STRONG BI-IDEALS IN C₁ AND C₂ NEAR SUBTRACTION SEMIGROUPS

P.ANNAMALAI SELVI¹

¹Research Scholar

Dr.S.JAYALAKSHMI²

²Head and Associate Professor

Department of Mathematics, Sri Parasakthi College for Women, Courtallam, Tamilnadu. Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India.

Abstract:

In this paper we introduce the notation of strong bi-ideals in C_1 and C_2 near-subtraction semigroup and study some of their properties.

Key words:

Near subtraction semigroups, X.S.I, GNF, strong bi-ideals in C_1 and C_2 near-subtraction semigroup.

1. Introduction

B.M.Schein [8] considered systems of the form (X; o;/), where X is a set of functions closed under the composition "o" of functions (and hence (X; o) is a function semigroup) and the set theoretic subtraction "/" (and hence (X;/) is a subtraction algebra in the sense of [1]). Y.B.Jun et al[5] introduced the notation of ideals in subtraction algebras and discussed the characterization of ideals. For basic definition one may refer to Pilz[7]. Mahalakshmi et al. [6] studied the notation of bi-ideals in near subtraction semigroups. Annamalai Selvi et al. [2] studied the notation of bi-ideals in C_1 and C_2 - near subtraction semigroups. We investigate some basic results, examples and properties.

2.Preliminaries

Definition:2.1. A nonempty set X together with binary operations "–" is said to be **subtraction algebra** if it satisfies the following conditions

(i) x - (y - x) = x. (ii) x - (x - y) = y - (y - x). (iii) (x - y) - z = (x - z) - y, for every x, y, $z \in X$.

Definition:2.2. A nonempty set X together with two binary operations "–" and "•" is said to be a **subtraction semigroup** if it satisfies the following conditions

(i) (X, -) is a subtraction algebra.

(ii) (X, \bullet) is a semigroup.

(iii) X(y-z) = xy - xz and (x-y) z = xz - yz, for every $x, y, z \in X$.

JETIR1903K12 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 727

Definition:2.3. A non empty set X together with two binary operations "-" and "." is said to be a right near

subtraction semigroup if it satisfies the following conditions

- (i) (X, -) is a subtraction algebra.
- (ii) (X, \bullet) is a semigroup.
- (iii) (x y) z = xz yz, for every $x, y, z \in X$.

It is clear that 0x = 0, for all $x \in X$. Similarly we can define a left near-subtraction semigroup. Here after a near-subtraction semigroup means only a right near-subtraction semigroup.

Definition:2.4. A nonempty subset S of a subtraction semigroup X is said to be a subalgebra of X, if $x - y \in C$

S, for all $x, y \in S$.

Definition:2.5. Let (X, -, .) be a near – subtraction semigroup. A nonempty subset I of X is called

(i) A left ideal if I is a subalgebraof(X, -) and $xi - x (y - i) \in I$ for all x, $y \in X$ and $i \in I$.

(ii) A **right ideal** I is a subalgebraof(X, -) and IX \subseteq I.

(iii) If I is both a left and right ideal then, it is called a **two-sided ideal** (simply, ideal) of X.

Definition:2.6. A near subtraction semigroup X is said to be **Zero** – symmetric if x0 = 0 for every $x \in X$.

Definition:2.7. An element $e \in X$ is said to be **idempotent** if for each $e \in X$, $e^2 = e$.

Definition:2.8. A subalgebra Q of (X, -) is said to be a **quasi-ideal** of zero-symmetric near subtraction semigroup of X if $QX \cap XQ \subseteq Q$.

Definition: 2.9. A subalgebra B of (X, -) is said to be a **bi-ideal** of zero-symmetric near subtraction semigroup of X if $BXB \subseteq B$.

Definition:2.10. A bi-ideal B of (X, -) is said to be a strong bi-ideal of X if $XB^2 \subseteq B$.

Definition:2.11. We say that X is an s (s') near subtraction semigroup if $a \in Xa$ (aX),

for all $a \in X$.

