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ABSTRACT: Abel’s integral equation is an important singular integral equation and generally appears in many branches of sciences such 

as atomic scattering, mechanics, radio astronomy, physics, electron emission, X-ray radiography and seismology. In this paper, we use 

Aboodh transform method to solve Abel’s integral equation and some numerical applications in application section are given to 

demonstrate the effectiveness of Aboodh transform method to solve Abel’s integral equation. 
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I. INTRODUCTION: In 1823, Niels Henrik Abel discussed the motion of particle on smooth curve lying on a vertical plane using 

Abel’s integral equation in mathematical form as [1-2]  

𝑓(𝑥) = ∫
1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                                                                             (1) 

Here the kernel of integral equation, 𝐾(𝑥, 𝑡) =
1

√𝑥−𝑡
 becomes ∞ at 𝑡 = 𝑥, the function 𝑓(𝑥) is known function and the function 𝑢(𝑡) is 

unknown function. 

Integral transforms are widely used mathematical techniques for solving advanced problems of science and engineering which 

mathematically express in terms of differential equations, partial differential equations, integral equations, partial integro-differential 

equations, integro-differential equations etc. Many researchers used different integral transforms (Laplace transform [3-4], Fourier 

transform [3], Hankel transform [3], Kamal transfom [5, 16-19, 38], Mahgoub transform [8-12, 24], Elzaki transform [6-7, 30-31], 

Mohand transform [20-22, 36-37, 39-40], Aboodh transform [13-15, 23, 32-35], Sumudu transform [41-42], Wavelet transform [3]) for 

solving many problems of science and engineering. Aggarwal and others [25-29] discussed the comparative study between these 

transforms. 

The Aboodh transform of the function 𝐹(𝑡) for all 𝑡 ≥ 0 is defined as [43]: 

𝐴{𝐹(𝑡)} =
1

𝑣
∫ 𝐹(𝑡)𝑒−𝑣𝑡𝑑𝑡

∞

0
= 𝐾(𝑣), 0 < 𝑘1 ≤ 𝑣 ≤ 𝑘2,                                                                                                                        (2) 

where the operator 𝐴 is called the Aboodh transform operator. 

The Aboodh transform of the function 𝐹(𝑡) for 𝑡 ≥ 0 exist if 𝐹(𝑡) is piecewise continuous and of exponential order. These conditions 

are only sufficient conditions for the existence of Aboodh transforms of the function 𝐹(𝑡). Aggarwal et al. [44] defined Aboodh 

transform of Bessel’s functions. 

 
In this paper, we are giving the solution of Abel’s integral equation using Aboodh transform method and explain all procedure by giving 

some numerical applications in application section.  

II. SOME USEFUL PROPERTIES OF ABOODH TRANSFORM:  

2.1 Linearity property of Aboodh transform [13-15, 28]: 

If Aboodh transform of functions 𝐹1(𝑡) and 𝐹2(𝑡) are 𝐾1(𝑣)and 𝐾2(𝑣) respectively then Aboodh transform of [𝑎𝐹1(𝑡) + 𝑏𝐹2(𝑡)] is 

given by [𝑎𝐾1(𝑣) + 𝑏𝐾2(𝑣)], where 𝑎, 𝑏 are arbitrary constants. 

 

2.2 Change of scale property of Aboodh transform [28]: 

If Aboodh transform of function 𝐹(𝑡) is 𝐾(𝑣) then Aboodh transform of function 𝐹(𝑎𝑡)is given by 
1

𝑎2 𝐾 (
𝑣

𝑎
). 
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2.3 Shifting property of Aboodh transform [28]:  

If Aboodh transform of function 𝐹(𝑡) is 𝐾(𝑣)  then Aboodh transform of function 𝑒𝑎𝑡𝐹(𝑡)is given by 
(𝑣−𝑎)

𝑣
𝐾(𝑣 − 𝑎). 

