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Abstract: In this paper we introduce the difference sequence spaces 𝑐0(𝛥𝑣), 𝑐(𝛥𝑣),  𝑙∞(𝛥𝑣),  and  𝑏𝑣(𝛥𝑣). 
The properties of difference sequence spaces i.e. AK-Property, BK-Space, normality, Schauder basis and 
Köthe - Toeplitz duals are also the part of our studies. We extentded the work done by Kizmaz on the 
difference sequence spaces 𝑐0(𝛥), 𝑐(𝛥) and 𝑙∞(𝛥) and V. K. Bhardwaj and Sandeep Gupta on Cesaro 
summable difference sequence spaces 𝐶1(𝛥). 
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Definitions 

Let 𝜔 denote the linear space of all complex sequence spaces over ℂ (the field of complex numbers). A 
vector subspace of 𝜔 is called a sequence subspace. 𝑙∞, 𝑐, 𝑐0 denote the space of all bounded, convergent 
and null sequence spaces 𝑥 = (𝑥𝑘) with complex terms respectively. By 𝑐𝑠 we denote the space of all 
convergent series and 𝑏𝑣 denotes the space of all sequences of bounded variation. 

Throughout this paper, unless otherwise specified we denote ∑𝑘  for ∑∞
𝑘=1  and lim𝑛 for lim𝑛→∞. 

A complete metric linear space is called a Fréchet space. Let 𝑋 be a linear subspace of 𝜔 st. 𝑋 is a 
Fréchet space with continuous coordinate projections. Then we say that 𝑋 is FK-space. If the metric of 
a FK-space is given by a complete norm, then we say that 𝑋 is BK-space. 

We say that an FK-space 𝑋 has AK or has the AK-property, if (𝑒𝑘) the sequence of unit vectors, is a 
Schauder basis for 𝑋. 

A sequence space 𝑋 is called 
(i) normal if 𝑦 = (𝑦𝑘) ∈ 𝑋 whenever |𝑦𝑘| < |𝑥𝑘|,  𝑘 ≥ 1 for some 𝑥 = (𝑥𝑘) ∈ 𝑋η 
(ii) monotone if it contains the canonical preimages of its step spaces. 
(iii) a sequence algebra if 𝑥𝑦 = (𝑥𝑘𝑦𝑘) ∈ 𝑋 whenever 𝑥 = (𝑥𝑘), 𝑦 = (𝑦𝑘) ∈ 𝑋. 

(iv) symmetric if (𝑥𝑘) ∈ 𝑋 ⇒ (𝑥𝜋(𝑘)) where 𝜋 is permutation on ℕ. 
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The idea of dual sequence spaces was introduced by Köthe and Toeplitz whose main result concerned 
𝛼 − 𝑑𝑢𝑎𝑙𝑠, the 𝛼 − 𝑑𝑢𝑎𝑙 of 𝑋 ⊂ 𝜔 being defined as- 

𝑋𝛼 = {𝑎 = (𝑎𝑘) ∈ 𝜔 ∶  ∑|𝑎𝑘𝑥𝑘| < ∞ for all 𝑥 = (𝑥𝑘) ∈ 𝑋

𝑘

} 

They also introduced another kind of duals namely the 𝛽 − 𝑑𝑢𝑎𝑙 by Chilling-worth[12] , 

𝑋𝛽 = {𝑎 = (𝑎𝑘) ∈ 𝜔: ∑ 𝑎𝑘

𝑘

𝑥𝑘   converges for all 𝑥 = (𝑥𝑘) ∈ 𝑋} 

A still more general notion of dual was introduced by Garling in Kamthan and Gupta[7]  as 

𝑋𝛾 = {𝑎 = (𝑎𝑘) ∈ 𝜔: sup
𝑘

|∑ 𝑎𝑖𝑥𝑖

𝑘

𝑖=1

| < ∞ for all 𝑥 = (𝑥𝑘) ∈ 𝑋} 

A more general notation of dual was introduced by Chandra and Tripathy[16] , 

𝑋𝜂 = {𝑎 = (𝑎𝑘) ∈ 𝜔: (𝑎𝑘𝑥𝑘) ∈ 𝐼𝑟   for all 𝑥 = (𝑥𝑘) ∈ 𝑋} 

Obviously, 𝜙 ⊂ 𝑋𝛼 ⊂ 𝑋𝛽 ⊂ 𝑋𝛾, where 𝜙 is the well-known sequence spaces of finitely non-zero scalar 

sequences. Also if 𝑋 ⊂ 𝑌 then 𝑌𝑡 = 𝑋𝑡 for 𝑡 = 𝛼,  𝛽,  𝛾. For any sequence space 𝑋, we denote (𝑋𝛿)
𝑡
 by 

