
© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1903I62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 418

Black Box Testing Technique: How All Pair Testing
Covers Maximum Number of Software Defects

Shwetha M S

Unisys Global Services, Bengaluru, India

Dr. Girija Kasal, Professor, Dept of CSE, RNSIT, Bangalore

Abstract—Pair-Wise testing is a classic combinatorial

test design technique, which is adoptable to any of the

methodology from Waterfall to Agile methodology to save cost.

No developer can say the code is bug free. Tester is one who

never satisfied with the amount of testing is done. Tester always

in application there is always a bug. For example, even in IPhone,

Amazon and Flipkart there are many bugs.

In testing, we could see four fundamental challenges.

Complete testing is impossible. Testers misallocates resources

because they fall for the company process myths. Test groups

operates under multiple missions often conflicting rarely

articulated. Test group often lack skilled programmers and a

vision of appropriate project that would keep programming

testers challenged. Why complete testing is impossible? Reasons

are: Test every possible input to every variable, Test every

possible combinations of input to every combination of variable,

Test every possible sequence through the program and Test every

hardware, software configuration including configuration of

servers not under your control. Test every way in which the user

might try to use the program.

This leads to motivation to pairwise testing. It is

determined that 98% of reported software defect is recalled

medical devices could have been detected by testing all pairs of

parameters settings.

This paper focuses on Black Box technique, explained

how All Pair testing covers maximum number of software defects

with minimum Test cases, and thus saves time and cost of

Software Development Life cycle. All Pair testing technique is

applicable for different kind of testing such as Unit testing,

Integration Testing, System Testing and Regression testing etc.,

Keywords— SDLC, All-Pair testing,Combinatorial testing,

Software testing, t-way testing, System Under Test.

I. INTRODUCTION

Testing is an important testing step in the lifecycle of the

development of software applications. To verify the

correctness of applications hence quality measures we ideally

test the software products in different ways by using different

test techniques.

There are different types of testing methodologies. We

may demarcate between black box testing and white-box

testing based on the availability of source code. In addition,

there are different techniques for integration tests, unit tests,

system tests, and regression tests during the software

development life cycle.

How to test?

 Input test data to the program.

 Observer the output

 Check if the program behaved as expected.

Examine Test Result.

 If the program does not behave as expected:

 Note the conditions under which it is failed (Test

report).

Testing Facts:

Programs used in very critical application such as

Banking application, Railway Reservation system or Airline

reservation system, if program suddenly crash, that will really

put 10 to 1000 people in inconvenience. Therefore, programs

before release, tested thoroughly so reliability is very high.

Monkey testing does not work. Testing Technique has been

evolved in 25-30 years.

Testing is effort intensive task. Very important in

testing is Automation. Use of tool has become very important.

Several tools available to help various testing activity

including how much test has been done. When testing is

carried out in SDLC? If we consider in Waterfall model,

Testing happens in end phase of SDLC. Later development

methodology like Agile or V-model, testing phase is spread all

over the different phases. Any iterative development process,

in every iteration testing is present all through life cycle. Bugs

are explored earlier.

In the below fig1 shows effort required in Unified

Process. There are 4 phases in Unified process are Inception,

Elaboration, Construction, Transition. Testing effort is present
all through life cycle.

Fig1: Testing Activities Now Spread Over Entire Life Cycle

Testing is getting more complex and sophisticated

every year because of the below testing facts:

 Larger and more complex programs

 Newer programming paradigms

 Newer testing techniques

 Test Automation

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1903I62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 419

Testing Perception

Initially testing is often viewed as not very

challenging—less preferred by novices but now testing has

taken a center stage in all types of software development.

Large number of innovations have taken place in testing area,

which requires tester to have good knowledge in test

techniques.

How many Latent Errors? 85% errors are removed at

the end of a typical testing process. Why not more? All

practical test techniques are heuristics. They help to reduce

bugs but not guarantee complete bug removal. Removal of

100% of bugs not possible.

Evolution of Test Automation

As showed in diagram Test Case design and

Execution is manual until 1990. More or less manual. After

1990 test tools appeared. Capture and replay tool as the tester

input test cases captures test input. As the tester, input

captures the result. Next time it automatically repeated. It is a

big help for testing in Regression testing.

Another category of tool is called Scripting. Testers

need to write Test cases as program. Advantage is Scripting

type is more reusable. Initially it may take more time for

writing script it is more reusable.

