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1. Introduction 

B.M.Schein [8] considered systems of the form (X; o;/), where X is a set of functions closed under the 

composition “” of functions (and hence (X; o) is a function semigroup) and the set theoretic subtraction “/” (and 

hence (X;/) is a subtraction algebra in the sense of [1]). Y.B.Jun et al[5] introduced the notation of ideals in 

subtraction algebras and discussed the characterization of ideals. For basic definition one may refer to Pilz[7]. 

Mahalakshmi et al. [6] studied the notation of bi-ideals in near subtraction semigroups. Annamalai Selvi et al. [2] 

studied the notation of  bi-ideals in 𝐶1 and 𝐶2 - near subtraction semigroups. The purpose of this paper is to 

introduce the notation of strong bi-ideals in 𝐶1 and 𝐶2near-subtraction semigroups. We investigate some basic 

results, examples and properties. 

2.Preliminaries 

Definition:2.1. A nonempty set X together with binary operations ‘‘−’’ is said to be subtraction algebra if it 

satisfies the following conditions 

(i ) x − (y − x) = x. 

(ii) x − (x – y ) = y − (y – x). 

(iii) (x – y) – z = (x – z) – y, for every x, y, z X. 

 

Definition:2.2.  A nonempty set X together with two binary operations ‘‘−’’ and ‘‘•’’ is said to be a subtraction 

semigroup if it satisfies the following conditions 

(i) (X, −)  is a subtraction algebra.       

(ii) (X, •)  is a semigroup. 

(iii) X (y − z) = xy – xz and (x−y) z = xz – yz,  for every x, y, z ∈ X. 
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Definition:2.3. A non  empty set X together with two binary operations ‘‘−’’and‘ ‘•’ ’is said to be a right near 

subtraction semigroup if it satisfies the following conditions 

            (i) (X, −)  is a subtraction algebra.    

           (ii) (X, •)  is a semigroup. 

           (iii) (x − y) z = xz – yz,  for every x, y, z X. 

 

It is clear that 0x = 0, for all xX. Similarly we can define a left near- subtraction semigroup. Here after a 

near–subtraction semigroup means only a right near-subtraction semigroup. 

Definition:2.4. A nonempty subset S of a subtraction semigroup X is said to be a subalgebra of X, if x – y  

S, for all x, y  S. 

Definition:2.5. Let (X, - , . ) be a near – subtraction semigroup. A nonempty subset I of X is called  

 (i)A left ideal  if I is a subalgebraof(X , – ) and xi – x ( y – i) ∈ I for all x , y  Xand  i∈ I . 

(ii) A right ideal I is a subalgebraof(X , – ) and IX   I. 

 (iii) If  I  is both a left and right ideal then, it is called a two-sided ideal (simply, ideal) of X. 

Definition:2.6. A near subtraction semigroup X is said to be Zero – symmetric if x0 = 0 for every  𝑥 ∈ X. 

Definition:2.7. An element e  X is said to be idempotent if for each e  X, 𝑒2 =  e. 

Definition:2.8. A subalgebra Q of (X , – ) is said to be a quasi-ideal of zero-symmetric near subtraction 

semigroup of X if QX∩XQ ⊆ Q. 

Definition: 2.9.  A subalgebra B of (X , – ) is said to be a bi-ideal of zero-symmetric near subtraction 

semigroup of X if BXB⊆ B. 

Definition:2.10. A bi-ideal B of  (X , – ) is said to be a strong bi-ideal of X if  𝑋𝐵2 ⊆ 𝐵 . 

Definition:2.11. We say that X is an s (𝒔′) near subtraction semigroup if  a  Xa (aX), 

for all aX. 

Definition:2.12. A near subtraction semigroup X is said to be sub commutative if aX = Xa, for every aX. 

Definition:2.13. A near subtraction semigroup X is said to be left bi-potent if  Xa = X 𝑎2, for every aX. 

Definition:2.14. An element aX is said to be regular if for each aX, a = aba, for some bX. 

Definition:2.15. An element aX is said to be strongly regular if for each aX, a = b 𝑎2, for some bX. 

Definition:2.16. A non empty subset of X is called 

(i) a left X-subalgebra of X is a subalgebra of (X , – ) and XA ⊆ A. 

(ii) a right X-subalgebra of X is a subalgebra of (X , – ) and AX ⊆ A. 

(iii) an invariant X- subalgebra of X if A is both left and right X-subalgebras of X. 
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Definition:2.17. A near subtraction semigroup X is called an X.S.I ( X- subalgebra invariance) near 

subtraction semigroup if every left X – subalgebra of  X is also a right X- subalgebra. 

