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Abstract  

In this paper, we give strong and delta-convergence results of modified M iteration process in CAT(k) space 

with k > 0 by using the concept of delta-convergence introduced by Dhompongsa, Panyanak [On delta-convergence 

theorems in CAT(0) spaces, Comput. Math. Appl., 56(2008), 2572-2579.]. Our results extend and improve the 

corresponding recent results of Saipara et al. [16] (J. Nonlinear Sci. Appl., 2015, 965-975) and many others existing 

in the literature. 

Keywords: 

Fixed point, Total asymptotically nonexpansive mapping, CAT(k) space, M iteration, Delta-convergence, 

Strong convergence. 

 

1. Introduction 

Let  ,X  be a metric space. A geodesic path joining x X to y X (or, more briefly, a geodesic from 

x to y) is a map  from a closed interval [0, l]   R to X such that  0 x  ,  l y  , and 

    , ' 't t t t      for all t, t’   [0, l]. In particular,   is an isometry and  ,x y l  . The image 

  0,l  of   is called a geodesic segment joining x and y. When it is unique this geodesic segment is denoted [x, 

y]. This means that z  [x, y] if and only if there exists  0,1 such that  

     , 1 ,x z x y    and    , ,y z x y   . 

In this case, we write  1z x y     . The space  ,X  is said to be a geodesic space (D-geodesic space) if 

every two points of X (every two points of distance smaller than D) are joined by a geodesic, and X is said to be 

uniquely geodesic (D-uniquely geodesic) if there exactly one geodesic joining x and y for each x, y   X (for x, y 

X with  ,x y D  ). A subset K of X is said to be convex if K includes every geodesic segment joining any two of 

its points. The set K is said to be bounded if     sup , : ,diam K x y x y K   . 

Kirk([9], [10]) first studied the theory of fixed point in CAT(k) spaces. Later on, many authors generalized the 
notion of CAT(k) given in ([9], [10]), mainly focusing on CAT(0) spaces. The results of a CAT(0) space for every 

'k k  (see in [3]). Although, CAT(k) spaces for k > 0, were studied by some authors (see [3], [7], [11]). 

Alber et al. [1] first introduced the total asymptotically nonexpansive mappings in Banach spaces. He generalizes 

the concept of asymptotically nonexpansive mappings. Recently, Panyanak [14] studied the existence theorem, 

demiclosed principle,  -convergence and strongly convergence theorems for uniformly continuous total 

asymptotically nonexpansive mapping in CAT(k) spaces. Moreover, there were many authors who have studied about 

this mapping (see [2], [5], [8]). 

Ullah and Arshad [18] introduced a new three-step iteration process known as “M Iteration Process” defined as: 

         (1 )  n n n n nz x Tx    

n ny Tz  
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1 n nx Ty ,  n 0   where  n  is a real sequence in [0, 1].                                                                                                                                               

We now consider the modified M iteration process in the setting of CAT(k) spaces defined as: 

           (1 )   n

n n n n nz x T x    

   n

n ny T z                                                                                                                                                  (1.1) 

  
1  n

n nx T y ,  n 0  where  n  is a real sequence in [0, 1].   

 

Now we introduce the model spaces
n

kM  , for more details on these spaces the reader is referred to [3]. 

Definition1.1. Given k   R, we denote by 
n

kM  the following metric spaces: 

1) If k = 0 then 
0

nM  is the Euclidean space 
nE  ; 

2) If k > 0 then 
n

kM  is obtained from the spherical space 
nS  by multiplying the distance function by the constant 1 k  

; 

3) If k < 0 then 
n

kM  is obtained from the hyperbolic space 
nH  by multiplying the distance function by the constant 

1 k  , 

A geodesic triangle  , ,x y z  in a geodesic space  ,X  consists of three points x, y, z in X (the 

vertices of  ) and three geodesic segments between each pair of vertices (the edges of  ). A comparison triangle 

for a geodesic triangle  , ,x y z  in  ,X  is a triangle  , ,x y z  in 
2

kM  such that  

               2, ,
kM

x y d x y  ,    2, ,
kM

x z d x z  and    2, ,
kM

z x d z x  . 

