Strong and Delta-Convergence Theorems for Modified M Iteration Process in CAT(k) Spaces

Pinki, Research Scholar

Department of Mathematics, Maharshi Dayanand University,

Rohtak (Haryana) - 124001, India

Abstract

In this paper, we give strong and delta-convergence results of modified M iteration process in CAT(k) space with k > 0 by using the concept of delta-convergence introduced by Dhompongsa, Panyanak [On delta-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56(2008), 2572-2579.]. Our results extend and improve the corresponding recent results of Saipara et al. [16] (J. Nonlinear Sci. Appl., 2015, 965-975) and many others existing in the literature.

Keywords:

Fixed point, Total asymptotically nonexpansive mapping, CAT(k) space, M iteration, Delta-convergence, Strong convergence.

1. Introduction

Let (X, ρ) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map γ from a closed interval $[0, 1] \subset \mathbb{R}$ to X such that $\gamma(0) = x, \gamma(l) = y$, and $\rho(\gamma(t), \gamma(t')) = |t-t'|$ for all t, t' $\in [0, 1]$. In particular, γ is an isometry and $\rho(x, y) = l$. The image $\gamma([0, l])$ of γ is called a geodesic segment joining x and y. When it is unique this geodesic segment is denoted [x, y]. This means that $z \in [x, y]$ if and only if there exists $\alpha \in [0, 1]$ such that

$$\rho(x,z) = (1-\alpha)\rho(x,y)$$
 and $\rho(y,z) = \alpha\rho(x,y)$.

In this case, we write $z = \alpha x \oplus (1-\alpha) y$. The space (X, ρ) is said to be a geodesic space (D-geodesic space) if every two points of X (every two points of distance smaller than D) are joined by a geodesic, and X is said to be uniquely geodesic (D-uniquely geodesic) if there exactly one geodesic joining x and y for each x, $y \in X$ (for x, $y \in$ X with $\rho(x, y) < D$). A subset K of X is said to be convex if K includes every geodesic segment joining any two of its points. The set K is said to be bounded if $diam(K) = \sup \{\rho(x, y) : x, y \in K\} < \infty$.

Kirk([9], [10]) first studied the theory of fixed point in CAT(k) spaces. Later on, many authors generalized the notion of CAT(k) given in ([9], [10]), mainly focusing on CAT(0) spaces. The results of a CAT(0) space for every $k' \ge k$ (see in [3]). Although, CAT(k) spaces for k > 0, were studied by some authors (see [3], [7], [11]).

Alber et al. [1] first introduced the total asymptotically nonexpansive mappings in Banach spaces. He generalizes the concept of asymptotically nonexpansive mappings. Recently, Panyanak [14] studied the existence theorem, demiclosed principle, Δ -convergence and strongly convergence theorems for uniformly continuous total asymptotically nonexpansive mapping in CAT(k) spaces. Moreover, there were many authors who have studied about this mapping (see [2], [5], [8]).

Ullah and Arshad [18] introduced a new three-step iteration process known as "M Iteration Process" defined as:

$$z_n = (1 - \alpha_n) x_n + \alpha_n T x_n$$

$$y_n = Tz_n$$

 $x_{n+1} = Ty_n$, $n \ge 0$ where $\{\alpha_n\}$ is a real sequence in [0, 1].

We now consider the modified M iteration process in the setting of CAT(k) spaces defined as:

$$z_{n} = (1 - \alpha_{n})x_{n} \oplus \alpha_{n}T^{n}x_{n}$$

$$y_{n} = T^{n}z_{n}$$

$$x_{n+1} = T^{n}y_{n}, \quad n \ge 0 \text{ where } \{\alpha_{n}\} \text{ is a real sequence in } [0, 1].$$
(1.1)

Now we introduce the model spaces M_k^n , for more details on these spaces the reader is referred to [3].