Definition:2.18. A near subtraction semigroup X is called a generalized near-field (GNF ) if for each aX 

there exists a unique bX such that a = aba and b = bab. 

Definition:2.19. X is said to be a near subtraction semigroup of  left  permutable (Type I) if  

(ab) c =  (ba) c, for all a, b, c  X. 

Definition:2.20. X is said to be a near subtraction semigroup of  right permutable (Type II) if 

 a (bc) = a (cb), for all a, b, c  X. 

 

3. Strong Bi-ideals in 𝑪𝟏 and 𝑪𝟐 near-subtraction semigroup 

In this section we define strong bi-ideals in 𝐶1 and 𝐶2 near-subtraction semigroups and give some examples 

of these new concepts. 

Definition:3.1. Let X be a right near subtraction semigroup. If for all x∈ X,  xX = xXx then   we say X is a 𝐶1- 

near subtraction semigroup.  

 

   Definition:3.2. Let X be a right near subtraction semigroup. If for all x∈ X,  Xx = xXx then  

    we say X is a 𝐶2- near subtraction semigroup.  

 

   Example:3.3. Let X ={0,a,b,c} be the Klein’s four group.Define subtraction and multiplication 

    in X as follows: 

 

 

 

 

 

 

 

 

Here (X, –, . ) is a near subtraction semigroup (see [ [7], pg.408] scheme15 (0, 13, 0, 13 )). 

Clearly { 0, b } is a strong bi-ideal of X. 

Remark:3.4. Every strong bi-ideal is bi-ideal. But the converse not true.  

. 0 a b c 

0 0 0 0 0 

a 0 b 0 b 

b 0 0 0 0 

c 0 b 0 b 

– 0 a b c 

0 0 0 0 0 

a a 0 a 0 

b b b 0 0 

c c b a 0 
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Example 3.5. Let X ={0, 1, 2} in which  subtraction and multiplication are defined by 

 

 

 

 

 

 

Here (X, –, . ) is a near subtraction semigroup ( see [ [7], pg.407] scheme 2( 0, 0, 1 )). 

Clearly { 0, 2} is bi-ideal. But not strong bi-ideal, since X { 0, 2}2 = X ⊄ { 0, 2 }. 

Theorem:3.6. Let X be a s, 𝐶1 - near subtraction semigroup. If X is strongly regular if and only if  B 

=𝑋𝐵2, for every strong bi-ideal B of X. 

Proof: Let B be a strong bi-ideal of X and let b ∈ B.  

Since X is strongly regular, there exists x ∈ 𝑋 such that b =  𝑋𝑏2 ∈ 𝑋𝐵2, for some b ∈ B.  

(i.e)  B ⊆ X𝐵2. From the definition of a strong bi-ideal 𝑋𝐵2 ⊆ B.  

Therefore B = 𝑋𝐵2, for every strong bi-ideal B of X. 

Conversely, let b ∈ X and Xb is a strong bi-ideal of X. 

Let 𝑏 ∈ 𝑋𝑏 = 𝑋 (𝑋𝑏)2 = 𝑋𝑋𝑏𝑋𝑏 = 𝑋𝑏𝑋𝑏 = 𝑋𝑏𝑋𝑏𝑏 ∈ 𝑋𝑏2. Therefore b ∈ X𝑏2. 

Hence X is strongly regular. 

Theorem:3.7. Let X be a s, 𝐶1- near subtraction semigroup then X is left bi-potent if and only if  B = X𝐵2, 

for every strong bi-ideal B of X. 

Proof:  Every left bi-potent is strongly regular and by Theorem:3.6, the result is true. 

Theorem:3.8. Let X be a s, 𝐶1- near subtraction semigroup then B = BXB, for every  

 bi-ideal B of X  if and only if   B = 𝑋𝐵2. 

Proof: Assume that B = BXB, for every  bi-ideal B of X. 

Let 𝑥 ∈ 𝐵 = 𝐵𝑋𝐵 𝑡ℎ𝑒𝑛 𝑥 = 𝑏𝑥1𝑏 ∈ 𝑏𝑋𝑏 = 𝑏𝑋𝑏𝑏 ∈ 𝑋𝑋𝐵2  ⊆ 𝑋𝐵2 ,for some𝑏 ∈ 𝐵 𝑎𝑛𝑑  𝑥1 ∈ 𝑋. By the 

definition of strong bi-ideal 𝑋𝐵2 ⊆ 𝐵 . Therefore B = 𝑋𝐵2. 