If 0k   then such a comparison triangle always exists in 
2

kM . If k > 0 then such a triangle exists whenever

     , , , 2 kx y y z z x D     , where kD k  . A point  ,p x y  is called a comparison point for 

 ,p x y if    2, ,
kM

x p d x p  . 

A geodesic triangle  , ,x y z in X is said to satisfy the CAT(k) inequality if for any p, q  , ,x y z and for their 

comparison points ,p q  , ,x y z  , one has  

          2, ,
kM

p q d p q 
 

 

Definition 1.2. If 0k  , then X is called a CAT(k) space if and only if X is a geodesic space such that all of its 

geodesic triangles satisfy the CAT(k) inequality. If k > , then X is called a CAT(k) space if and only if X is kD  -

geodesic and any geodesic triangle  , ,x y z  in X with      , , , 2 kx y y z z x D      satisfies the 

CAT(k) inequality. 

Notice that in a CAT(0) space  ,X  , if x, y, z   X then the CAT(0) inequality implies     

     2 2 2 21 1 1 1 1
, , , ,
2 2 2 2 4

x y z x y x z y z   
 

    
 

.                                                         (CN) 

This is the (CN) inequality of Bruhat and Tits [4]. This inequality is extended by Dhompongsa and Panyanak [6] as  

       2 2 2 2,(1 ) (1 ) , , (1 ) ,x y z x y x z y z               .                                  (CN*) 

For all [0,1]  and x, y, z X. 

Let  0,2R . Recall that a geodesic space  ,X   is said to be R-convex for R(see [13]) if for any three points 

x, y, z   X , we have  
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       2 2 2 2,(1 ) (1 ) , , (1 ) ,
2

R
x y z x y x z y z               .                                (1.2) 

The following lemma is a consequence of Proposition 3.1 in [13]. 

Lemma 1.3. Let 0k  and  ,X  be a CAT(k) space with 
2

( )diam X
k

 
 for some  0, 2   . Then 

 ,X  is R-convex for    2 tanR     . 

      The following lemma is also needed. 

 

   Lemma 1.4 ([3]). Let 0k  and  ,X  be a complete CAT(k) space with 
2

( )diam X
k

 
  for some 

 0, 2   . Then  

                     (1 ) , (1 ) , ,x y z x z y z          , for all x, y, z X and [0,1]  

 

We now collect some elementary facts about CAT(k) spaces. We state the results in CAT(k) with k > 0. Let  nx  be 

a bounded sequence in a CAT(k) space  ,X  . For x X, we set 

     , limsup , .n n nr x x x x  

The asymptotic radius   nr x  of  nx is given by 

      inf , : .n nr x r x x x X   

And the asymptotic centre   nA x  of  nx  is the set 

         : , .n n nA x x X r x x r x    

 It is known that from [7] that in a CAT(k) space with 
2

( )diam X
k

 
 ,   nA x  consists of exactly one 

point. We now give the concept of   convergence and collect some of its basic properties. 

Definition1.5 ([11, 12]). A sequence  nx in X is said to   converges to x X if x is the unique asymptotic centre 

of  nu for every subsequence  nu of  nx . In this case we write limn nx x   and call x the   limit of  

 nx . 

Lemma 1.6 ([15]). Let k > 0 and  ,X  be a complete CAT(k) Let 0k  and  ,X  be a complete CAT(k) 

space with 
2

( )diam X
k

 
  for some  0, 2   . Then the following statements hold: 

i.every sequence in X has a   convergence subsequence; 

ii.if nx X and lim , n nx x then
1 1{ , ,....}k k kx conv x x

  ,where
 

conv(A) {B:B AandBisclosedandconvex} 
.
 

By the uniqueness of asymptotic center, we can obtain the following lemma(see [6]). 

 

Lemma 1.7.Let k > 0 and  ,X  be a complete CAT(k) Let 0k  and  ,X  be a complete CAT(k) space with 

2
( )diam X

k

 
  for some  0, 2  . If  nx is a sequence in X with     nA x x  and let  nu is a 

subsequence of  nx with     nA u u and the sequence   ,nx u  converges, then x = u. 