2.4 Aboodh transform of the derivatives of the function  𝑭(𝒕)[13-15, 28]: 

If 𝐴{𝐹(𝑡)} = 𝐾(𝑣)then  

a) 𝐴{𝐹′(𝑡)} = 𝑣𝐾(𝑣) −
𝐹(0)

𝑣
 

b) 𝐴{𝐹′′(𝑡)} = 𝑣2𝐾(𝑣) − 𝐹(0) −
𝐹′(0)

𝑣
 

c) 𝐴{𝐹(𝑛)(𝑡)} = 𝑣𝑛𝐾(𝑣) −
𝐹(0)

𝑣2−𝑛 −
𝐹′(0)

𝑣3−𝑛 − ⋯ … −
𝐹(𝑛−1)(0)

𝑣
 

2.5 Convolution theorem for Aboodh transforms [13-14, 28]: 

If Aboodh transform of functions 𝐹1(𝑡) and 𝐹2(𝑡)are 𝐾1(𝑣)and 𝐾2(𝑣) respectively then Aboodh transform of their convolution 𝐹1(𝑡) ∗

𝐹2(𝑡) is given by 𝐴{𝐹1(𝑡) ∗ 𝐹2(𝑡)} = 𝑣𝐴{𝐹1(𝑡)}𝐴{𝐹2(𝑡)} 

⇒ 𝐴{𝐹1(𝑡) ∗ 𝐹2(𝑡)} = 𝑣 𝐾1(𝑣)𝐾2(𝑣), where 𝐹1(𝑡) ∗ 𝐹2(𝑡) is defined by 

 𝐹1(𝑡) ∗ 𝐹2(𝑡) = ∫ 𝐹1(𝑡 − 𝑥)
𝑡

0
𝐹2(𝑥)𝑑𝑥 = ∫ 𝐹1(𝑥)

𝑡

0
𝐹2(𝑡 − 𝑥)𝑑𝑥 

 

III. ABOODH TRANSFORM OF FREQUENTLY ENCOUNTERED FUNCTIONS [13-15, 28, 44]: 

Table: 1 

S.N. 𝐹(𝑡) 𝐴{𝐹(𝑡)} = 𝐾(𝑣) 

1. 1 1

𝑣2
 

2. 𝑡 1

𝑣3
 

3. 𝑡2 2!

𝑣4
 

4. 𝑡𝑛, 𝑛 ∈ 𝑁 𝑛!

𝑣𝑛+2
 

5. 𝑡𝑛, 𝑛 > −1 Γ(𝑛 + 1)

𝑣𝑛+2
 

6. 𝑒𝑎𝑡 1

𝑣2 − 𝑎𝑣
 

7. 𝑠𝑖𝑛𝑎𝑡 𝑎

𝑣(𝑣2 + 𝑎2)
 

8. 𝑐𝑜𝑠𝑎𝑡 1

𝑣2 + 𝑎2
 

9. 𝑠𝑖𝑛ℎ𝑎𝑡 𝑎

𝑣(𝑣2 − 𝑎2)
 

10. 𝑐𝑜𝑠ℎ𝑎𝑡 1

𝑣2 − 𝑎2
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11 𝐽0(𝑡) 1

𝑣√(1 + 𝑣2)
 

12 𝐽1(𝑡) 1

𝑣
−

1

√(1 + 𝑣2)
 

 

 

IV. INVERSE ABOODH TRANSFORM [13-15, 28]: 

If 𝐾(𝑣) is the Aboodh transforms of 𝐹(𝑡) then 𝐹(𝑡) is called the inverse Aboodh transform of 𝐾(𝑣)and in mathematical terms, it can 

be expressed as𝐹(𝑡) = 𝐴−1{𝐾(𝑣)}, where 𝐴−1 is an operator and it is called as inverse Aboodh transform operator. 

V. LINEARITY PROPERTY OF INVERSE ABOODH TRANSFORMS: 

If 𝐴−1{𝐻(𝑣)} = 𝐹(𝑡) and 𝐴−1{𝐼(𝑣)} = 𝐺(𝑡)  then 𝐴−1{𝑎𝐻(𝑣) + 𝑏𝐼(𝑣)} = 𝑎𝐴−1{𝐻(𝑣)} + 𝑏𝐴−1{𝐼(𝑣)} 

⇒ 𝐴−1{𝑎𝐻(𝑣) + 𝑏𝐼(𝑣)} = 𝑎𝐹(𝑡) + 𝑏𝐺(𝑡), where 𝑎, 𝑏 are arbitrary constants. 