 Conversely, assume that B = 𝑋𝐵2 , for every strong bi-ideal B of X.  

By Remark: 3.14 [2], X is strongly regular. 

- 0 1 2  

0 0 0 0  

1 1 0 2  

2 2 0 0  

     

. 0 1 2  

0 0 0 0  

1 0 0 1  

2 0 0 2  
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By Theorem: 3.15 [2], ℎ𝑒𝑛𝑐𝑒 𝐵 = 𝐵𝑋𝐵, for every  bi-ideal B of X. 

Proposition:3.9. Let  X be  a 𝐶1 - near subtraction semigroup and B be a strong bi-ideal of X then B is a 

quasi-ideal of X. 

Proof:  Let 𝑋 ∈ 𝐵𝑋 ∩ 𝑋𝐵 𝑡ℎ𝑒𝑛 𝑥 =  𝑏1 𝑛1 =  𝑛2 𝑏2 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑏1 , 𝑏2 ∈ 𝐵 𝑎𝑛𝑑 𝑛1, 𝑛2 ∈ 𝑋 

Since X be a 𝐶1- near subtraction semigroup. By remark 3.14[2], X is strongly regular, 

𝑏1 = 𝑐 𝑏1 
2 𝑎𝑛𝑑  𝑏2 = 𝑑 𝑏2 

2, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐, 𝑑 ∈ 𝑋. 

𝐻𝑒𝑛𝑐𝑒 𝑥 =  𝑏1 𝑛1 = (𝑐 𝑏1 
2)𝑛1 = 𝑐𝑏1 𝑏1 𝑛1 = 𝑐𝑏1 𝑛2 𝑏2 = 𝑐𝑏1 𝑛2 (𝑑 𝑏2 

2) ∈ 𝑋𝐵2 ⊆ 𝐵. 

Therefore 𝑥 ∈ 𝐵 ⟹ 𝐵𝑋 ∩ 𝑋𝐵 ⊆ 𝐵, hence B is a quasi-ideal of X. 

Theorem:3.10. Let  X be  a 𝐶1 - near subtraction semigroup and B is a  bi-ideal of X. If B is a strong bi-

ideal of X if and only if  B is a quasi-ideal of X. 

Proof:  Only if part follows from Proposition:3.9. 

Conversely, assume that B is a quasi-ideal of X then B is a bi-ideal of X.  

If 𝑥 ∈  𝑋𝐵2 𝑡ℎ𝑒𝑛 𝑥 =  𝑛 𝑏2 = 𝑛𝑏𝑏 ∈ 𝑋𝑏 ⟹  𝑥 ∈ 𝑋𝐵. 

Since X is a 𝐶1 - near subtraction semigroup, 𝑥 ∈ 𝑏𝑋 = 𝑏𝑋𝑏 ∈ 𝐵𝑋 ⇒  𝑥 ∈ 𝐵𝑋. 

Therefore 𝑥 ∈ 𝐵𝑋 ∩ 𝑋𝐵 ⊆ 𝐵  ⟹ 𝑥 ∈ 𝐵. 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑋𝐵2 ⊆ 𝐵.  

Hence B is a strong bi-ideal of X. 

Theorem:3.11. Let X be a 𝐶2 be a near subtraction semigroup, then B is a  bi-ideal of X if and only if  B 

is a strong bi-ideal of X. 

Proof:  If part is trival. 

Suppose B is a bi-ideal of X.Let 𝑥 ∈ 𝑋𝐵2 𝑡ℎ𝑒𝑛 𝑥 = 𝑛 𝑏2 = 𝑛𝑏𝑏 ∈ 𝑋𝑏 = 𝑏𝑋𝑏 ∈ 𝐵𝑋𝐵 ⊆ 𝐵 

Since X be a 𝐶2 be a near subtraction semigroup. Therefore 𝑋𝐵2 ⊆ 𝐵. 

Hence B is a strong bi-ideal of X. 

Theorem:3.12. Let X be a s- right permutable 𝐶1- near subtraction semigroup if and only if X is strongly 

regular. 

Proof: Assume that X is strongly regular. Therfore X is regular, for every x ∈ X, x = xax 
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Let y ∈ xX then y = x𝑥1 = xax𝑥1= xa𝑥1𝑥 ∈ xXXx ⊆ xXx.(where 𝑥1∈ X and X is right permutable). 