Fig2: Evolution of Test Automation

TESTING DESIGN TECHNIQUE

Testing design Technique is a method to derive effect

test cases from all possible test cases. Categorized into

 Black Box test Design and

 White Box Test Design

Black Box test Design: Derives test cases from

functional specification of the software. Focused on the

behavior on the Software on efficiency of the performance. In

this not focused on the structural design. Means tester focused

only on the input and output of the software and not on the

how input and output is generated. It facilitates testing

communication amongst modules through integration testing

As a customer, what input is giving and what is the

expected output. It can be applied on both functional and non-

functional mode of software testing such as performance and

Scalability. It is also used in Regression testing.

Fig3: Black Box test Design

How to Perform Black Box testing:

Generic steps followed to carry out Black Box Testing

1) Initially requirements and specification of the system

are examined.

2) Tester chooses valid inputs to check whether

application under test processes them correctly. In

addition, some invalid inputs are chosen to verify that

the application or SUT is able to detect them.

3) Tester determines expected output for all those input.

4) Software testers creates Test cases.

5) The Test cases are executed.

6) Software tester compares the actual outputs with the

expected outputs.

7) Defects if any are fixed and re-tested.

Black Box Test Design Techniques are:

1) Equivalence Partitioning

2) Boundary Value Analysis

3) Decision Table

4) State Transition

5) Exploratory Testing

6) Error Guessing

7) Combinatorial testing

Equivalence Partitioning

Test cases are divided into set of logical groups

called partition, which exhibits similar behavior when

processed. Each Partition covers specific aspect of the

application. No need to create Test cases covering all the

condition. Instead, one Test case from each condition is tested.

It saves lot of time. For example, Consider User name

attribute allow numeric value dividing into logical groups

1) Alphabet—one logical group

2) Numerical—One logical group

One Test case need to add from Alphabet and another

from Numerical logical group. No need to create to cover all

test cases. One Test case is derived from each group.

Need to test only one condition from each partition.

This is because we are assuming that all the condition works

in the same manner. If one condition from partition works then

all the condition in the partition works.

Boundary Value Analysis

 To access the input at the boundary of each

equivalence partition we use this technique. It helps to find

more number of defects. For example: If we want to test a

field which should accept only currency more than 100 and

less than 200 then we take the boundaries as 100 minus

1,100,100 Plus 1, 200 minus 1, 200, 200 plus 1. While testing

design the test case we just use 99,100,101,199,200 and 201.

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1903I62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 420

Decision Table

This technique is also called as Cause- effect Table.

It is good for functionality, which logically has relationship

between inputs that is if-else logic. This helps to find

combinations of input. Test cases are identified by considering

Conditions as input and Actions are output.

State Transition

Here Test cases are selected from an

application where different system transition needs to

check. It is applied when an application gives a

different output for the same input, depending on

earlier stage. For e.g. Traffic Light will change

sequence when cars are moving or waiting.

Exploratory Testing

 Domain Experts do this type of testing.

Testing is done by exploring application without

knowledge of requirements. This is a good technique

for testers to explore and learn application of the

system. High severity bugs are found in this type of

testing.

Error Guessing

Bugs are detected based on prior experience

of testers. No specific rules are followed. It is

unplanned testing. Some of the examples are

submitting a form without entering values in the

mandatory field.

Combinatorial Testing

It is another Black box testing. The behavior

of the program may be affected by many factors such

as input parameter, Environment configuration and

State variables. Equivalence partitioning and special

value testing is difficult to design test cases, when

number of parameters are more. Also sometimes, we

have environmental configuration effect the test

result. For e.g. program, set in expert mode or novis

mode program behaves differently. We might have

other state variables, which may affect different

components of the program.

Equivalence partitioning of input variable

identifies the possible types of input values requiring

different processing. If the factors are more than two

or three, it is impractical to test all the possible

combinations of values of all factors.

In the above case, it is difficult to design test

case by using Equivalence partitioning. Sometimes

there are many Boolean variables in User interface

and controller application. For e.g.: Font setting in

PowerPoint software, there are number of values

such as depending on the options we select such as

Small Caps, All Caps , Super Script, Subscript etc.,

Font size, Font style and color etc. Therefore, font

looks different.

For eg: Font Style is Italic, Size is 34, colour is Red,

All caps is ON, and Superscript is ON. For this situation how

to get Equivalence, class partitioning? It becomes difficult.

