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Abstract: 

Curved shapes are represented across CAD and 

CAM using parametric piecewise cubic functions. 

It would be helpful to accurately create this 

representation from a sparse collection of points 

that approximate and extrapolate the desired curve, 

such as the input from a digitising tablet or a 

scanner, for various mechanical applications. The 

modelling of a piecewise parametric cubic spline 

under strain is presented in this study. To tackle the 

interpolation problem, we created an algorithm that 

first models the curve and sequence of function 

values at a given location.  
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1. Introduction  

Modeling's primary goal is function 

recognition, which entails learning a 

collection of data's geometric qualities and 

using that knowledge to recommend a 

suitable function that will share those 

properties. The achievement of an 

acceptable and theoretically straightforward 

curve-fitting function is a secondary goal. 

The goal of this study might be to assess the 

model or to utilize it to derive values that 

would not otherwise be possible as 

functions of the observed curve. Thus, 

parameter determination is the main 

challenge in modeling through curve-fitting. 

The form of the calculated curve is 

influenced by parameters, which are known 

or unknowable integers. The challenge is to 

identify the parameter values that, in terms 

of least squares, bring the calculated curve 

the closest to the observed curve. For this 

reason, we talk about modeling by fitting 

curves. 

In order to allow tension factors to change 

with intervals, Schweikert [1] and S path 

[15] created tension splines with uniform 

tension. Pruess [7] has studied the 

convergence rates and asymptotic behavior 

of interpolatory tension splines with varying 

tension, while Cline [2] has created 

software for both interpolation and 

smoothing using splines with uniform 

tension. Lynch [13] and Kumar [17] provide 

methods and software for selecting a 
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tension factor that satisfies bounds on 

function values and derivatives while 

maintaining local convexity. Spith [15] and 

Kumar [16] describe an iterative procedure 

for selecting tension factors to avoid 

unnecessary inflection points. However, 

because the latter approach only works in 

the scenario of uniform stress, it typically 

produces far more tension than is required 

at certain periods. 

1.1 Piecewise Parametric Cubic Spline in 

Tension  

A tension spline is a spline curve with a parameter 

that controls the curve's tension. This means that 

the curve that passes through the points of the data 

constraint might have a varied tension, making it 

more or less stiff. The tension spline behaves like 

a cubic spline when the tension is low (around 0). 

The tension spline approaches the piecewise 

linear function when the tension is high (moving 

to infinity). The cubic spline polynomial is not 

equivalent to a tension spline with tension greater 

than zero. 

We have periodic boundary conditions and n data 

constraint points to deal with. See [4] through [6] 

for a more thorough and broad description. Here 

is a description of the tension spline curve's 

mathematical model. Given n knots and  

d1<d2<………<dn   data yi at each di (i=1,2,....n). 

Periodicity is provided by the data value yn = y1 

for the last knot dn. The function f with the 

following characteristics is the tension spline that 

we desire. [1] 

i. f  [d1,dn] 

ii. f (di)= yi                   

iii. On each open interval (di, di+1), f satisfies f(4) 

– f” = 0 

The characteristics I to (iii) imply that f 

interpolates the provided data, has two continuous 

derivatives globally and satisfies a particular 

differential equation in each sub-interval. Since 

the solutions of the equation f(4)=0 are cubic 

polynomials, it is evident that this prescription 

produces a cubic spline when τ = 0. Zi is set to 

equal f"(di) in order to calculate f, and the 

requirements for f on the range [di, di+1] are 

written down. 

f(4) – f” = 0 

f(di) = yi  f(di+1) = yi+1 

f”(di) = zi  f”(di+1) = zi+1 

 

Where, zn =f ''(dn) = f ''(d1) = z1. One can verify 

that the solution of this two-point boundary-value 

problem is f(x) = { zi sinh[τ(di+1 – x)] + zi+1 sinh 

[τ(x-di)}/ [ τ2 sinh (τhi)]+ (yi-zi /τ2)(di+1-x)/hi + 

(yi+1-zi+1/τ
2)(x-di)/hi 

Where hi = di+1 - di. After the coefficients zi have 

been determined, these equations will be used to 

compute values off on the interval [di, di+1]. The 

function f is what we will call the tension spline 

function. 

In order that f have C2 global smoothness, the 

conditions 

(1 ) must be 

imposed at the knots. The tedious calculations 

involved in this are not given here. 

The result is a tridiagonal system of equations for 

the unknowns z1, z2………..zn that can be written 

in the form 
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αi-1zi-1 + (βi-1 + βi )zi + αizi+1 = γi – γi-1 

 (1 )  (1) 

 

With these abbreviations 

αi = 1/ hi – τ sinh(τhi) 

βi = τ cosh(τhi) / sinh(τhi) – 1/ hi 

γi = τ2(yi+1-yi) / hi 

 

Since (1) produces (n-1) equations with n 

unknowns, it is noted that a further need is 

necessary to ascertain the z-vector. We now have 

the linear system of equations, which is given by 

the periodic boundary condition, defined by y1 = 

yn and (really, it is the case that yi = yi+(n-1)and zi 

= zi+(n-1)). 