Definition1.1. Given $k \in \mathbb{R}$, we denote by M_k^n the following metric spaces:

- 1) If k = 0 then M_0^n is the Euclidean space E^n ;
- 2) If k > 0 then M_k^n is obtained from the spherical space S^n by multiplying the distance function by the constant $1/\sqrt{k}$;
- 3) If k < 0 then M_k^n is obtained from the hyperbolic space H^n by multiplying the distance function by the constant $1/\sqrt{-k}$,

A geodesic triangle $\Delta(x, y, z)$ in a geodesic space (X, ρ) consists of three points x, y, z in X (the vertices of Δ) and three geodesic segments between each pair of vertices (the edges of Δ). A comparison triangle for a geodesic triangle $\Delta(x, y, z)$ in (X, ρ) is a triangle $\Delta(\overline{x}, \overline{y}, \overline{z})$ in M_k^2 such that

$$\rho(x,y) = d_{M_k^2}(\overline{x},\overline{y}), \ \rho(x,z) = d_{M_k^2}(\overline{x},\overline{z}) \text{ and } \rho(z,x) = d_{M_k^2}(\overline{z},\overline{x}).$$

If $k \le 0$ then such a comparison triangle always exists in M_k^2 . If k > 0 then such a triangle exists whenever $\rho(x, y) + \rho(y, z) + \rho(z, x) < 2D_k$, where $D_k = \pi/\sqrt{k}$. A point $\overline{p} \in [\overline{x}, \overline{y}]$ is called a comparison point for $p \in [x, y]$ if $\rho(x, p) = d_{M_k^2}(\overline{x}, \overline{p})$.

A geodesic triangle $\Delta(x, y, z)$ in X is said to satisfy the CAT(k) inequality if for any p, $q \in \Delta(x, y, z)$ and for their comparison points $\overline{p}, \overline{q} \in \Delta(\overline{x}, \overline{y}, \overline{z})$, one has

$$\rho(p,q) = d_{M_k^2}(\overline{p},\overline{q})$$

Definition 1.2. If $k \le 0$, then X is called a CAT(k) space if and only if X is a geodesic space such that all of its geodesic triangles satisfy the CAT(k) inequality. If k >, then X is called a CAT(k) space if and only if X is D_k - geodesic and any geodesic triangle $\Delta(x, y, z)$ in X with $\rho(x, y) + \rho(y, z) + \rho(z, x) < 2D_k$ satisfies the CAT(k) inequality.

Notice that in a CAT(0) space (X, ρ) , if x, y, $z \in X$ then the CAT(0) inequality implies

$$\rho^{2}\left(x,\frac{1}{2}y\oplus\frac{1}{2}z\right) \leq \frac{1}{2}\rho^{2}\left(x,y\right) + \frac{1}{2}\rho^{2}\left(x,z\right) - \frac{1}{4}\rho^{2}\left(y,z\right).$$
(CN)

This is the (CN) inequality of Bruhat and Tits [4]. This inequality is extended by Dhompongsa and Panyanak [6] as $\rho^2(x,(1-\alpha)y \oplus \alpha z) \le (1-\alpha)\rho^2(x,y) + \alpha \rho^2(x,z) - \alpha(1-\alpha)\rho^2(y,z).$ (CN*) For all $\alpha \in [0,1]$ and x, y, $z \in X$.

Let $R \in (0, 2]$. Recall that a geodesic space (X, ρ) is said to be R-convex for R(see [13]) if for any three points x, y, $z \in X$, we have

$$\rho^{2}(x,(1-\alpha)y\oplus\alpha z) \leq (1-\alpha)\rho^{2}(x,y) + \alpha\rho^{2}(x,z) - \frac{R}{2}\alpha(1-\alpha)\rho^{2}(y,z).$$
(1.2)

The following lemma is a consequence of Proposition 3.1 in [13].

Lemma 1.3. Let k > 0 and (X, ρ) be a CAT(k) space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{k}}$ for some $\varepsilon \in (0, \pi/2)$. Then (X, ρ) is R-convex for $R = (\pi - 2\varepsilon) \tan(\varepsilon)$.

The following lemma is also needed.