Definition:2.12. A near subtraction semigroup X is said to be **sub commutative** if aX = Xa, for every $a \in X$.

Definition:2.13. A near subtraction semigroup X is said to be **left bi-potent** if $Xa = X a^2$, for every $a \in X$.

Definition:2.14. An element $a \in X$ is said to be **regular** if for each $a \in X$, a = aba, for some $b \in X$.

Definition:2.15. An element $a \in X$ is said to be **strongly regular** if for each $a \in X$, $a = b a^2$, for some $b \in X$.

Definition:2.16. A non empty subset of X is called

- (i) a **left X-subalgebra** of X is a subalgebra of (X, -) and $XA \subseteq A$.
- (ii) a **right X-subalgebra** of X is a subalgebra of (X, -) and $AX \subseteq A$.
- (iii) an invariant X- subalgebra of X if A is both left and right X-subalgebras of X.

Definition:2.17. A near subtraction semigroup X is called an **X.S.I** (**X**- **subalgebra invariance**) near subtraction semigroup if every left X – subalgebra of X is also a right X- subalgebra.

Definition:2.18. A near subtraction semigroup X is called a **generalized near-field (GNF**) if for each $a \in X$ there exists a unique $b \in X$ such that a = aba and b = bab.

Definition:2.19. X is said to be a near subtraction semigroup of left permutable (Type I) if

(ab) c = (ba) c, for all $a, b, c \in X$.

Definition:2.20. X is said to be a near subtraction semigroup of right permutable (Type II) if

a (bc) = a (cb), for all $a, b, c \in X$.

3. Strong Bi-ideals in C_1 and C_2 near-subtraction semigroup

In this section we define strong bi-ideals in C_1 and C_2 near-subtraction semigroups and give some examples of these new concepts.

Definition:3.1. Let X be a right near subtraction semigroup. If for all $x \in X$, xX = xXx then we say X is a C_1 -near subtraction semigroup.

Definition:3.2. Let X be a right near subtraction semigroup. If for all $x \in X$, Xx = xXx then we say X is a C_2 - near subtraction semigroup.

Example:3.3. Let $X = \{0,a,b,c\}$ be the Klein's four group. Define subtraction and multiplication in X as follows:

_	0	a	b	C	•	0	Γ
0	0	0	0	0	0	0	
a	a	0	a	0	a	0	
b	b	b	0	0	b	0	
c	c	b	a	0	c	0	

b

0 0

0 b

0

0 b

С

0

Here (X, -, .) is a near subtraction semigroup (see [[7], pg.408] scheme15 (0, 13, 0, 13)).

Clearly { 0, b } is a strong bi-ideal of X.

Remark:3.4. Every strong bi-ideal is bi-ideal. But the converse not true.

Example 3.5. Let $X = \{0, 1, 2\}$ in which subtraction and multiplication are defined by

							_
-	0	1	2	•	0	1	4
0	0	0	0	0	0	0	
1	1	0	2	1	0	0	1 1
2	2	0	0	2	0	0	

Here (X, -, .) is a near subtraction semigroup (see [[7], pg.407] scheme 2(0, 0, 1)).

Clearly { 0, 2} is bi-ideal. But not strong bi-ideal, since X { 0, 2 } = X $\not\subset$ { 0, 2 }.

Theorem:3.6. Let X be a s, C_1 - near subtraction semigroup. If X is strongly regular if and only if B =*XB*², for every strong bi-ideal B of X.

Proof: Let B be a strong bi-ideal of X and let $b \in B$.

Since X is strongly regular, there exists $x \in X$ such that $b = Xb^2 \in XB^2$, for some $b \in B$.

(i.e) $B \subseteq XB^2$. From the definition of a strong bi-ideal $XB^2 \subseteq B$.

Therefore $B = XB^2$, for every strong bi-ideal B of X.

Conversely, let $b \in X$ and Xb is a strong bi-ideal of X.