Fig: User Interface of Font setting in PowerPoint

Fig4: Font setting in PowerPoint software

Let us look into CT. In the above example some

parameters are directly input, some parameters are state

parameter variables which we need to test.

Several type of combinatorial testing:

 Decision table based testing

 Cause effect graphing

 Pairwise testing

Decision table Based Testing:

It is applicable to requirements involving Conditional

actions. It can be automatically translated into code. In the

below decision table, Conditions are input parameters. Actions

are output and Rules are test cases. Each column represents

Test case.

For example: Policy for charging customer for certain

inflight services: If flight is more than half-full and ticket cost

is more than Rs.3000 free meals are served unless it is a

domestic flight. The meals are charged on all domestic flights.

Fig5: Decision table for charging customer for certain

inflight services

A free Meal is served free only when it is more than half-full,

more than Rs.3000 per seat and it should not be a domestic

flight. Serve meals are served when more than half-full and

ticket cost is less /more than Rs.3000 and irrespective of

domestic flight or not. However, not free meal. Hence, each

column becomes test case. For N parameter and if the

parameter is Boolean then number of Test Cases 2N

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1903I62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 421

Some of

the

parameter

are do not

care. We

can remove

redundant test cases.

Fig 6: Eliminating Redundant Test cases

Hence, the final solution is as given below:

 Guidelines and Observation: Decision table testing is

most appropriate for programs :

 There is lot of decision-making.

 There are important logical relationship among input

variables.

 There are calculations involving subsets of input

variables.

 There are cause and effect relationship between input

and output.

 There is complex computation logic.

Limitation of Decision Table method: Decision table

cannot scale up very well. If the number of parameter are, less

we can use this method. If number of parameter is around 30

and each parameter has three values then it is difficult to

design Decision Table method. It creates combinatorial

explosion problem. To overcome from these Cause-Effects

graphing technique is introduced.

Cause-Effects graph

It explores combination of possible inputs. Specific

combination of inputs are called as causes and output are

called as affects. Let us see how it avoids combinatorial

explosion problem?

Here combination are represented as nodes of a cause

effect graph. The graph also include constraints and a number

of intermediate nodes linking causes and effects.

Cause-Effect graph example

1) If depositing less than rupees 1lakh rate of interest:

6% for deposit up to 1 year

7% for deposit over 1 year but less than 3 years

8% for deposit 3 years and above

2) If depositing more than rupees 1lakh rate of interest:

7% for deposit up to 1 year

8% for deposit over 1 year but less than 3 years

9% for deposit 3 years and above

Here first we need to identify the cause and effects

Fig 7: To identify the cause and effects

Cause-Effect Graphing:

Here causes are the different inputs, we have five

inputs in the above example and can be represented in the

below diagram. c1 to c5 are the different inputs. e10, e20, e30,

e40, e50, e60 are the intermediate nodes. e1, e2, e3, e4 are

outputs.

Fig 8: Cause-Effect Graphing

From this chart it is easy to develop decision table,

the below fig represents the decision table. Here each column

represents a test case. It is very simple technique to come up

with decision table avoid exponential combinations of test

cases. Decision table derived from the Cause-Effect graph:

Fig 9: Pair-wise Testing

It is one more Black box testing when the number of

input is large, also called as all pair testing. It is that fault is

caused by interactions among a few factors. When many

parameters has Boolean values for ex, as given in the below

font

Fig10: Display setting in Word software

Causes Effects

c1:Deposit<1year e1:Rate 6%

c2:1year<deposit<3year e2:Rate 7%

c3:Deposit>3years e3:Rate 8%

c4:Deposit<1lakh e4:Rate 9%

c5:Deposit>=1lakh

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1903I62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 422

In the fig10, we could see many binary combinations.

In combinatorial testing all possible combinations are

generated. It is often, the fault is caused by interactions among

a few factors. Combinatorial testing can dramatically reduce

the number of test cases, but remains effective in terms of

fault detection. Researchers are experimented with large

number of software’s and found that all bugs that found out if

we consider two to six combinations. So if we have 40 input

variables. For ex p1…p40 and each parameter takes two

values, for exhaustive testing we need to execute 240 test

cases. It is found experimentally all the bugs can be detected

using all-pair testing, i.e. two-way testing to six-way testing. It

is proved that in two-way testing 80% of the bugs are

detected, in the three-way testing 90% of the bugs are detected

by 4 or 5 way testing all the bugs have been detected. Hence,

no need to consider all 240 test cases. Why pair-wise testing

works is that if fault is caused by interactions among few

factors. One test case covers many pair values. Number of

Test cases required much less generating pairwise

combination, which drastically reduces. If we consider all pair

wise values then number of test cases may 10 or 12. Tools are

available.