Therfore y ∈ xXx ⟹ xX ⊆ xXx………(1) 

Obviously xXx ⊆ xX …………..(2) 

From (1) and (2), we get xX = xXx (i.e) X is a 𝐶1- near subtraction semigroup. 

Conversely, assume that X is a 𝐶1- near subtraction semigroup (i.e) xX = xXx. 

Let x ∈ xX = xXx = xXxx = xX𝑥2 ∈ XX𝑥2 ⊆ X𝑥2. Therefore x  ∈ X𝑥2. 

Hence X is strongly regular. 

Theorem:3.13. Let X be a s- left  permutable 𝐶2- near subtraction semigroup if and only if X is strongly 

regular. 

Proof: Assume that X is strongly regular. Therfore X is regular, for every x ∈ X, x = xax. 

Let y ∈ Xx then y = 𝑥1 x = 𝑥1xax= x𝑥1𝑎𝑥 ∈ xXXx ⊆ xXx.(where 𝑥1∈ X and X is left permutable). 

Therfore y ∈ xXx ⟹  Xx ⊆ xXx………(1) 

Obviously xXx ⊆ Xx …………..(2) 

From (1) and (2), we get xX = xXx (i.e) X is a 𝐶2- near subtraction semigroup. 

Conversely, assume that X is a 𝐶2- near subtraction semigroup (i.e) Xx = xXx. 

Let x ∈ Xx = xXx = xxXx . Then x = xx𝑥1x =x 𝑥1𝑥2 ∈ XX𝑥2 ⊆ X𝑥2. Therefore x ∈ X𝑥2. 

Hence X is strongly regular. 

Theorem:3.14. Let X be a left permutable s- near subtraction semigroup then the following are equivalent. 

(i) 𝑋𝐵2 = 𝐵, for every strong bi-ideal of X. 

(ii)  B = BXB for every bi-ideal B of X. 

(iii) X is regular and X is a X.S.I near subtraction semigroup. 

(iv)  X is 𝐶1-near subtraction semigroup and for all left X-subalgebra 𝑀1 𝑎𝑛𝑑 𝑀2𝑜𝑓 𝑋, 𝑀1 ∩ 𝑀2 =

 𝑀1  𝑀2. 

(v)  Xx ∩ Xy = Xxy, for all x, y ∈ X. 

(vi)  X is left bi-potent. 

(vii) A = √𝐴 , for every  left X-subalgebra A of X. 
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(viii)  X is strongly regular. 

      (ix) aXa = Xa = X𝑎2 for all a ∈ X. 

       (x)   X  is a 𝐶2near subtraction semigroup. 

        (xi) X is regular and X is GNF. 

Proof:   ( i ) ⇒ ( ii ) Assume that 𝑋𝐵2 = 𝐵, for every strong bi-ideal of X. 

   By Proposition: 5.1.13[6], hence B= BXB, for every bi-ideal B of X. 

  ( ii )⇒ ( iii )  Assume that B = BXB for every bi-ideal B of X. 

   Let Xa is a bi-ideal of X.   

   Let a ∈ Xa = XaXXa ⊆ XaXa , then a = 𝑥1𝑎𝑥2𝑎 = 𝑥1𝑥2 𝑎2  ∈ XX𝑎2 ⊆  X𝑎2 ⟹ a ∈ X𝑎2.  

   Therefore a = 𝑥1𝑎2 = 𝑥1𝑎𝑎 = 𝑎𝑥1𝑎 ∈ 𝑎𝑋𝑎 ( Since X is a left permutable) 

   Therefore X is  regular. 

   If A is any left X-subalgebra of X, then by Proposition:414[6], A is an ideal and thus A   

  is  an invariant X-subalgebra of X. Therefore X is a X.S.I – near subtraction semigroup.  

( iii ) ⇒ ( iv ) Since X is regular. Therefore X is a 𝐶1-near subtraction semigroup. 

 let x ∈ 𝑀1 ∩ 𝑀2, for some x∈ 𝑀1 and x ∈ 𝑀2. 

Let x ∈ xX = xXx  [since X is a  𝐶1 -near subtraction semigroup ] 

                   = 𝑥𝑋𝑥𝑥 ∈  𝑀1XX𝑀2 ⊆ 𝑀1𝑀2 

 Therefore 𝑀1 ∩ 𝑀2 ⊆ 𝑀1𝑀2 ………..(1) 

Let  x∈ 𝑀1𝑀2 then x = yz, for some y∈ 𝑀1 and z ∈ 𝑀2. 