Let $b \in Xb = X (Xb)^2 = XXbXb = XbXb = XbXbb \in Xb^2$. Therefore $b \in Xb^2$.

Hence X is strongly regular.

Theorem:3.7. Let X be a s, C_1 - near subtraction semigroup then X is left bi-potent if and only if $B = XB^2$, for every strong bi-ideal B of X.

Proof: Every left bi-potent is strongly regular and by Theorem: 3.6, the result is true.

Theorem:3.8. Let X be a s, C_1 - near subtraction semigroup then B = BXB, for every

bi-ideal B of X if and only if $B = XB^2$.

Proof: Assume that B = BXB, for every bi-ideal B of X.

Let $x \in B = BXB$ then $x = bx_1b \in bXb = bXbb \in XXB^2 \subseteq XB^2$, for some $b \in B$ and $x_1 \in X$. By the definition of strong bi-ideal $XB^2 \subseteq B$. Therefore $B = XB^2$.

Conversely, assume that $B = XB^2$, for every strong bi-ideal B of X.

By Remark: 3.14 [2], X is strongly regular.

By Theorem: 3.15 [2], hence B = BXB, for every bi-ideal B of X.

Proposition:3.9. Let X be a C_1 - near subtraction semigroup and B be a strong bi-ideal of X then B is a quasi-ideal of X.

Proof: Let $X \in BX \cap XB$ then $x = b_1 n_1 = n_2 b_2$, for some $b_1, b_2 \in B$ and $n_1, n_2 \in X$

Since X be a C_1 - near subtraction semigroup. By remark 3.14[2], X is strongly regular,

 $b_1 = c b_1^2$ and $b_2 = d b_2^2$, for some c, $d \in X$.

Hence $x = b_1 n_1 = (c b_1^2) n_1 = c b_1 b_1 n_1 = c b_1 n_2 b_2 = c b_1 n_2 (d b_2^2) \in XB^2 \subseteq B$.

Therefore $x \in B \implies BX \cap XB \subseteq B$, hence B is a quasi-ideal of X.

Theorem:3.10. Let X be a C_1 - near subtraction semigroup and B is a bi-ideal of X. If B is a strong bi-ideal of X if and only if B is a quasi-ideal of X.

Proof: Only if part follows from Proposition:3.9.

Conversely, assume that B is a quasi-ideal of X then B is a bi-ideal of X.

If $x \in XB^2$ then $x = n b^2 = nbb \in Xb \implies x \in XB$.

Since X is a C_1 - near subtraction semigroup, $x \in bX = bXb \in BX \Rightarrow x \in BX$.

Therefore
$$x \in BX \cap XB \subseteq B \implies x \in B$$
. Therefore $XB^2 \subseteq B$.

Hence B is a strong bi-ideal of X.

Theorem:3.11. Let X be a C_2 be a near subtraction semigroup, then B is a bi-ideal of X if and only if B is a strong bi-ideal of X.

Proof: If part is trival.

Suppose B is a bi-ideal of X.Let $x \in XB^2$ then $x = n b^2 = nbb \in Xb = bXb \in BXB \subseteq B$

Since X be a C_2 be a near subtraction semigroup. Therefore $XB^2 \subseteq B$.

Hence B is a strong bi-ideal of X.

Theorem:3.12. Let X be a s- right permutable C_1 - near subtraction semigroup if and only if X is strongly regular.

Proof: Assume that X is strongly regular. Therfore X is regular, for every $x \in X$, x = xax

Let $y \in xX$ then $y = xx_1 = xax_1 = xax_1 x \in xXXx \subseteq xXx$.(where $x_1 \in X$ and X is right permutable). Therfore $y \in xXx \Longrightarrow xX \subseteq xXx$(1)

Obviously $xXx \subseteq xX$ (2)

From (1) and (2), we get xX = xXx (i.e) X is a C_1 - near subtraction semigroup.