𝑋𝛿𝑡  where 𝛿, 𝑡 = 𝛼,  𝛽  𝑜𝑟  𝛾. It is clear that 𝑋 ⊂ 𝑋𝑡𝑡  where 𝑡 = 𝛼,  𝛽 𝑜𝑟  𝛾. 
For a sequence space 𝑋, if 𝑋 = 𝑋𝛼𝛼  then 𝑋 is called a Köthe space or a perfect space. The notion of 
difference sequence spaces was introduced by Kizmaz in 1981 as follows: 

𝑋(𝛥) = {𝑥 = (𝑥𝑘) ∈ 𝜔: (𝛥𝑥𝑘) ∈ 𝑋} 

for 𝑋 = 𝑙∞,  𝑐,  𝑐0; where 𝛥𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1, for all 𝑘 ∈ ℕ. 

Introduction 

The difference sequence spaces have been studied by Cooke[10] , Maddox[2] , Colak[4] , Orhan[5] and 
Bektas[12] . Soon after the introduction of the notion of difference sequence space, Orhan[6] ,[7] in 
1983, applied the same technique of taking differences to the Cesaro spaces 𝑐𝑒𝑠𝑝.  1 ≤ 𝑝 ≤ ∞ and 𝑐𝑒𝑠∞ 

of Shiue[4]  to introduce the Cesaro difference sequence spaces 𝐶𝑝, 1 ≤ 𝑝 ≤ ∞ and 𝐶∞. Malkowsky[1]  

studied the matrix transformations in difference sequence spaces. 
Since the initiation of the study of difference sequence spaces by kizmaz[3] , a large number of literature 
has grown. The work of this paper is an extention of the work done by Kizmaz [3] on the difference 
sequence spaces 𝑐0(𝛥), 𝑐(𝛥),  and  𝑙∞(𝛥) and V. K. Bhardwaj and Sandeep Gupta[13]  on Cesaro 
summable difference sequence spaces 𝑐1(𝛥). 
Let 𝑣 = (𝑣𝑘) = (1,1,1, . . . ) be any fixed sequence of non-zero complex numbers. Now we define 

𝑋(𝛥𝑣) = {𝑥 = (𝑥𝑘) ∈ 𝜔: (𝛥𝑣𝑥𝑘) ∈ 𝑋} 

for 𝑋 = 𝑙∞,  𝑐,  𝑐0,  𝐶1,  𝑏𝑣; where 𝛥𝑣𝑥𝑘 = 𝑣𝑘𝑥𝑘 − 𝑣𝑘+1𝑥𝑘+1, for all 𝑘 ∈ ℕ. 
i.e. 

𝑙∞(𝛥𝑣) = {𝑥 = (𝑥𝑘) ∈ 𝜔: (𝛥𝑣𝑥𝑘) ∈ 𝑙∞}; 

𝑐(𝛥𝑣) = {𝑥 = (𝑥𝑘) ∈ 𝜔: (𝛥𝑣𝑥𝑘) ∈ 𝑐}; 

𝑐0(𝛥𝑣) = {𝑥 = (𝑥𝑘) ∈ 𝜔: (𝛥𝑣𝑥𝑘) ∈ 𝑐0}; 
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𝐶1(𝛥𝑣) = {𝑥 = (𝑥𝑘) ∈ 𝜔: (𝛥𝑣𝑥𝑘) ∈ 𝐶1}; 

𝑏𝑣(𝛥𝑣) = {𝑥 = (𝑥𝑘) ∈ 𝜔: (𝛥𝑣𝑥𝑘) ∈ 𝑏𝑣}. 