 

 (2) 

Whereγ0 = τ2 (y1 – yn-1). By solving the equations 

(invert the symmetric matrix in (2)) all zi can be 

determined. That means the tension spline 

function f will be given. The constant τ is called 

the tension. 

2. Modules of Interpolator Splines under 

Tension 

The modules of splines under tension 

includes the two algorithm, which solves 

the interpolation and determine a real 

valued function are {yi} =1 at abscissas 

{xi} =1.  

 

 

2.1. Interpolation through sequence of 

function value 

The first method uses functional values to 

define the parameters necessary to calculate 

an interpolatory spline under tension. To 

add points on the curve, the slopes at the 

two ends of the curve may be supplied or 

omitted.The algorithm's input parameters 

are Ni, the number of values to be 

interpolated, X, an array of the N functional 

values' rising abscissa, Y, an array of the N 

values' ordinates; and FD1&FDN, which 

have the predicted values for the curve's 1-

derivative at X(l) and X(N), respectively. 

The tension factor is included in the arrays 

ARR, TEMP, and TF, each of which has a 

length of at least N and is used for scratch 

storage. 

The output parameters ARR must have 

values proportionate to the curve's second 

derivative at the specified nodes. 

Algorithm: 

1. Function  
FUNC1 (N, X, Y, FD1, 

FDN, ARR, TEMP, TF) 

2. Input  
INTEGER N 

REAL X (N), Y (N), FD1, 

FDN, ARR (N), TEMP (N), TF 

NM = N - 1 

NP = N + l 

LXI = X(2) - X(1) 

XI = (Y(2)-Y(1))/DELXI 

3. Calculate  slopes if required 
IF (TF.LT.0.) GO TO 50 

FDD1 = FD1 

FDDN = FDN 

4. Ab-normalize the stress factor 
10 TFD=ABS (TF)*FLOAT 

(N-1)/(X (N)-X (1)) 

5. Set up the right side, the tridiagonal 

system, and make the progressive 

reduction. 
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LS = TFD*LXI 

PS = EXP (LS) 

HS =0.5*(PS-1/PS) 

HIN = 1./(LXI*HS) 

GI = HIN*(LS*0.5*(PS*1. 

/PS)-HS) 

GIN = 1. /GI 

ARR(1) = GIN*(XI-FDD1) 

DIAG =HIN*(HS-LS) 

TEMP(1) = GIN*DIAG 

IF (N.EQ.2) GO TO 30 

DO 20 I=2,NM 

LX2 = X(I+1) - X(I) 

X2 = (Y(I+1)-Y(1)/LX2 

LS = TED*LX2 

PS = EXP(LS) 

HS = .5*(PS-1./PS) 

HIN = 1./(LXI*HS) 

GG=HIN*(LS*(0.5*(PS*1./P

S))-HS) 

GIN =1./(GI+GG-

DIAG*TEMP(I-1)) 

ARR(I) = GIN*(X2-X1-

DIAG*ARR(I-1)) 

DIAG =HIN*(HS-LS) 

TEMP(1) = GIN*DIAG 

X1 = X2 

GI = GG 

20 CONTINUE 

30 GIN = 1./{GI-

DIAG*TEMP(NM)) 

 YP(N) = GIN*(FDDN-X2-

DIAG*ARR(NM)) 

6. Perform back substitution 
DO 40 I=2*N 

IK = NP-I 

ARR (IK) = ARR (IK)-TEMP 

(IK)*ARR (IK+1) 

40 CONTINUE 

RETURN 

50 IF (N.EQ.0) G0 TO 60 

7. Use the second-order polynomial 

regression on the input data to 

determine values at endpoints when no 

derivatives are provided. 
LX2 = X(3) - X(2) 

LX12 = X(3) - X(1) 

D1 = - 

(LX12+LX1)/LX12/LX1 

D2 = LX12/LX1/LX2 

D3 = -LX1/LX12/LX2 

FDD1 = D1*Y (1) + D2*Y 

(2) + D3*Y (3) 

LN = X(N) - X(NM) 

LNM = X(NM) – X(N-2) 

LNN = X(N) - X(N-2) 

D1 = (LNN+LN)/LNN/LN 

D2 = -LNN/LN/LNM 

D3 = LN/LNN/LNM 

FDDN = D3*Y (N-2) + D2*Y 

(NM) ÷ D1*Y (N) 

GO TO 10 

8. Use a straight line for a curve if there 

are just two points and no derivatives 

are provided. 
60 ARR (1) = 0. 