Conversely, assume that X is a C_1 - near subtraction semigroup (i.e) xX = xXx.

Let $x \in xX = xXx = xXxx = xX\chi^2 \in XX\chi^2 \subseteq X\chi^2$. Therefore $x \in X\chi^2$.

Hence X is strongly regular.

Theorem:3.13. Let X be a s- left permutable C_2 - near subtraction semigroup if and only if X is strongly regular.

Proof: Assume that X is strongly regular. Therfore X is regular, for every $x \in X$, x = xax.

Let $y \in Xx$ then $y = x_1 x = x_1xax = xx_1ax \in xXXx \subseteq xXx$.(where $x_1 \in X$ and X is left permutable). Therfore $y \in xXx \implies Xx \subseteq xXx$(1)

Obviously $xXx \subseteq Xx$ (2)

From (1) and (2), we get xX = xXx (i.e) X is a C_2 -near subtraction semigroup.

Conversely, assume that X is a C_2 - near subtraction semigroup (i.e) Xx = xXx.

Let $x \in Xx = xXx = xxXx$. Then $x = xx_1x = x_1x^2 \in XXx^2 \subseteq Xx^2$. Therefore $x \in Xx^2$.

Hence X is strongly regular.

Theorem: 3.14. Let X be a left permutable s- near subtraction semigroup then the following are equivalent.

- (i) $XB^2 = B$, for every strong bi-ideal of X.
- (ii) B = BXB for every bi-ideal B of X.
- (iii) X is regular and X is a X.S.I near subtraction semigroup.
- (iv) X is C_1 -near subtraction semigroup and for all left X-subalgebra M_1 and M_2 of X, $M_1 \cap M_2 = M_1 M_2$.
- (v) $Xx \cap Xy = Xxy$, for all $x, y \in X$.
- (vi) X is left bi-potent.
- (vii) $A = \sqrt{A}$, for every left X-subalgebra A of X.

(viii) X is strongly regular.

- (ix) $aXa = Xa = Xa^2$ for all $a \in X$.
- (x) X is a C_2 near subtraction semigroup.
- (xi) X is regular and X is GNF.

Proof: (i) \Rightarrow (ii) Assume that $XB^2 = B$, for every strong bi-ideal of X.

By Proposition: 5.1.13[6], hence B= BXB, for every bi-ideal B of X.

 $(ii) \Rightarrow (iii)$ Assume that B = BXB for every bi-ideal B of X.

Let Xa is a bi-ideal of X.

Let $a \in Xa = XaXXa \subseteq XaXa$, then $a = x_1ax_2a = x_1x_2a^2 \in XXa^2 \subseteq Xa^2 \implies a \in Xa^2$.

Therefore $a = x_1 a^2 = x_1 a a = a x_1 a \in a X a$ (Since X is a left permutable)

Therefore X is regular.

If A is any left X-subalgebra of X, then by Proposition:414[6], A is an ideal and thus A

- is an invariant X-subalgebra of X. Therefore X is a X.S.I near subtraction semigroup.
- (iii) \Rightarrow (iv) Since X is regular. Therefore X is a C_1 -near subtraction semigroup.

let $x \in M_1 \cap M_2$, for some $x \in M_1$ and $x \in M_2$.

Let $x \in xX = xXx$ [since X is a C_1 -near subtraction semigroup]

 $= xXxx \in M_1XXM_2 \subseteq M_1M_2$

Therefore $M_1 \cap M_2 \subseteq M_1 M_2$ (1)

Let $x \in M_1M_2$ then x = yz, for some $y \in M_1$ and $z \in M_2$.

Now $x = yz \in yX = yXy \in X$ $M_1 \subseteq M_1$ [since X is a C_1 -near subtraction semigroup]

Also $x = yz \in X M_2 \subseteq M_2$ [since X is a left X- subalgebra]

Therefore $M_1M_2 \subseteq M_1 \cap M_2$ (2)

From (1) and (2), hence $M_1 \cap M_2 = M_1 M_2$.