Lemma 1.4 ([3]). Let k > 0 and (X, ρ) be a complete CAT(k) space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{k}}$ for some

$$\varepsilon \in (0, \pi/2)$$
. Then
 $\rho((1-\alpha)x \oplus \alpha y, z) \le (1-\alpha)\rho(x, z) + \alpha\rho(y, z)$, for all x, y, $z \in X$ and $\alpha \in [0, 1]$

We now collect some elementary facts about CAT(k) spaces. We state the results in CAT(k) with k > 0. Let $\{x_n\}$ be a bounded sequence in a CAT(k) space (X, ρ) . For $x \in X$, we set

 $r(x, \{x_n\}) = \limsup_{n \to \infty} \rho(x, \{x_n\}).$ The asymptotic radius $r(\{x_n\})$ of $\{x_n\}$ is given by

$$r(\lbrace x_n\rbrace) = \inf \lbrace r(x, \lbrace x_n\rbrace) : x \in X \rbrace.$$

And the asymptotic centre $A(\{x_n\})$ of $\{x_n\}$ is the set

$$A(\{x_n\}) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\}.$$

It is known that from [7] that in a CAT(k) space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{k}}$, $A(\{x_n\})$ consists of exactly one point. We now give the concept of Δ – convergence and collect some of its basic properties.

Definition1.5 ([11, 12]). A sequence $\{x_n\}$ in X is said to Δ – converges to $x \in X$ if x is the unique asymptotic centre of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case we write $\Delta - \lim_n x_n = x$ and call x the $\Delta - \lim_n x_n = x$.

Lemma 1.6 ([15]). Let k > 0 and (X, ρ) be a complete CAT(k) Let k > 0 and (X, ρ) be a complete CAT(k)

space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{k}}$ for some $\varepsilon \in (0, \pi/2)$. Then the following statements hold:

i.every sequence in X has a Δ – convergence subsequence;

ii.if $\{x_n\} \subseteq X$ and $\Delta - \lim_n x_n = x$, then $x \in \bigcap_{k=1}^{\infty} conv\{x_k, x_{k+1}, \dots\}$, where

 $\operatorname{conv}(A) = \bigcap \{B : B \supseteq A \text{ and } B \text{ is closed and convex} \}$

By the uniqueness of asymptotic center, we can obtain the following lemma(see [6]).

Lemma 1.7.Let k > 0 and (X, ρ) be a complete CAT(k) Let k > 0 and (X, ρ) be a complete CAT(k) space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{k}}$ for some $\varepsilon \in (0, \pi/2)$. If $\{x_n\}$ is a sequence in X with $A(\{x_n\}) = \{x\}$ and let $\{u_n\}$ is a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and the sequence $\{\rho(x_n, u)\}$ converges, then x = u. Definition 1.8. Let K be a nonempty subset of a CAT(k) space (X, ρ) . A mapping T: $K \to K$ is called total asymptotically nonexpansive if there exist nonnegative real sequences $\{v_n\}, \{\mu_n\}$ with $v_n \to 0, \mu_n \to 0$ as $n \to \infty$ and a strictly increasing continuous function $\psi : [0,1) \to [0,1)$ with $\psi(0) = 0$ such that $\rho(T^n x, T^n y) \leq \rho(x, y) + \nu_n \psi(\rho(x, y)) + \mu_n \text{ for all } n \in \mathbb{N}, x, y \in \mathbb{K}.$ A point $x \in \mathbb{K}$ is called a fixed point of T if x = T(x). We denote with F(T) the set of fixed points of T. A sequence $\{x_n\}$ in K is called approximate fixed point sequence for T (AFPS in short) if $\lim_{n\to\infty} \rho(x_n, T(x_n)) = 0.$ Lemma 1.9 [17]. Let $\{s_n\}$ and $\{t_n\}$ be sequences of nonnegative real numbers satisfying $\{s_{n+1}\} \leq \{s_n\} + \{t_n\}$ for

all $n \in N$. If $\sum_{n=1}^{\infty} t_n < \infty$ then $\lim_{n \to \infty} s_n$ exists.