 
 
The overall picture regarding inclusion among the already existing spaces 𝑙∞,  𝑐,  𝑐0,  𝐶1 and the newly 
introduced space 𝑙∞(𝛥𝑣),  𝑐(𝛥𝑣),  𝑐0(𝛥𝑣),  𝐶1(𝛥𝑣)  and 𝑏𝑣(𝛥𝑣) as shown below- 
 

𝐶1 ⊂ 𝐶1(𝛥𝑣)

∪ ∪
𝑙1 ⊂ 𝑏𝑣(𝑜𝑟 𝑐0) ⊂ 𝑐 ⊂ 𝑙∞

∩ ∩ ∩ ∩
𝑙1(𝛥𝑣) ⊂ 𝑏𝑣(𝛥𝑣)(𝑜𝑟 𝑐0(𝛥𝑣)) ⊂ 𝑐(𝛥𝑣) ⊂ 𝑙∞(𝛥𝑣)

∩
𝐶1(𝛥𝑣)

 

In section 3, different inclusion relations that are strict are disscussed. Also different topological 
properties of 𝐶1(𝛥𝑣) are also discussed. Section 4, is devoted to study of Köthe-Toeplitz and 𝛾 duals of 
these spaces. 

 

The Inclusion Relations  

Theorem 3.1 𝑙∞ ⊂ 𝐶1(𝛥𝑣), the inclusion being strict. 
Proof Let 𝑥 = (𝑥𝑘) ∈ 𝑙∞. Then there exists 𝑀 > 0 such that |𝑥𝑘 − 𝑥𝑘+1| < 𝑀 for all 𝑘 ≥ 1, and so 
1

𝑘
∑ 𝛥𝑘

𝑖=1 𝑣𝑖𝑥𝑖 → 0 as 𝑘 → ∞. For strict inclusion, observe that (𝑘) ∈ 𝐶1(𝛥𝑣) but 𝑘 ∉ 𝑙∞. 

 
Theorem 3.2 𝐶1 ⊂ 𝐶1(𝛥𝑣), the inclusion being strict. 

Proof For 𝑥 = (𝑥𝑘) ∈ 𝐶1, we have lim𝑘
1

𝑘
𝑥𝑘 = 0, and so 

1

𝑘
∑ 𝛥𝑘

𝑖=1 𝑣𝑖𝑥𝑖 → 0 as 𝑘 → ∞. Inclusion is strict 

in view of the example in theorem 3.1. 
 
Theorem 3.3 𝑏𝑣 ⊂ 𝑏𝑣(𝛥𝑣), the inclusion being strict. 
Proof Let 𝑥 = (𝑥𝑘) ∈ 𝑏𝑣. Then (𝛥𝑣𝑘𝑥𝑘) ∈ 𝑙1 ⊂ 𝑏𝑣. For strict inclusion, consider the sequence 𝑥 =
(𝑥0, 𝑥1, 𝑥2, . . . ) where 

𝑥𝑘 = {
0, for 𝑘 = 0

𝑘(−1) − (𝑘 − 1)
1

2
− (𝑘 − 2)

1

22
. . . −

1

2𝑘−1
, for 𝑘 ≥ 1.

 

Similarly, 𝑐0 ⊂ 𝑐0(𝛥𝑣),  𝑐 ⊂ 𝑐(𝛥𝑣),  𝑙∞ ⊂ 𝑙∞(𝛥𝑣) these inclusions are also strict. 
 
 
 
Theorem 3.4 𝑐(𝛥𝑣) ⊂ 𝐶1(𝛥𝑣), the inclusion being strict. 
Proof Inclusion is obvious since 𝑐 ⊂ 𝐶1. To see that the inclusion is strict, consider the sequence 𝑥 =
(𝑥𝑘) = (1,2,1,2,1,2, . . . ). 
 
Theorem 3.5 𝑙1(𝛥𝑣) ⊂ 𝑏𝑣(𝛥𝑣) ⊂ 𝑐(𝛥𝑣), the inclusion being strict. 
Proof The result follows from the fact that 𝑙1 ⊂ 𝑏𝑣 ⊂ 𝑐. For strict inclusion 𝑙1(𝛥𝑣) ⊂ 𝑏𝑣(𝛥𝑣), observe 
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that (𝑘) ∈ 𝑏𝑣(𝛥𝑣) but (𝑘) ∈ 𝑙1(𝛥𝑣). Inclusion 𝑏𝑣(𝛥𝑣) ⊂ 𝑐(𝛥𝑣) is strict as (𝑦𝑘) = (0, −1, −1 +
1

2
, −1 +

1

2
−

1

3
, . . . ) ∈ 𝑐(𝛥𝑣) but does not belong to 𝑏𝑣(𝛥𝑣). 