Fault Model: A T-way interaction fault is triggered

by a certain combination of t input vales. A simple fault is 1

way fault. Pairwise fault is a t-way fault where t=2. In

practice, a majority of software faults consist of simple and

pairwise.

Single-mode Bugs: Simplest bugs are single-mode

faults. It occurs when one option causes a problem regardless

of the other settings. For e.g. A printout is always is smeared

when you choose the duplex option in the print dialog box.

Double-mode faults: It occurs when two options are

combined. For example, the printout is smeared only when

duplex is selected and the printer selected is model 394.

Multi-Mode faults: It occurs when three or more

settings produce the bug. This is the type of problems that

make complete coverage seem necessary. Example of

Pairwise Fault: Analysis of Program for Pairwise Technique:

Below is the program, which has 3 values. It checks if

Programmer missed to write a statement x==x2 and y==y2.

Expected Result:

 When x=x1andy=y1==>f(X,Y,Z)- g(X,Y)

 When x=x2,y=y2==>f(X,Y,Z)+g(X,Y)

It is another example where Android Smart phone

testing is done for different environmental variables. If you

consider these variables, there are 172,800 combinations of

Test cases.

Can we have simple algorithm? To generate pair wise

test cases. Generating optimal Test cases is hard problem. Few

algorithm genetically algorithm and evolutionary algorithm

can be used.

Android Smart Phone Testing: Exhaustive Combination

=3*3*4*3*5*4*4*5*4=172 800 Combinations

Fig11: Android Smart Phone Testing

Fig12: Output of Pair wise testing data when

interaction level t=2

Application of Combinatorial Testing:

Combinatorial Testing research is widely popular

because it can be applied on various types of different

applications. In 1926, Fisher pioneered interaction tests in

agricultural experiments, assessing the contributions of

different fertilizers to crop yield in the context of soil

heterogeneity and environmental factors such as erosion, Sun

coverage, rainfall and pollen. Exhaustive testing is not

possible with the limited resources for testing. Fisher applied

interaction testing so that every pair of factors affecting the

yield was included exactly once.

In Software testing, Mandl proposed to test Ada

compiler by using pairwise combinatorial testing in 1985.

Generated Test set using Orthogonal Latin Squares. The test

cases generated by using CT can detect more errors than never

detected previously.

http://www.jetir.org/

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1903I62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 423

Combinatorial testing has been applied to other

applications as well. Almezen proposed a method, which

focused on user sequences of GUI objects, and selections,

which collaborate, called Complete Interaction Sequences. It

is also applied for many types of system.

Conclusion and Future Work

In last 20 years, combinatorial testing is widely

studied and applied. Now, it is a well acceptance testing

method and proved ability of detecting interaction failures.

In this paper thorough study of Black Box, testing is

done and advantages of Combinatorial testing strategy

focusing mainly on test case generation. The following areas

of focus in CT research in future.

Identification of good model of the test parameters is

critical to combinatorial testing. We need effective ways to

identify the parameters of SUT, determine the values of each

Parameter and explore the interactions and constraints existing

among the parameters.

Although many methods have been proposed to

generate test suite for Combinatorial Testing, as the problem

of test suite generation is NP-hard, there is room for further

improvement of these test generation methods. In particular, a

good method should support the use of seeding and make full

use of constraints in generating a set of feasible test cases.

We may combine CT with other testing technique

such as prioritization, to ensure most important test cases are

executed early. It can also can combine with metamorphic

testing to solve the oracle problem of CT by automating the

process to determine whether a test passes or fails.

It is one of the most effective software testing

technique as it test a software with multiple configurable

parameters. Moreover, with the assistance of combinatorial

testing one can easily detect interactions faults caused by the

combination of parameters. Another advantage of this type of

testing is that it produces high quality testing at a very cost

effective rate, which not only helps software developers and

testers, but also benefits the organization for which the

product is being developed. Therefore, other benefits of this

approach are handles coverage concerns when defining the

test plan. Allows systematic planning of test. Can be virtually

applied to any software and at different levels of abstractions.

Higher test coverage with better quality assurance. Requires

no access to internal source code SUT. It maximizes the value

of each tested scenario. Significant reduction in the number of

tests. It can control risks and is easy to review.