VI. INVERSE ABOODH TRANSFORM OF FREQUENTLY ENCOUNTERED FUNCTIONS [13-15, 28]:  

Table: 2 

S.N. 𝑇(𝑣) 𝐹(𝑡) = 𝐴−1{𝐾(𝑣)} 

1. 1

𝑣2
 

1 

2. 1

𝑣3
 

𝑡 

3. 1

𝑣4
 

𝑡2

2!
 

4. 1

𝑣𝑛+2
, 𝑛𝜖𝑁 

𝑡𝑛

𝑛!
 

5. 1

𝑣𝑛+2
, 𝑛 > −1 

𝑡𝑛

Γ(𝑛 + 1)
 

6. 1

𝑣2 − 𝑎𝑣
 

𝑒𝑎𝑡 

7. 1

𝑣(𝑣2 + 𝑎2)
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

8. 1

𝑣2 + 𝑎2
 

𝑐𝑜𝑠𝑎𝑡 

9. 1

𝑣(𝑣2 − 𝑎2)
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

10. 1

𝑣2 − 𝑎2
 

𝑐𝑜𝑠ℎ𝑎𝑡 

11. 1

𝑣√(1 + 𝑣2)
 

𝐽0(𝑡) 
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12. 1

𝑣
−

1

√(1 + 𝑣2)
 

𝐽1(𝑡) 

VII. ABOODH TRANSFORM METHOD FOR SOLVING ABEL’S INTEGRAL EQUATION: In this section, we present Aboodh 

transform method for the solution of Abel’s integral equation. 

Taking Aboodh transform of both sides of (1), we have 

𝐴{𝑓(𝑥)} = 𝐴 {∫
1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒ 𝐴{𝑓(𝑥)} = 𝐴{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                                                                                (3) 

Applying convolution theorem of Aboodh transform in (3), we have 

𝐴{𝑓(𝑥)} = 𝑣𝐴{𝑥−1/2}𝐴{𝑢(𝑥)} 

⇒ 𝐴{𝑓(𝑥)} = 𝑣(√𝜋𝑣−3/2)𝐴{𝑢(𝑥)} 

⇒ 𝐴{𝑢(𝑥)} =
𝑣1/2

√𝜋
𝐴{𝑓(𝑥)} 

⇒ 𝐴{𝑢(𝑥)} =
𝑣

𝜋
[𝑣(√𝜋𝑣−3/2)𝐴{𝑓(𝑥)}] 

⇒ 𝐴{𝑢(𝑥)} =
𝑣

𝜋
[𝑣𝐴{𝑥−1/2}𝐴{𝑓(𝑥)}] 

⇒ 𝐴{𝑢(𝑥)} =
𝑣

𝜋
𝐴{𝑥−1/2 ∗ 𝑓(𝑥)} 

⇒ 𝐴{𝑢(𝑥)} =
𝑣

𝜋
[𝐴 {∫

1

√𝑥 − 𝑡
𝑓(𝑡)

𝑥

0

𝑑𝑡}] 

⇒ 𝐴{𝑢(𝑥)} =
𝑣

𝜋
𝐴{𝐹(𝑥)}                                                                                                                                                                         (4) 

where 𝐹(𝑥) = ∫
1

√𝑥−𝑡
𝑓(𝑡)

𝑥

0
𝑑𝑡                                                                                                                                                                 (5) 

Now applying the property, Aboodh transform of derivative of the function, on (5), we have  

𝐴{𝐹′(𝑥)} = 𝑣𝐴{𝐹(𝑥)} −
𝐹(0)

𝑣
 

⇒ 𝐴{𝐹′(𝑥)} = 𝑣𝐴{𝐹(𝑥)} 

⇒ 𝐴{𝐹(𝑥)} =
1

𝑣
𝐴{𝐹′(𝑥)}                                                                                                                                                                         (6) 

Now from (4) and (6), we have 

𝐴{𝑢(𝑥)} =
1

𝜋
𝐴{𝐹′(𝑥)}                                                                                                                                                                             (7) 

Applying inverse Aboodh transform on both sides of (7), we get 

𝑢(𝑥) =
1

𝜋
𝐹′(𝑥) =

1

𝜋
 

𝑑

𝑑𝑥
𝐹(𝑥)                                                                                                                                                                  (8) 

Using (5) in (8), we have  

𝑢(𝑥) =
1

𝜋
[

𝑑

𝑑𝑥
∫

1

√𝑥−𝑡
𝑓(𝑡)

𝑥

0
𝑑𝑡]                                                                                                                                                                 (9) 
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which is the required solution of (1). 

