is not normal.
Theorem $3.12 C_{1}\left(\Delta_{v}\right)$ is not separable.
Proof Let A be the of all sequence $x_{a}, x_{b}, x_{c}, \ldots$ where

$$
x_{a}=(k+a)_{k}=(1+a, 2+a, \ldots), \quad x_{b}=(k+b)_{k}=(1+b, 2+b, \ldots), \ldots
$$

with $|a-b|>\frac{1}{2} ; a, b \in \mathbb{R}$. Clearly, $A \subset C_{1}\left(\Delta_{v}\right)$ and A is uncountable. Let D be any dense set in $C_{1}\left(\Delta_{v}\right)$. Define a map $f: A \rightarrow D$ as follows:
Let $x_{a} \in A \subset C_{1}\left(\Delta_{v}\right)$. As D is dense in $C_{1}\left(\Delta_{v}\right)$, so there exists some $z_{x_{a}} \in D$ such that $\left\|x_{a}-z_{x_{a}}\right\|_{\Delta_{v}}<\frac{1}{4}$. We set $f\left(x_{a}\right)=z_{x_{a}}$.
For $x_{a}, x_{b} \in A$, we have

$$
\begin{aligned}
\left\|x_{a}-x_{b}\right\|_{\Delta_{v}} & =\left|\left(x_{a}-x_{b}\right)_{1}\right|+\sup _{k} \frac{1}{k}\left|\sum_{i=1}^{k} \Delta\left(v_{a} x_{a}-v_{b} x_{b}\right)_{i}\right| \\
& =|(1+a)-(1+b)|+\sup _{k} \frac{1}{k}\left|\sum_{i=1}^{k} \Delta\left(v_{a} x_{a}-v_{b} x_{b}\right)_{i}\right| \\
& \geq|a-b| \\
& >\frac{1}{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
\left\|x_{a}-x_{b}\right\|_{\Delta_{v}} & \leq\left\|x_{a}-z_{x_{a}}\right\|_{\Delta_{v}}+\left\|z_{x_{a}}-x_{b}\right\|_{\Delta_{v}} \\
\left\|z_{x_{a}}-x_{b}\right\|_{\Delta_{v}} & \geq\left\|x_{a}-x_{b}\right\|_{\Delta_{v}}-\left\|x_{a}-z_{x_{a}}\right\|_{\Delta_{v}} \\
& >\frac{1}{2}-\frac{1}{4}=\frac{1}{4}
\end{aligned}
$$

and already we have $\left\|x_{b}-z_{x_{b}}\right\|<\frac{1}{4}$, therefore $z_{x_{a}} \neq z_{x_{b}}$. Hence f is one-one. As $f(A) \subset D$. So D is uncountable. Thus, $C_{1}\left(\Delta_{v}\right)$ has no countable dense set.

Corollary 3.13 $C_{1}\left(\Delta_{v}\right)$ does not have a Schauder basis.
Corollary $3.14 C_{1}\left(\Delta_{v}\right)$ does not have the AK-property.
Theorem $3.15 C_{1}\left(\Delta_{v}\right)$ is not normal and hence neither perfect nor convergence free.
Proof Taking $x=\left(x_{k}\right)=(k-1)$ and $y=\left(y_{k}\right)=(-1)^{k}(k-1)$, we see that $x \in C_{1}\left(\Delta_{v}\right)$ but $y \notin$ $C_{1}\left(\Delta_{v}\right)$ although $\left|y_{k}\right| \leq\left|x_{k}\right|, k \geq 1$ and so $C_{1}\left(\Delta_{v}\right)$ is not normal. It is well known that every perfect space, and also every convergence free space, is normal and Consequently $C_{1}\left(\Delta_{v}\right)$ is neither perfect nor convergence free.

Theorem $3.16 C_{1}\left(\Delta_{v}\right)$ is neither monotone nor a sequence algebra.
Proof Take $x=\left(x_{k}\right)=(k) \in C_{1}\left(\Delta_{v}\right)$. Consider $y=\left(y_{k}\right)$ where

$$
y_{k}= \begin{cases}x_{k}, & \text { if } \mathrm{k} \text { is odd } \\ 0, & \text { if } \mathrm{k} \text { is even }\end{cases}
$$

i.e, $y=(1,0,3,0,5, \ldots)$. Then $\left(\Delta_{v} y_{k}\right)=(1,-3,3,-5, \ldots)$ and $\left(\Delta_{v} y_{k}\right) \notin C_{1}$, i.e. $y_{k} \notin C_{1}\left(\Delta_{v}\right)$ and hence $C_{1}\left(\Delta_{v}\right)$ is not monotone. To see that $C_{1}\left(\Delta_{v}\right)$ is not sequence algebra, take $x=y=(k)$ and observe that $x, y \in C_{1}\left(\Delta_{v}\right)$ but $x y=\left(k^{2}\right) \notin C_{1}\left(\Delta_{v}\right)$.