Software systems are complex and can incur

exponential numbers of possible tests. Any product that is

released without proper testing can be a significant danger to

the organization as well as the user. Therefore, to ensure that

no such situation or problem occurs after the software is

released, software testers perform rigorous testing. Moreover,

they frequently use combinatorial testing in various testing

levels, as it can easily test software with multiple configurable

parameters. In short, combinatorial testing is used to detect

interaction faults caused by the combination of parameters.

The key insight underlying the effectiveness of combinatorial

testing resulted from a series of studies and research done by

NIST from 1999-2004. It an immensely useful approach that

can systematically examine system setting in a manageable

number of test. An approach produces and executes high

quality testing at a very cost effective rate. Furthermore, it is

an effective test planning technique, which can handle

coverage concerns as early as possible. Hence, if a software

engineer wants to get best testing results, they should for sure

execute combinatorial testing at an early stage of Software

Development Life Cycle (SDLC).

ACKNOWLEDGMENTS

I am grateful to Professor Girijamma .H.A for her

comments. I appreciate valuable review comments given by

Roshitha Shenoy, which helped me to revise this article.

REFERENCES

[1]. B.S. Ahmed, Test case minimization approach using fault detection
and combinatorial optimization techniques for configuration-aware

structural testing, Eng. Sci. Technol. Int. J. (2015),
http://dx.doi.org/10.1016/ j.jestch.2015.11.006.

[2]. D.R. Chicago Kuhn, R.N. Kacker, Y. Lei, Practical Combinatorial

Testing, NIST Special Publication, 2010. 800-142.
[3]. Test case minimization approach using fault detection and

combinatorial optimization techniques for configuration-aware

structural testing Bestoun S. Ahmed a
[4]. K.C. Tai, Y. Lie, In-parameter-order: a test generation strategy for

pairwise testing,in: 3rd IEEE International Symposium on High-

Assurance Systems Engineering,Washington, DC, USA, 1998, pp.
254–261.

[5]. V.V. Kuliamin, A. Petoukhov, A survey of methods for constructing

covering arrays, Programming and Computer Software 37 (2011)
121–146. [34] K. C. Tai

[6]. C. Nie, H. Leung, A survey of combinatorial testing, ACMComput.

Surv. 43 (2011) 1–29.
[7]. S. Dejam, M. Sadeghzadeh, S.J. Mirabedini, Combining cuckoo and

tabu algorithms for solving quadratic assignment problems, Journal

of Academic and Applied Studies 2 (2012) 1–8
[8]. Williams AW. Determination of test configurations for pair-wise

interaction coverage. Proceedings of 13th International Conference on

the Testing of Communicating Systems, Ottawa, Canada, 2000; 59–

74.

[9]. A Survey of Combinatorial Testing CHANGHAI NIE, State Key

Laboratory for Novel Software Technology, Nanjing University.
HARETON LEUNG, Hong Kong Polytechnic University

[10]. B.S. Ahmed, M.A. Sahib, M.Y. Potrus, Generating combinatorial test

cases using simplified swarm optimization (SSO) algorithm for
automated GUI functional testing, Eng. Sci. Technol. Int. J. 17 (4)

(2014) 218–226.

[11]. M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher, "Covering
Arrays of Strength 3," Designs, Codes, and Cryptography, vol. 16, pp.

235-242, 1999.

[12]. M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, "Constructing
Strength Three Covering Arrays with Augmented Annealing," Discrete

Mathematics, vol. 308, pp. 2709-2722, 2008.

[13]. NIST, "Web Site, Automated Combinatorial Testing for Software,
available from http://csrc.nist.gov/groups/SNS/acts, last accessed on

September, 2010."

[14]. C. Nie, B. Xu1, L. Shi1, and G. Dong, "Automatic Test Generation for

N-Way Combinatorial Testing," LNCS, vol. 3712, pp. 203-211, Friday,
September 09, 2005 2005.

[15]. A. W. Williams, J. H. Ho, and A. Lareau, "TConfig Test Tool Version

2.1,"Ottawa, Ontario, Canada, available from
http://www.site.uottawa.ca/~awilliam, last access on March

2010:School of Information Technology and Engineering (SITE),

University of Ottawa, 2003.
[16]. A. W. Williams and R. L. Probert, "A Practical Strategy for Testing

Pair-Wise Coverage of Network Interfaces," in Proceedings of the 7th

International Symposium on Software Reliability Engineering (ISSRE
'96), White Plains, New York, 1996, pp. 246-254.