 
Theorem 3.6 𝐶1(𝛥𝑣) and 𝑏𝑣(𝛥𝑣) are BK-space with the norm ‖𝑥‖𝛥𝑣

= |𝑥1| +

𝑠𝑢𝑝𝑘
1

𝑘
| ∑ 𝛥𝑘

𝑖=1 𝑣𝑖𝑥𝑖|,  𝑥 = (𝑥𝑘) ∈ 𝐶1(𝛥𝑣) and ‖𝑥‖𝛥𝑣
= |𝑥1| + |𝑥2| + ∑ |𝛥𝑣𝑘𝑥𝑘 − 𝛥𝑣𝑘+1𝑥𝑘+1|𝑘 ,  𝑥 =

(𝑥𝑘) ∈ 𝑏𝑣(𝛥𝑣),  respectively. 
Proof Since 𝐶1(𝛥𝑣) and 𝑏𝑣(𝛥𝑣) are Banach spaces with continuous coordinates, that is, ||𝑥𝑠 − 𝑥||∆𝜗 →
0 implies |𝑥𝑘

𝑠 − 𝑥𝑘| → 0, for each 𝑘 ∈ ℕ, as 𝑠 → ∞, they are also BK-spaces. 
 
Theorem 3.7 𝑏𝑣(𝛥𝑣) does not have the AK-property. 

Proof Let 𝑥 = (𝑥𝑘) = (1,2,3, . . . ) ∈ 𝑏𝑣(𝛥𝑣). Consider the 𝑛𝑡ℎ section of the sequence (𝑥𝑘) as 𝑥[𝑛] =
(1,2,3, . . . , 𝑛, 0,0,0, . . . ). 
Then 

||𝑥 − 𝑥[𝑛]||𝑏𝜗 = ||(0,0,0, . . . , 𝑛 + 1, 𝑛 + 2, . . . )||𝑏𝜗

= |0| + |0|+. . . +|𝑛 + 1| + |𝑛 + 2|+. . .
 

which does not tend to 0 as 𝑛 → ∞ 
 
Theorem 3.8 𝑏𝑣(𝛥𝑣) is not monotone. 
Proof Take (𝑥𝑘) = (1,1,1, . . . ) ∈ 𝑏𝑣(𝛥𝑣) and 𝑦 = 𝑦𝑘 as 

𝑦𝑘 = {
𝑥𝑘, if k is odd
0, if k is even

 

i.e., (𝑦𝑘) = (1,0,1,0,1,0, . . . ). Then (𝛥𝑣𝑦𝑘) = (1, −1,1, −1, . . . ) and so (𝑦𝑘) ∉ 𝑏𝑣(𝛥𝑣). 
 
 
Theorem 3.9 𝑏𝑣(𝛥𝑣) is neither symmetric nor a sequence algebra. 
Proof Let (𝑥𝑘) = (1,2,3,4, . . . ) ∈ 𝑏𝑣(𝛥𝑣) and (𝑦𝑘) = (2,1,4,3,6, . . . ) e a rearrangement of the terms of 
the sequence (𝑥𝑘). Here (𝛥𝑣𝑦𝑘) = (1, −3,1, −3, . . . ) ∈ 𝑏𝑣 and so (𝑦𝑘) ∈ 𝑏𝑣(𝛥𝑣). This shows that 
𝑏𝑣(𝛥𝑣) is not a symmetric space. 
 
Lemma 3.10 Let 𝑋 be sequence space. Then we have 
(i) 𝑋 is perfect ⇒  𝑋 is normal ⇒  𝑋 is monotone. 
(ii) 𝑋 is normal ⇒   𝑋𝛼 = 𝑋𝛾 
(iii) 𝑋 is monotone ⇒   𝑋𝛼 = 𝑋𝛽 
 
corollary 3.11 𝑏𝑣(𝛥𝑣) is not normal. 
 
Theorem 3.12 𝐶1(𝛥𝑣) is not separable. 
Proof Let 𝐴 be the of all sequence 𝑥𝑎, 𝑥𝑏 , 𝑥𝑐, . .. where 

𝑥𝑎 = (𝑘 + 𝑎)𝑘 = (1 + 𝑎, 2 + 𝑎, . . . ), 𝑥𝑏 = (𝑘 + 𝑏)𝑘 = (1 + 𝑏, 2 + 𝑏, . . . ), . .. 

with |𝑎 − 𝑏| >
1

2
; 𝑎, 𝑏 ∈ ℝ. Clearly, 𝐴 ⊂ 𝐶1(𝛥𝑣) and 𝐴 is uncountable. Let 𝐷 be any dense set in 𝐶1(𝛥𝑣). 