Theorem 1.10 [14]. Let k > 0 and (X, ρ) be a complete CAT(k) space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{k}}$ for some

 $\varepsilon \in (0, \pi/2)$. Let K be a nonempty closed convex subset of X, and T: K \rightarrow K be a continuous total asymptotically nonexpansive mapping. Then T has a fixed point in K.

Theorem 1.11 [14]. Let k > 0 and (X, ρ) be a complete CAT(k) space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{k}}$ for some $\varepsilon \in (0, \pi/2)$. Let K be a nonempty closed convex subset of X, and T : K \rightarrow K be a uniformly continuous total asymptotically nonexpansive mapping. If $\{x_n\}$ is an AFPS for T such that $\Delta \rightarrow \lim_{n \to \infty} x_n = \omega$, then $\omega \in K$ and $\omega = T(\omega)$.

Definition 1.12. Let (X, ρ) be a metric space and K be its nonempty subset. Then T: K \rightarrow K is said to be semicompact if for a sequence $\{x_n\}$ in K with $\lim_{n\to\infty} \rho(x_n, T(x_n)) = 0$, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \rightarrow p \in$ K.

We now establish the following results: Main Results

2.

Lemma 2.1 Let k > 0 and (X, ρ) be a complete CAT(k) space with diam $(X) \le \frac{\pi}{2} - \varepsilon}{\sqrt{k}}$ for some $\varepsilon \in (0, \pi/2)$. Let K be a nonempty closed convex subset of X, and T: $K \to K$ be a uniformly continuous total asymptotically nonexpansive mapping with $\sum_{n=1}^{\infty} v_n < \infty$ and $\sum_{n=1}^{\infty} \mu_n < \infty$. Let $\{x_n\}$ be a sequence in K defined by $x_1 \in K$ and $z_n = (1 - \alpha_n)x_n \oplus \alpha_n T^n x_n$

$$y_n = T^n z_n$$

 $x_{n+1} = T^n y_n$, $n \ge 0$ where $\{\alpha_n\}$ is a real sequence in [0, 1].

where $\{\alpha_n\}$ is sequence in [0, 1] such that $\lim_{n\to\infty} \alpha_n(1-\alpha_n) > 0$. Then $\{x_n\}$ is an AFPS for T and $\lim_{n\to\infty} \rho(x_n, p)$ exists for all $p \in F(T)$.

Proof. We divide the proof of this lemma into two steps.

Step 1 : We will prove that $\lim_{n\to\infty} \rho(x_n, p)$ exists.

It follows that therefore 2.10 that $F(T) \neq \phi$.Let $p \in F(T)$ and M = diam(K). Since T is total asymptotically nonexpansive, by lemma 2.4 we have

$$\rho(z_n, p) = \rho((1 - \alpha_n)x_n \oplus \alpha_n T^n x_n, p)$$

$$\leq (1 - \alpha_n)\rho(x_n, p) + \alpha_n \rho(T^n x_n, p)$$

$$= (1 - \alpha_n) \rho(x_n, p) + \alpha_n \rho(T^n x_n, T^n p)$$

$$\leq (1 - \alpha_n) \rho(x_n, p) + \alpha_n \{ \rho(x_n, p) + \nu_n \psi(M) + \mu_n \}$$

$$= \rho(x_n, p) + \alpha_n \nu_n \psi(M) + \alpha_n \mu_n.$$

This implies that

$$\rho(y_n, p) = \rho(T^n z_n, p)$$

$$= \rho(T^n z_n, T^n p)$$

$$\leq \rho(z_n, p) + v_n \psi(M) + \mu_n$$

$$\leq \rho(x_n, p) + (\alpha_n + 1) v_n \psi(M) + (\alpha_n + 1) \mu_n$$

$$\rho(x_{n+1}, p) = \rho(T^n y_n, p)$$

$$= \rho(T^n y_n, T^n p)$$

$$\leq \rho(y_n, p) + \nu_n \psi(M) + \mu_n$$

$$= \rho(x_n, p) + \nu_n (2 + \alpha_n) \psi(M) + \mu_n (2 + \alpha_n)$$

Since $\sum_{n=1}^{\infty} v_n < 1$ and $\sum_{n=1}^{\infty} \mu_n < 1$, by lemma 2.9 $\lim_{n \to \infty} \rho(x_n, p)$ exists.