[17]. A. W. Williams and R. L. Probert, "A Measure for Component

Interaction Test Coverage," in Proceedings of the ACSI/IEEE
International Conference on Computer Systems and Applications

(AICCSA 2001), Beirut, Lebanon, 2001, pp. 304-311.

[18]. MIPOG - An Efficient t-Way Minimization Strategy forCombinatorial
Testing Mohammed I. Younis and Kamal Z. Zamli

[19]. ADVANCED COMBINATORIAL TESTING ALGORITHMS AND

APPLICATIONS by LINBIN YU

[20]. Bush KA. Orthogonal arrays of index unity. Annals of Mathematical

Statistics 1952; 23:426–434

[21]. S. Maity, A. Nayak, M. Zaman, N. Bansal, and A. Srivastav, "An
Improved Test Generation Algorithm for Pair-Wise Testing," in

http://www.jetir.org/
http://dx.doi.org/10.1016/
http://csrc.nist.gov/groups/SNS/acts
http://www.site.uottawa.ca/~awilliam

© 2019 JETIR March 2019, Volume 6, Issue 3 www.jetir.org (ISSN-2349-5162)

JETIR1903I62 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 424

Proceedings of the 14th International Symposium on Software

Reliability Engineering (Fast Abstract ISSRE 2003) Denver,

Colorado: Chillarege Press, 2003
[22]. B. Garvin, M. Cohen and M. Dwyer, "Evaluating Improvements to a

Meta-Heuristic Search for Constrained Interaction Testing," Empirical

Software Engineering (EMSE), vol. 16, no. 1, pp. 61-102, 2011. .

[23]. Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,

"IPOG/IPOG-D: Efficient Test Generation for Multi-way

Combinatorial Testing," Software Testing, Verification, and
Reliability, vol. 18, pp. 125-148, 2008.

[24].
[25]. Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, "IPOG: A

General Strategy for T-Way Software Testing," in Proceedings of the

14th Annual IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems (ECBS2007), Tucson, AZ,
2007, pp. 549-556.

[26]. M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn,

"Refining the In-Parameter-Order Strategy for Constructing Covering
Arrays," Journal of Research of the National Institute of Standards

and Technology, vol. 113, pp. 287-297., October 2008 2008.

[27]. M. I. Younis, K. Z. Zamli, M. F. J. Klaib, Z. C. Soh, S. C. Abdullah, and
N. A. M. Isa, "Assessing IRPS as an Efficient Pairwise Test Data

Generation Strategy," International Journal of Advanced Intelligence

Paradigms (IJAIP), vol. 2, pp. 90-104, 2010.
[28]. D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, "The

Combinatorial Design Approach to Automatic Test Generation," IEEE

Software, vol. 13, pp. 83-88, 1996.
[29]. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The

AETG System: An Approach to Testing based on Combinatorial

Design," IEEE Transactions on Software Engineering, vol. 23, pp.
437–443, 1997.

[30]. K. Burr and W. Young, "Combinatorial Test Techniques: Table Based

Automation, Test Generation and Code Coverage," in Proceedings of
the International Conference on Software Testing Analysis & Review

(STAR), San Diego, CA, 1998, pp. 503-513.

[31]. [Grindal M, Offutt J, Andler SF. Combination testing strategies—A
survey. Journal of Software Testing, Verification and Reliability 2004;

5(3):167–199.

[32]. Cohen MB, Colbourn CJ, Gibbons PB, Mugridge WB. Constructing
test suites for interaction testing. Proceedings of 25th IEEE

International Conference on Software Engineering, Portland, Oregon,

2003; 38–48.
[33]. Kuhn DR, Reilly MJ. An investigation of the applicability of design of

experiments to software testing. Proceedings of 27th NASA/IEEE

Software Engineering Workshop, Greenbelt, Maryland, 2002; 91–95.
[34]. Kuhn DR, Wallace D, Gallo A. Software fault interactions and

implications for software testing. IEEE Transactions on Software

Engineering 2004; 30(6):418–421.
[35]. IPOG/IPOG-D: efficient test generation for multi-way combinatorial

testing Yu Lei1,∗, †, Raghu Kacker2, D. Richard Kuhn2, Vadim
Okun2 and James Lawrence3

http://www.jetir.org/