Define a map 𝑓: 𝐴 → 𝐷 as follows: 

Let 𝑥𝑎 ∈ 𝐴 ⊂ 𝐶1(𝛥𝑣). As 𝐷 is dense in 𝐶1(𝛥𝑣), so there exists some 𝑧𝑥𝑎
∈ 𝐷 such that ‖𝑥𝑎 − 𝑧𝑥𝑎

‖𝛥𝑣
<

1

4
. 

We set 𝑓(𝑥𝑎) = 𝑧𝑥𝑎
. 

For 𝑥𝑎, 𝑥𝑏 ∈ 𝐴, we have 
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‖𝑥𝑎 − 𝑥𝑏‖𝛥𝑣
= |(𝑥𝑎 − 𝑥𝑏)1| + 𝑠𝑢𝑝𝑘

1

𝑘
| ∑ 𝛥

𝑘

𝑖=1

(𝑣𝑎𝑥𝑎 − 𝑣𝑏𝑥𝑏)𝑖|

= |(1 + 𝑎) − (1 + 𝑏)| + 𝑠𝑢𝑝𝑘

1

𝑘
| ∑ 𝛥

𝑘

𝑖=1

(𝑣𝑎𝑥𝑎 − 𝑣𝑏𝑥𝑏)𝑖|

≥ |𝑎 − 𝑏|

>
1

2

 

Now 

‖𝑥𝑎 − 𝑥𝑏‖𝛥𝑣
≤ ‖𝑥𝑎 − 𝑧𝑥𝑎

‖𝛥𝑣
+ ‖𝑧𝑥𝑎

− 𝑥𝑏‖𝛥𝑣

‖𝑧𝑥𝑎
− 𝑥𝑏‖𝛥𝑣

≥ ‖𝑥𝑎 − 𝑥𝑏‖𝛥𝑣
− ‖𝑥𝑎 − 𝑧𝑥𝑎

‖𝛥𝑣

>
1

2
−

1

4
=

1

4

 

and already we have ‖𝑥𝑏 − 𝑧𝑥𝑏
‖ <

1

4
, therefore 𝑧𝑥𝑎

≠ 𝑧𝑥𝑏
. Hence 𝑓 is one-one. As 𝑓(𝐴) ⊂ 𝐷. So 𝐷 is 

uncountable. Thus, 𝐶1(𝛥𝑣) has no countable dense set. 
 
Corollary 3.13 𝐶1(𝛥𝑣) does not have a Schauder basis. 
 
Corollary 3.14 𝐶1(𝛥𝑣) does not have the AK-property. 
 
Theorem 3.15 𝐶1(𝛥𝑣) is not normal and hence neither perfect nor convergence free. 
Proof Taking 𝑥 = (𝑥𝑘) = (𝑘 − 1) and 𝑦 = (𝑦𝑘) = (−1)𝑘(𝑘 − 1), we see that 𝑥 ∈ 𝐶1(𝛥𝑣) but 𝑦 ∉
𝐶1(𝛥𝑣) although |𝑦𝑘| ≤ |𝑥𝑘|, 𝑘 ≥ 1 and so 𝐶1(𝛥𝑣) is not normal. It is well known that every perfect 
space, and also every convergence free space, is normal and Consequently 𝐶1(𝛥𝑣) is neither perfect 
nor convergence free. 
 
Theorem 3.16 𝐶1(𝛥𝑣) is neither monotone nor a sequence algebra. 
Proof Take 𝑥 = (𝑥𝑘) = (𝑘) ∈ 𝐶1(𝛥𝑣). Consider 𝑦 = (𝑦𝑘) where 

𝑦𝑘 = {
𝑥𝑘, if k is odd
0, if k is even

 

i.e, 𝑦 = (1,0,3,0,5, . . . ). Then (𝛥𝑣𝑦𝑘) = (1, −3,3, −5, . . . ) and (𝛥𝑣𝑦𝑘) ∉ 𝐶1, i.e. 𝑦𝑘 ∉ 𝐶1(𝛥𝑣) and hence 
𝐶1(𝛥𝑣) is not monotone. To see that 𝐶1(𝛥𝑣) is not sequence algebra, take 𝑥 = 𝑦 = (𝑘) and observe that 
𝑥, 𝑦 ∈ 𝐶1(𝛥𝑣) but 𝑥𝑦 = (𝑘2) ∉ 𝐶1(𝛥𝑣). 