Köthe - Toeplitz duals

Theorem 4.1

$$
\left[C_{1}\left(\Delta_{v}\right)\right]^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k} k\left|a_{k}\right|<\infty\right\}=D_{1}
$$

Proof Let $a=\left(a_{k}\right) \in D_{1}$.
For any $x=\left(x_{k}\right) \in C_{1}\left(\Delta_{v}\right)$, we have

$$
\frac{1}{k}\left(\sum_{i=1}^{k} \Delta v_{i} x_{i}\right) \in c
$$

i.e.,

$$
\frac{1}{k}\left(v_{1} x_{1}-v_{k+1} x_{k+1}\right) \in c
$$

and so there exists some $M>0$ such that $\left|x_{k}\right| \leq M(k-1)+x_{1}$ for $k \geq 1$ and hence $\sup _{k} \frac{1}{k}\left|x_{k}\right|<\infty$, which implies that

$$
\sum_{k}\left|a_{k} x_{k}\right|=\sum_{k}\left(k\left|a_{k}\right|\right)\left(k^{-1}\left|x_{k}\right|\right)<\infty
$$

Thus, $a=\left(a_{k}\right) \in\left[C_{1}\left(\Delta_{v}\right)\right]^{\alpha}$.
Conversely, let $a=\left(a_{k}\right) \in\left[C_{1}\left(\Delta_{v}\right)\right]^{\alpha}$.
Then $\sum_{k}\left|a_{k} x_{k}\right|<\infty$ for all $x=\left(x_{k}\right) \in\left[C_{1}\left(\Delta_{v}\right)\right]^{\alpha}$. Taking $x_{k}=k$ for all $k \geq 1$, we have $x=\left(x_{k}\right) \in$ $\left[C_{1}\left(\Delta_{v}\right)\right]^{\alpha}$. when $\sum_{k} k\left|a_{k}\right|<\infty$.
Similarly we can show that,

$$
\begin{aligned}
& {\left[l_{\infty}\left(\Delta_{v}\right)\right]^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k} k\left|a_{k}\right|<\infty\right\}=D_{1}} \\
& {\left[c\left(\Delta_{v}\right)\right]^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k} k\left|a_{k}\right|<\infty\right\}=D_{1}} \\
& {\left[c_{0}\left(\Delta_{v}\right)\right]^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k} k\left|a_{k}\right|<\infty\right\}=D_{1}} \\
& {\left[b v\left(\Delta_{v}\right)\right]^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k} k\left|a_{k}\right|<\infty\right\}=D_{1}}
\end{aligned}
$$

i.e.,

$$
\left[l_{\infty}\left(\Delta_{v}\right)\right]^{\alpha}=\left[c\left(\Delta_{v}\right)\right]^{\alpha}=\left[c_{0}\left(\Delta_{v}\right)\right]^{\alpha}=\left[b v\left(\Delta_{v}\right)\right]^{\alpha}=\left[C_{1}\left(\Delta_{v}\right)\right]^{\alpha}=D_{1}
$$

So, we conclude that α-duals of difference sequence spaces $\left[l_{\infty}\left(\Delta_{v}\right)\right],\left[c\left(\Delta_{v}\right)\right]$, $\left[c_{0}\left(\Delta_{v}\right)\right],\left[b v\left(\Delta_{v}\right)\right]$ and $\left[C_{1}\left(\Delta_{v}\right)\right]$ coincide.

Theorem 4.2

$$
\left[C_{1}\left(\Delta_{v}\right)\right]^{\alpha \alpha}=\left\{a=\left(a_{k}\right): \sup _{k} \frac{1}{k}\left|a_{k}\right|<\infty\right\}=D_{2}
$$

The result follows in view of Theorem 4.1 and the fact ([10], Theorem 4.3) that $\left[C_{1}(\Delta)\right]^{\alpha \alpha}=D_{2}$
Acknowledgement:- The first author is greatfull to CSIR for all the financial support provided in the form of JRF.

References

[1] Malkowsky, E., Mursaleen, M. Suantai,S.(2007), The dual space of sets of difference sequence spaces of order m and matrix transformation, Acta Math. Sin 23(3), 521-532.
[2] Maddox, I. J.(1988), Elements of functional analysis, 2nd edn. Cambridge University Press, Cambridge.
[3] Kizmaz H.(1981), On Certain Sequence spaces, Canad. Math. bull. Vol. 24(2).
[4] Colak, R(1989), On some generalized sequence spaces, Commun. fac. Sci. University. Ank. Ser. A1 Math. Stat. 38, 35-46.
[5] Orhan, C.(1983), Cesaro difference sequence spaces and related matrix transformation, Comm. Fac.Sci. Univ. Ankara. Ser. A1 Math., 32, 55-63.
[6] Orhan, C.(1984), Matrix transformation on Cesaro difference sequence spaces, Comm. Fac.Sci. Univ. Ankara. Ser. A1 Math., 33, 1-8.
[7] Kamthan, P. K. Gupta, M (1988): Sequence spaces and series, Dekker, Newyork.
[8] S. Gupta and V. K. Bhardwaj(2018), Köthe - Toeplitz duals and Matrix Transformation of Generalized Difference Sequence Spaces, Electronic Journal of mathematics analysis and applications, 6(2) , 255265.
[9] Köthe, G. and Toeplitz, O.(1934), Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J.Reine Angew. Math., 171,193-226.
[10] Cooke, R. G.(1950), Infinite Matrices and sequence spaces. Macmillan and Co., London.
[11] Chillingworth, H. R.(1958), Generalized dual sequence spaces. Ned. Akad. Wet. Indag. Math. 20, 307-315.
[12] Bektas, C. A., Et., M., Colak, R(2004), Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292, 423-432.
[13] Vinod K. Bhardwaj and Sandeep Gupta,(2013), Cesaro summable difference sequence spaces, Journal of Inequalities and Applications, .
[14] Shiue, J. S.(1970), On the Cesaro sequence spaces, Tamkang J. Math. 1, 19-25.
[15] M. Et. and R. Colak,(1995), On some generalized difference sequence spaces, Soochow, J. Math., 21(4) ,377-386.
[16] Tripathy, B. C. Esi, A. and Tripathy, B.(2005), On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math. 31(3) , 333-340.