Step 2: We will prove that $\lim_{n\to\infty} \rho(x_n, Tx_n) = 0$.

Next, we show that $\{x_n\}$ is an AFPS for T. Since $\{x_n\}$ is bounded, there exists R > 0 such that $\{x_n\}, \{y_n\}, \{z_n\} \subset B_R'(p)$ for all $n \ge 1$ with $R' < D_k / 2$. In view of (1.2), we have

$$\rho^{2}(z_{n},p) = \rho^{2}((1-\alpha_{n})x_{n} \oplus \alpha_{n}T^{n}x_{n},p)$$

$$\leq \alpha_{n}\rho^{2}(T^{n}x_{n},p) + (1-\alpha_{n})\rho^{2}(x_{n},p) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})\rho^{2}(T^{n}x_{n},x_{n})$$

$$= \alpha_{n}\rho^{2}(T^{n}x_{n},T^{n}p) + (1-\alpha_{n})\rho^{2}(x_{n},p) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})\rho^{2}(T^{n}x_{n},x_{n})$$

$$\leq \alpha_{n}[\rho(x_{n},p) + \nu_{n}\psi(M) + \mu_{n}]^{2} + (1-\alpha_{n})\rho^{2}(x_{n},p) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})\rho^{2}(T^{n}x_{n},x_{n})$$

$$= \alpha_{n}\rho^{2}(x_{n},p) + (1-\alpha_{n})\rho^{2}(x_{n},p) + A\nu_{n} + B\mu_{n} - \frac{R}{2}\alpha_{n}(1-\alpha_{n})\rho^{2}(T^{n}x_{n},x_{n})$$

$$= \rho^{2}(x_{n},p) + A\nu_{n} + B\mu_{n} - \frac{R}{2}\alpha_{n}(1-\alpha_{n})\rho^{2}(T^{n}x_{n},x_{n})$$
(3.1)

For some A, B > 0. This implies that

(3.3)

$$\frac{R}{2}\alpha_n(1-\alpha_n)\rho^2(T^n x_n, x_n) \le \rho^2(x_n, p) - \rho^2(x_{n+1}, p) + Av_n + B\mu_n$$

Since $\sum_{n=1}^{\infty} v_n < \infty$ and $\sum_{n=1}^{\infty} \mu_n < \infty$, $\rho(x_n, p) < R'$, we have

$$\sum_{n=1}^{\infty} \frac{R}{2} \alpha_n (1-\alpha_n) \rho^2 (T^n x_n, x_n) < \infty.$$

Hence by the fact $\lim_{n\to\infty} \alpha_n (1-\alpha_n) > 0$, we have

$$\lim_{n \to \infty} \rho(T^n x_n, x_n) = 0. \tag{3.2}$$

By the uniform continuity of *T*, we have $\lim_{n\to\infty} \rho(T^{n+1}x_n, Tx_n) = 0$

By definitions of x_{n+1} and y_n , we have

$$\rho(x_{n}, x_{n+1}) = \rho(x_{n}, T^{n} y_{n})
\leq \rho(x_{n}, T^{n} x_{n}) + \rho(T^{n} x_{n}, T^{n} y_{n})
\leq \rho(x_{n}, T^{n} x_{n}) + \rho(x_{n}, y_{n}) + v_{n} \psi(M) + \mu_{n}
= \rho(x_{n}, T^{n} x_{n}) + \rho(x_{n}, T^{n} z_{n}) + v_{n} \psi(M) + \mu_{n}
\leq \rho(x_{n}, T^{n} x_{n}) + \rho(x_{n}, T^{n} x_{n}) + \rho(T^{n} x_{n}, T^{n} z_{n}) + v_{n} \psi(M) + \mu_{n}
= 2\rho(x_{n}, T^{n} x_{n}) + \rho(x_{n}, z_{n}) + 2v_{n} \psi(M) + 2\mu_{n}
= 2\rho(x_{n}, T^{n} x_{n}) + \rho(x_{n}, (1 - \alpha_{n}) x_{n} \oplus \alpha_{n} T^{n} x_{n}) + 2v_{n} \psi(M) + 2\mu_{n}
\leq 2\rho(x_{n}, T^{n} x_{n}) + \alpha_{n} \rho(x_{n}, T^{n} x_{n}) + (1 - \alpha_{n}) \rho(x_{n}, x_{n}) + 2v_{n} \psi(M) + 2\mu_{n}
\leq (2 + \alpha_{n}) \rho(x_{n}, T^{n} x_{n}) + 2v_{n} \psi(M) + 2\mu_{n} \to 0 \text{ as } n \to \infty$$
(3.4)