 $(iv) \Rightarrow (v)$ Let $M_1 = Xx$ and $M_2 = Xy$, for some $x, y \in X$.

JETIR1903K12 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 733

By assumption $Xx \cap Xy = XxXy$. Now $Xx = Xx \cap X = XxX \implies Xxy = XxXy$.

Therefore $Xx \cap Xy = Xxy$.

 $(\mathbf{v}) \Rightarrow (\mathbf{vi})$ Since X is a s- near subtraction semigroup.

Let $a \in Xa = Xa \cap Xa = Xaa = Xa^2 \implies Xa \subseteq Xa^2$. Obviously $Xa^2 \subseteq Xa$.

Hence X is left bi-potent.

 $(\mathbf{vi}) \Rightarrow (\mathbf{vii})$ Clearly $A \subseteq \sqrt{A}$. Let $a \in \sqrt{A}$. Then $a^n \in A$, for some positive integer n.

Also $Xa = X a^2 = X a^n$ is a left bi-potent - near subtraction semigroup.

Since X is a s- near subtraction semigroup. Let $a \in Xa = Xa^n \implies a = ba^n \in XA \subseteq A$ and hence $a \in A$, $\sqrt{A} \subseteq A$. Therefore $A = \sqrt{A}$, for every left X-subalgebra A of X.

(vii)
$$\Rightarrow$$
 (viii) Let $0 \neq a \in X$. Now $a^3 \in Xa^2$ so that $a \in \sqrt[3]{Xa^2} = Xa^2$.

Therefore X is strongly regular.

(viii) \Rightarrow (ix) Let X be strongly regular. Then Xa = Xa^2 , X is a left permutable s- near subtraction semigroup, $Xa^2 = aXa$. Therefore Xa = $Xa^2 = aXa$.

 $(ix) \Rightarrow (x)$ Assume that $aXa = Xa = Xa^2$ for all $a \in X$.

Therefore X is a C_2 near subtraction semigroup, Xa = aXa.

 $(\mathbf{x}) \Rightarrow (\mathbf{x})$ Since X is a C_2 near subtraction semigroup, $\mathbf{a} \in \mathbf{X}\mathbf{a} = \mathbf{a}\mathbf{X}\mathbf{a}$, for $\mathbf{a} \in \mathbf{X}$.

Therefore X is regular.

Let $a \in Xa = aXa$ then $a = ax_1a = x_1a^2 \in Xa^2$. Therefore X is strongly regular.

Then by Lemma:3.17[2], eXe = eX, for every $e \in E$. Since X is C_2 - near subtraction semigroup. Therefore Xe = eXe and so eX = eXe = Xe for every $e \in E$.

Again by the Lemma: 3.18 [2], $E \subseteq C(X)$. Hence X is GNF.

 $(xi) \Rightarrow (i)$ Assume that X is GNF.

Then X is regular and sub commutative near subtraction semigroup.

Therefore $XB^2 = B$, for every strong bi-ideal of X.

© 2019 JETIR April 2019, Volume 6, Issue 4

REFERENCES

- [1]. J. C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.
- [2]. P.Annamalai Selvi and Dr.S.Jayalakshmi, Bi-ideals in C_1 and C_2 near-subtraction semigroups, JETIR(2019), volume 6, Issue 1, no.821-829.
- [3]. P.Dheena and G.SatheeshKumar,On strongly regular near subtraction semigroups, commun.Korean Math. Soc. 22(2007), No.3, pp. 323-330.
- [4]. S.Jayalakshmi A study on Regularities in near rings, PhD thesis, ManonmaniamSundaranarUniversity, 2003.
- [5]. Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65(2007), no.1, 129-134.
- [6]. V.Mahalakshmi, A study on Regularities in near subtraction semigroups, PhD thesis, Sri Parasakthi college for Women, 2016.
- [7]. Pilz Gunter, Near-rings, North Holland, Amsterdam, 1983.
- [8]. B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.