ARR (2) = 0, 

RETURN 

9. End 

 

2.2. Interpolate a curve at a given 

point 

Using a spline under stress, this technique 

interpolates a curve at a specified point. The 

subroutine curve has to be called earlier to 

get some crucial parameters. 

The algorithm requires the following input 

parameters: X and Y are arrays comprising 

the interpolated points' ordinates and 

abscissas. ARR is an array with values 

proportional to the second derivative of the 

curve at the nodes. TF is a numeric switch 

that includes the tension factor. T is a real 

value to map onto the interpolating curve. 

Output parameters contain the interpolated 

results for T fewer than X (1), function = Y 

(1), for T larger than X (N), function = Y 

(N). 

Algorithm: 

1. Function 

FUNC2 (T, N, X, Y, ARR, 

TF, IT) 
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2. Input 

INTEGER N, IT 

REAL T, X (N), Y(N), 

ARR(N), TF 

S = X (N) - X (1) 

3. Denormalize sigma 

TFD= ABS (TF)*FLOAT (N-

1)/S 

4. If IT.NE.1 resume the investigation 

where it was earlier stopped; otherwise, 

begin again 

IF (IT.EQ.1) I1 = 2 

5. Explore for interval 

10 DO 20 I=I1, N 

IF (X (I)-T) 20, 20, 30 

20 go on 

I=N 

6. Check to insure correct interval 

30 IF (X(I-1).LE.T .OR. 

T.LE.X(1)) GO TO 40 

7. Resume explore and rearrange it 

(INPUT ''IT'' WAS 

INCORRECT) 

I1 = 2 

GO T0 10 

8. Set up and perform interpolation 

40 L1 = T - X(I-1) 

L2 = X(1) - T 

L

S

 

=

 

X

(

I

)

 

-

 

X

(

I-I) 

S1 = EXP(TFD*L1) 

D1 =.5*(S1-1*/S1) 

PS = EXP(TED*L2) 

D2 = .5*(PS-1./PS) 

PS = PS1*PS 

HS = .5*(PS-I./PS) 

FUNC2 = 

(ARR(1)*D1+ARR(I-

1)*D2)/HS *((Y(I)-

ARR(I))*L1+(Y(I-1)-

ARR(I-1))*L2)/LS 

I1 = I 

RETURN 

9. End 

3. Modeling using MATLAB Programming 

We consider the piecewise cubic spline 

curve with four two-dimensional position 

vectors P1 [0 0], P2 [1 1], P3 [2 -1] & P4 [3 

0], tangent vectors at the ends are P’1 [1 1] 

& P’4 [1 1], tension factor τ is 0.2. The 

intermediate points at t = 1/3 & 2/3 for each 

segment are: 

Segment 1 2 3 

t 1/3 2/3 1/3 2/3 1/3 2/3 

Px 0.416 0.740 1.343 1.657 2.260 2.584 

Py 0.484 0.876 0.457 -

0.457 

-

0.876 

-

0.484 

We can import predictor Px (X) data, 

response Py (Y) data and weights, the fig.1 

shows the curve fitting result of 

interpolatory cubic spline.   
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We may estimate (interpolate or extrapolate), separate, or integrate a fit across a particular data arrangement 

with the analytical technique. 

Xi f(Xi) df(Xi)/dX d2f(Xi)/dX2 Integral f(Xi) 

0.416 0.484 1.55739 -1.45861 0 

0.6328 0.776567 1.09177 -2.8368 0.138469 

0.8496 0.935799 0.327357 -4.21499 0.327084 

1.0664 0.896917 -0.73585 -5.59318 0.529915 

1.2832 0.595143 -2.09784 -6.97137 0.696989 

1.5 0 -3.10319 0 0.765635 

1.7168 -0.59514 -2.09784 6.97137 0.696989 

1.9336 -0.89692 -0.73585 5.59318 0.529915 

2.1504 -0.9358 0.327357 4.21499 0.327084 

2.3672 -0.77657 1.09177 2.8368 0.138469 

2.584 -0.484 1.55739 1.45861 0 

      

(a) 

Fig. 1: Curve fitting graph (a) common (b) linear fit under tension (c) cubic spline fit under tension (d) shape 

preserving fit under tension (e) smooth fit under tension 

(e) 

(c) 
(d) 
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4. Conclusion 

This work describes the mathematical 

modeling of the least square piecewise 

parametric spline under strain. We've 

spoken about the conceptual and 

mathematical aspects of splines under 

tension  Finally, the study's objective has 

been reached. This study aims to produce 

interpolatory spline modules under tension 

by interpolating a curve at a certain location 

using a series of functional values. 

Therefore, a suggested interpolatory method 

has been modeled in MATLAB 

programming. The other spline that is 

modeled under stress will be explored in the 

future study. 
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