By (3.2), (3.4) and the uniform continuity of T, we have

$$\rho(x_n, Tx_n) \le \rho(x_n, x_{n+1}) + \rho(x_{n+1}, T^{n+1}x_{n+1}) + \rho(T^{n+1}x_{n+1}, T^{n+1}x_n) + \rho(T^{n+1}x_n, Tx_n)$$

$$\le \rho(x_n, x_{n+1}) + \rho(x_{n+1}, T^{n+1}x_{n+1}) + \rho(x_{n+1}, x_n) + v_{n+1}\psi(M) + \mu_{n+1} + \rho(T^{n+1}x_n, Tx_n) \to 0 \text{ as}$$

$$n \to \infty$$

 $n \rightarrow \infty$.

This completes the proof.

Now, we are in a position to prove the Δ – convergence theorem.

Theorem 2.2. Let k > 0 and (X, ρ) be a complete CAT(k) space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{k}}$ for some

 $\varepsilon \in (0, \frac{\pi}{2})$. Let K be a nonempty closed convex subset of X, and T: $K \to K$ be a uniformly continuous total asymptotically nonexpansive mapping with $\sum_{n=1}^{\infty} \nu_n < \infty$ and $\sum_{n=1}^{\infty} \mu_n < \infty$. Let $\{x_n\}$ be a sequence in K defined by (1.1) where $\{\alpha_n\}$ is sequence in [0, 1] such that $\lim_{n\to\infty} \alpha_n (1-\alpha_n) > 0$. Then $\{x_n\} \Delta$ – converges to a fixed point of T.

Proof. Let $w_w(\{x_n\}) \coloneqq \bigcup A(\{u_n\})$ where union is taken for all sequences $\{u_n\}$ of $\{x_n\}$. We first show that $w_w(\{x_n\}) \subseteq F(T)$. Let $u \in w_w(\{x_n\})$, then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By lemma 2.6, there exists a subsequence $\{v_n\}$ of $\{x_n\}$ such that $\Delta - \lim_n v_n = v \in K$. By lemma 3.1 and theorem 2.11, we have $v \in F(T)$. Since $\lim_n \rho(x_n, v)$ exists, so u=v by lemma 2.7. This shows that $w_w(\{x_n\}) \subset F(T)$.

Next, we show that Δ – converges to a point in F(T), it is sufficient to show that $w_w(\{x_n\})$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and let $A(\{x_n\}) = \{x\}$. Since $u \in w_w(\{x_n\}) \subseteq F(T)$, by lemma 3.1 $\lim_{n \to \infty} \rho(x_n, u)$ exists. And by Lemma 2.7, we have x = u. This completes the proof.

Now we prove strong convergence theorem.

Theorem 3.3. Let k > 0 and (X, ρ) be a complete CAT(k) space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{k}}$ for some $\varepsilon \in (0, \pi/2)$. Let K be a nonempty closed convex subset of X, and T: $K \to K$ be a uniformly continuous total asymptotically nonexpansive mapping with $\sum_{n=1}^{\infty} \nu_n < \infty$ and $\sum_{n=1}^{\infty} \mu_n < \infty$. $\sum_{n=1}^{\infty} \mu_n < \infty$. Let $\{x_n\}$ be a sequence in K defined by (1.1) where $\{\alpha_n\}$ is sequence in [0, 1] such that $\lim_{n\to\infty} \alpha_n(1-\alpha_n) > 0$. Suppose that T^m is semi-compact for some $m \in \mathbb{N}$. Then $\{x_n\}$ converges strongly to a fixed point of T.