VIII. APPLICATIONS: In this section, we present some numerical applications to demonstrate the effectiveness of Aboodh transform 

method to solve Abel’s integral equation. 

8.1 Consider the Abel’s integral equation: 

𝑥 = ∫
1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                                                                              (10) 

Taking Aboodh transform of both sides of (10), we have 

𝐴{𝑥} = 𝐴 {∫
1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒
1

𝑣3 = 𝐴{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                                                                                       (11) 

Applying convolution theorem of Aboodh transform in (11), we have 

1

𝑣3
= 𝑣𝐴{𝑥−1/2}𝐴{𝑢(𝑥)} 

⇒
1

𝑣3
= 𝑣(√𝜋𝑣−3/2)𝐴{𝑢(𝑥)} 

⇒ 𝐴{𝑢(𝑥)} =
𝑣−5/2

√𝜋
                                                                                                                                                                                (12)  

Applying inverse Aboodh transform on both sides of (12), we get 

𝑢(𝑥) =
1

√𝜋
𝐴−1{𝑣−5/2} 

⇒ 𝑢(𝑥) =
2

𝜋
𝑥1/2                                                                                                                                                                                 (13) 

which is the required solution of (10). 

8.2 Consider the Abel’s integral equation: 

1 + 𝑥 + 𝑥2 = ∫
1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                                                            (14) 

Taking Aboodh transform of both sides of (14), we have 

𝐴{1} + 𝐴{𝑥} + 𝐴{𝑥2} = 𝐴 {∫
1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒
1

𝑣2 +
1

𝑣3 +
2

𝑣4 = 𝐴{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                                                                    (15) 

Applying convolution theorem of Aboodh transform in (15), we have 

1

𝑣2
+

1

𝑣3
+

2

𝑣4
= 𝑣𝐴{𝑥−1/2}𝐴{𝑢(𝑥)} 

⇒
1

𝑣2
+

1

𝑣3
+

2

𝑣4
= 𝑣(√𝜋𝑣−3/2)𝐴{𝑢(𝑥)} 

⇒ 𝐴{𝑢(𝑥)} =
1

√𝜋
[𝑣−3/2 + 𝑣−5/2 + 2𝑣−7/2]                                                                                                                                          (16)  

Applying inverse Aboodh transform on both sides of (16), we get 
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𝑢(𝑥) =
1

√𝜋
𝐴−1{𝑣−3/2 + 𝑣−5/2 + 2𝑣−7/2} 

⇒ 𝑢(𝑥) =
1

√𝜋
[𝐴−1{𝑣−3/2} + 𝐴−1{𝑣−5/2} + 2𝐴−1{𝑣−7/2}]  

⇒ 𝑢(𝑥) =
1

𝜋
[𝑥−1/2 + 2𝑥1/2 +

8

3
𝑥3/2]                                                                                                                                             (17) 

which is the required solution of (14). 

8.3 Consider the Abel’s integral equation: 

3𝑥2 = ∫
1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                                                                      (18) 

Taking Aboodh transform of both sides of (18), we have 

3𝐴{𝑥2} = 𝐴 {∫
1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒
6

𝑣4 = 𝐴{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                                                                                  (19) 

Applying convolution theorem of Aboodh transform in (19), we have 

6

𝑣4
= 𝑣𝐴{𝑥−1/2}𝐴{𝑢(𝑥)} 

⇒
6

𝑣4
= 𝑣(√𝜋𝑣−3/2)𝐴{𝑢(𝑥)} 

⇒ 𝐴{𝑢(𝑥)} =
6

√𝜋
𝑣−7/2                                                                                                                                                                      (20)  

Applying inverse Aboodh transform on both sides of (20), we get 

𝑢(𝑥) =
6

√𝜋
𝐴−1{𝑣−7/2} 

⇒ 𝑢(𝑥) =
8

𝜋
𝑥3/2                                                                                                                                                                             (21) 

which is the required solution of (18). 