Now  x = yz ∈ yX = yXy ∈ X 𝑀1 ⊆ 𝑀1 [since X is a 𝐶1 -near subtraction semigroup ] 

Also x = yz  ∈ X 𝑀2 ⊆ 𝑀2    [since  X is a left X- subalgebra ] 

Therefore 𝑀1𝑀2 ⊆ 𝑀1 ∩ 𝑀2 ……….(2) 

From (1) and (2), hence 𝑀1 ∩ 𝑀2= 𝑀1𝑀2. 

( iv ) ⇒ ( v ) Let 𝑀1 = 𝑋𝑥 𝑎𝑛𝑑 𝑀2 = 𝑋𝑦, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥, 𝑦 ∈ 𝑋.  
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By assumption Xx∩Xy = XxXy. Now Xx = Xx∩X = XxX ⟹ Xxy = XxXy. 

Therefore Xx∩Xy = Xxy. 

 ( v ) ⇒ ( vi ) Since X is a s- near subtraction semigroup. 

Let a ∈ Xa = Xa∩Xa = Xaa =  X 𝑎2 ⟹ Xa ⊆ X 𝑎2. Obviously X 𝑎2  ⊆ 𝑋𝑎.  

Hence X is left bi-potent. 

( vi ) ⇒ ( vii ) Clearly A ⊆ √𝐴. Let a ∈ √𝐴. Then 𝑎𝑛 ∈ A, for some positive integer n. 

Also Xa = X 𝑎2 = X 𝑎𝑛 is a left bi-potent - near subtraction semigroup. 

Since X is a s- near subtraction semigroup. Let a ∈ Xa = X𝑎𝑛 ⟹ a = b𝑎𝑛∈ XA ⊆ A and hence a ∈ A, √𝐴 ⊆ 

A. Therefore A = √𝐴 , for every  left X-subalgebra A of X. 

( vii ) ⇒ ( viii) Let 0 ≠ a ∈ X. Now 𝑎3 ∈ 𝑋𝑎2 so that a ∈ √𝑋𝑎23
 = 𝑋𝑎2.  

Therefore X is strongly regular. 

(viii ) ⇒ ( ix) Let X be strongly regular.Then Xa = 𝑋𝑎2, X is a left permutable s- near subtraction semigroup, 

𝑋𝑎2 = aXa. Therefore Xa = 𝑋𝑎2 = aXa. 

(ix ) ⇒ ( x)  Assume that  aXa = Xa = X𝑎2 for all a ∈ X. 

Therefore X is a 𝐶2near subtraction semigroup, Xa = aXa. 

(x ) ⇒ ( xi)  Since X is a 𝐶2near subtraction semigroup, a ∈ Xa = aXa, for a ∈ X. 

Therefore X is regular. 

Let a ∈ Xa = aXa then a = a𝑥1a = 𝑥1𝑎2 ∈ X𝑎2. Therefore X is strongly regular. 

Then by Lemma:3.17[2], eXe = eX, for every e ∈ E. Since X is 𝐶2- near subtraction semigroup. Therefore 

Xe = eXe and so eX = eXe = Xe for every e ∈ E.  

Again by the Lemma: 3.18 [2],  E ⊆ C(X). Hence X is GNF. 

(xi ) ⇒ (i)  Assume that X is GNF.  

Then X is regular and sub commutative near subtraction semigroup. 

 Therefore 𝑋𝐵2 = 𝐵, for every strong bi-ideal of X. 

http://www.jetir.org/


© 2019 JETIR April 2019, Volume 6, Issue 4                                                                    www.jetir.org (ISSN-2349-5162) 

JETIR1903K12 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 735 
 

REFERENCES 

 

[1]. J. C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass.1969. 

[2]. P.Annamalai Selvi and Dr.S.Jayalakshmi, Bi-ideals in 𝐶1  and 𝐶2  near-subtraction semigroups, JETIR( 

2019 ) ,volume 6, Issue 1, no.821-829. 

[3]. P.Dheena and G.SatheeshKumar,On strongly regular near subtraction semigroups,             commun.Korean 

Math. Soc. 22(2007), No.3, pp. 323-330. 

[4]. S.Jayalakshmi A study on Regularities in near rings, PhD thesis, ManonmaniamSundaranarUniversty, 

2003. 

[5]. Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65(2007), no.1, 129-134. 

[6]. V.Mahalakshmi, A study on Regularities in near subtraction semigroups, PhD thesis, Sri Parasakthi college 

for Women, 2016. 

[7]. Pilz Gunter, Near-rings, North Holland, Amsterdam, 1983. 

[8]. B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169. 

 

http://www.jetir.org/