Proof. By Lemma 3.1, $\lim_{n} \rho(x_n, Tx_n) = 0$. By definition 2.12, there exist a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ and $p \in K$ such that $\lim_{j\to\infty} x_{n_j} = p$. Again, by the uniform continuity of T, we have

$$\rho(Tp,p) \leq \rho(Tp,Tx_{n_j}) + \rho(Tx_{n_j},x_{n_j}) + \rho(x_{n_j},p) \to 0 \text{ as } j \to \infty.$$

That is, $p \in F(T)$. By Lemma 3.1, $\lim_{n} \rho(x_n, u)$ exists, thus p is the strong limit of the sequence $\{x_n\}$ itself.

4. References

- 1. Alber, Y. I. Chidume, C. E. Zegeye, H. (2006). Approximating fixed points of total asymptotically nonexpansive mappings, Fixed Point Theory Appl., 2006, 20 pages.
- 2. Basarir, M. and Sahin, A. (2013). On the strong and Δ-convergence for total asymptotically nonexpansive mappings on a CAT(0) space. Carpathian Math. Publ., 5, 170-179.
- 3. Bridson, M. and Haefliger, A. (1999). Metric Spaces of Non-Positive Curvature. Springer-Verlag. Berlin, Heidelberg.
- 4. Bruhat, F. Tits, J. (1972). Groupes reductifs sur un corps local, I. Donnees radicielles valuees, Inst. Hautes Etudes Sci. Publ. Math., 41, 5–251.
- 5. Chang, S. S. Wang, L. Joseph Lee, H. W. and Chan, C. K. (2013). Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces. Fixed Point Theory Appl., 122, 16 pages.
- Dhompongsa, S. and Panyanak, B. (2008). On Δ-convergence theorems in CAT(0) spaces Comput. Math. Appl., 56, 2572–2579.
- Espinola, R. Fernandez-Leon, A. (2009). CAT(κ)-spaces, weak convergence and fixed points, J. Math. Anal. Appl., 353, 410–427.
- Haubruge, S. Nguyen, VH. and Strodiot, JJ. (1998). Convergence analysis and applications of the Glowinski Le Tallec splitting methods for finding a zero of the sum of two maximal monotone operators. J. Optim. Theory Appl. 97, 645-673.
- 9. Kirk, W. A. (2003). Geodesic geometry and fixed point theory, in: Seminar of Mathematical Analysis (Malaga/Seville,2002/2003). Colecc. Abierta. Univ. Sevilla Secr. Publ. Seville., 64, 195–225.
- 10. Kirk, W. A. (2004). Geodesic geometry and fixed point theory II, in: International Conference on Fixed Point Theory and Applications. Yokohama Publ. Yokohama., 113–142.
- 11. Kirk, W. A. and Panyanak, B. (2008). A concept of convergence in geodesic spaces. Nonlinear Anal., 68, 3689–3696.
- 12. Lim, T. C. (1976). Remarks on some fixed point theorems. Proc. Amer. Math. Soc., 60, 179-182.
- 13. Ohta, S. (2007). Convexities of metric spaces Geom. Dedicata., 125, 225-250.
- Panyanak, B. (2014). On total asymptotically nonexpansive mappings in CAT(κ) spaces. J. Inequal. Appl., 2014, 13 pages.
- 15. Saejung, S. (2010). Halpern's iteration in CAT(0) spaces. Fixed Point Theory Appl., 2010, 13 pages.
- 16. Saipara, P. et al. (2015). On strong and Δ -convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mapping in CAT(k) spaces. J. Nonlinear Sci. Appl. 8 965-975.
- 17. Tan, K. K. and Xu, H. K. (1994). Fixed point iteration process for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc., 122, 733–739.
- 18. Ullah, K. and Arshad, M. (2018). Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process. Filomat, 187-196.