Köthe - Toeplitz duals 

Theorem 4.1 

[𝐶1(𝛥𝑣)]𝛼 = {𝑎 = (𝑎𝑘): ∑ 𝑘

𝑘

|𝑎𝑘| < ∞} = 𝐷1 

Proof Let 𝑎 = (𝑎𝑘) ∈ 𝐷1. 
For any 𝑥 = (𝑥𝑘) ∈ 𝐶1(𝛥𝑣), 
we have 

1

𝑘
(∑ 𝛥

𝑘

𝑖=1

𝑣𝑖𝑥𝑖) ∈ 𝑐 
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i.e., 

1

𝑘
(𝑣1𝑥1 − 𝑣𝑘+1𝑥𝑘+1) ∈ 𝑐 

and so there exists some 𝑀 > 0 such that |𝑥𝑘| ≤ 𝑀(𝑘 − 1) + 𝑥1 for 𝑘 ≥ 1 and hence 𝑠𝑢𝑝𝑘
1

𝑘
|𝑥𝑘| < ∞, 

which implies that 

∑ |𝑎𝑘𝑥𝑘|

𝑘

= ∑ (𝑘|𝑎𝑘|)

𝑘

(𝑘−1|𝑥𝑘|) < ∞ 

Thus, 𝑎 = (𝑎𝑘) ∈ [𝐶1(𝛥𝑣)]𝛼. 
Conversely, let 𝑎 = (𝑎𝑘) ∈ [𝐶1(𝛥𝑣)]𝛼. 
Then ∑ |𝑎𝑘𝑥𝑘|𝑘 < ∞ for all 𝑥 = (𝑥𝑘) ∈ [𝐶1(𝛥𝑣)]𝛼. Taking 𝑥𝑘 = 𝑘 for all 𝑘 ≥ 1, we have 𝑥 = (𝑥𝑘) ∈
[𝐶1(𝛥𝑣)]𝛼. when ∑ 𝑘𝑘 |𝑎𝑘| < ∞. 
Similarly we can show that, 
 

[𝑙∞(𝛥𝑣)]𝛼 = {𝑎 = (𝑎𝑘): ∑ 𝑘

𝑘

|𝑎𝑘| < ∞} = 𝐷1 

[𝑐(𝛥𝑣)]𝛼 = {𝑎 = (𝑎𝑘): ∑ 𝑘

𝑘

|𝑎𝑘| < ∞} = 𝐷1 

[𝑐0(𝛥𝑣)]𝛼 = {𝑎 = (𝑎𝑘): ∑ 𝑘

𝑘

|𝑎𝑘| < ∞} = 𝐷1 

[𝑏𝑣(𝛥𝑣)]𝛼 = {𝑎 = (𝑎𝑘): ∑ 𝑘

𝑘

|𝑎𝑘| < ∞} = 𝐷1 

i.e., 

[𝑙∞(𝛥𝑣)]𝛼 = [𝑐(𝛥𝑣)]𝛼 = [𝑐0(𝛥𝑣)]𝛼 = [𝑏𝑣(𝛥𝑣)]𝛼 = [𝐶1(𝛥𝑣)]𝛼 = 𝐷1 

So, we conclude that 𝛼 − 𝑑𝑢𝑎𝑙𝑠 of difference sequence spaces [𝑙∞(𝛥𝑣)], [𝑐(𝛥𝑣)],   
[𝑐0(𝛥𝑣)],  [𝑏𝑣(𝛥𝑣)]and [𝐶1(𝛥𝑣)] coincide. 
 
Theorem 4.2 

[𝐶1(𝛥𝑣)]𝛼𝛼 = {𝑎 = (𝑎𝑘): 𝑠𝑢𝑝𝑘

1

𝑘
|𝑎𝑘| < ∞} = 𝐷2 

The result follows in view of Theorem 4.1 and the fact ([10], Theorem 4.3) that [𝐶1(𝛥)]𝛼𝛼 = 𝐷2 
 
Acknowledgement:- The first author is greatfull to CSIR for all the financial support provided in the 
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