8.4 Consider the Abel’s integral equation: 

4

3
𝑥3/2 = ∫

1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                                                                  (22) 

Taking Aboodh transform of both sides of (22), we have 

4

3
𝐴{𝑥3/2} = 𝐴 {∫

1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒ √𝜋𝑣−7/2 = 𝐴{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                                                                       (23) 

Applying convolution theorem of Aboodh transform in (23), we have 

√𝜋𝑣−7/2 = 𝑣𝐴{𝑥−1/2}𝐴{𝑢(𝑥)} 

⇒ √𝜋𝑣−7/2 = 𝑣(√𝜋𝑣−3/2)𝐴{𝑢(𝑥)} 

⇒ 𝐴{𝑢(𝑥)} =
1

𝑣3                                                                                                                                                                               (24)  
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Applying inverse Aboodh transform on both sides of (24), we get 

𝑢(𝑥) = 𝐴−1 {
1

𝑣3
} 

⇒ 𝑢(𝑥) = 𝑥                                                                                                                                                                                      (25) 

which is the required solution of (22). 

8.5 Consider the Abel’s integral equation: 

2√𝑥 +
8

3
𝑥3/2  = ∫

1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                                                      (26) 

Taking Aboodh transform of both sides of (26), we have 

2𝐴{𝑥1/2} +
8

3
𝐴{𝑥3/2} = 𝐴 {∫

1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒ √𝜋𝑣−5/2 + 2√𝜋𝑣−7/2 = 𝐴{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                                                  (27) 

Applying convolution theorem of Aboodh transform in (27), we have 

√𝜋𝑣−5/2 + 2√𝜋𝑣−7/2 = 𝑣𝐴{𝑥−1/2}𝐴{𝑢(𝑥)} 

⇒ √𝜋𝑣−5/2 + 2√𝜋𝑣−7/2 = 𝑣(√𝜋𝑣−3/2)𝐴{𝑢(𝑥)} 

⇒ 𝐴{𝑢(𝑥)} =
1

𝑣2 +
2

𝑣3                                                                                                                                                                   (28)  

Applying inverse Aboodh transform on both sides of (28), we get 

𝑢(𝑥) = 𝐴−1 {
1

𝑣2
} + 2𝐴−1 {

1

𝑣3
} 

⇒ 𝑢(𝑥) = 1 + 2𝑥                                                                                                                                                                        (29) 

which is the required solution of (26). 

8.6 Consider the Abel’s integral equation: 

3

8
𝜋𝑥2  = ∫

1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                                                              (30) 

Taking Aboodh transform of both sides of (30), we have 

3

8
𝜋𝐴{𝑥2} = 𝐴 {∫

1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒
3

4
(

𝜋

𝑣4) = 𝐴{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                                                                       (31) 

Applying convolution theorem of Aboodh transform in (31), we have 

3

4
(

𝜋

𝑣4
) = 𝑣𝐴{𝑥−1/2}𝐴{𝑢(𝑥)} 

⇒
3

4
(

𝜋

𝑣4
) = 𝑣(√𝜋𝑣−3/2)𝐴{𝑢(𝑥)} 

⇒ 𝐴{𝑢(𝑥)} =
3

4
√𝜋𝑣−7/2                                                                                                                                                              (32)  

Applying inverse Aboodh transform on both sides of (32), we get 
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𝑢(𝑥) =
3

4
√𝜋𝐴−1{𝑣−7/2} 

⇒ 𝑢(𝑥) = 𝑥3/2                                                                                                                                                                             (33) 

which is the required solution of (30). 

IX. CONCLUSION: In this paper, we have successfully discussed Aboodh transform method for the solution of Abel’s integral 

equation. The given numerical applications in the application section explain the complete procedure for the solution of Abel’s integral 

equation using Aboodh transform method. The results show that Aboodh transform method is a powerful integral transform method for 

the solution of Abel’s integral equation. In the future, Aboodh transform method can be used for solving other singular integral 

equations. 
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