Definition 1.8. Let K be a nonempty subset of a CAT(k) space  ,X  . A mapping T: K K  is called total 

asymptotically nonexpansive if there exist nonnegative real sequences n ,  n with 0, 0n n    as 

nand a strictly increasing continuous function    : 0,1 0,1   with  0 0   such that 
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      , , ,n n

n nT x T y x y x y        for all n N, x, y   K.  

A point x   K is called a fixed point of T if x = T(x). We denote with F(T) the set of fixed points of T. A sequence 

 nx in K is called approximate fixed point sequence for T (AFPS in short) if  

lim ( , ( )) 0n n nx T x  . 

Lemma 1.9 [17]. Let  ns and  nt be sequences of nonnegative real numbers satisfying     1n n ns s t   for 

all n N.  If 

1

n

n

t




 then limn ns  exists. 

Theorem 1.10 [14]. Let k > 0 and  ,X  be a complete CAT(k) space with 
2

( )diam X
k

 
  for some 

 0, 2  . Let K be a nonempty closed convex subset of X, and T: K K be a continuous total asymptotically 

nonexpansive mapping. Then T has a fixed point in K. 

Theorem 1.11 [14]. Let k > 0 and  ,X  be a complete CAT(k) space with 
2

( )diam X
k

 
  for some 

 0, 2  .Let K be a nonempty closed convex subset of X, and T : K K be a uniformly continuous total 

asymptotically nonexpansive mapping. If  nx is an AFPS for T such that limn nx   , then  K and 

( )T  . 

Definition 1.12. Let  ,X  be a metric space and K be its nonempty subset. Then T: K K is said to be semi-

compact if for a sequence  nx in K with lim ( , ( )) 0n n nx T x  , there exists a subsequence  
knx  of  nx

such that 
knx p K. 

We now establish the following results: 

2.     Main Results 

Lemma 2.1 Let k > 0 and (X , ρ) be a complete CAT(k) space with diam(X) ≤ 
2

k




 for some  0, 2   . Let 

K be a nonempty closed convex subset of X, and T: K → K be a uniformly continuous total asymptotically 

nonexpansive mapping with 

1

n

n

v




 < ∞ and 

1

n

n






 < ∞. Let  nx be a sequence in K defined by  1x K  and 

         (1 )   n

n n n n nz x T x    

   n

n ny T z                                                                                                                                                  

  
1  n

n nx T y ,  n 0  where  n  is a real sequence in [0, 1].   

where n is sequence in [0, 1] such that lim (1 ) 0  n n n  . Then  nx is an AFPS for T and  

lim ( , )n nx p  exists for all p ∈ F(T). 

Proof. We divide the proof of this lemma into two steps. 

Step 1 : We will prove that lim ( , )n nx p  exists. 

It follows that therorem 2.10 that F(T) ≠  .Let p ∈ F(T) and M = diam(K). Since T is total asymptotically 

nonexpansive, by lemma 2.4 we have 

  ,   1 –  ( ) ,   n

n n n n nz p x T x p      

                   (1 –  ,  ,)    n

n n n nx p T x p     
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                   ( )1 –  ,  ,   n n

n n n nx p T x T p     

                   1 –  ,  ,  ( ) ( ) ( )   n n n nn nMx p x p        

                ,  ( ) ( )  n n nn nx p M     . 

This implies that  

 ,   )  ( , n

n nT py zp   

                 = ,  n n

nT z T p   

                   ,   n n nz p M     

                   ,  ( 1) ( 1)    n n n n nx p M        

 

 
1( , ) ( , )  n

n nx p T y p   

      ,( ) n n

nT y T p         

                   
,( ) ( )  n n ny p M                      

                   ( , ) (2 ) ( ) (2 )    n n n n nx p M       

Since 
1

1nn





 and 

1
1nn





  , by lemma 2.9 lim ( , )n nx p  exists. 

Step 2 : We will prove that  lim , 0n n nx Tx  . 

Next, we show that nx  is an AFPS for T . Since nx is bounded, there exists R > 0 such that nx , ny , nz

' ( )RB p  for all 1n  with ' / 2kR D  .  In view of (1.2), we have 

 

 

 

2 2( , ) ((1 ) , )   n

n n n n nz p x T x p     

 
2 2 2( , ) (1 ) ( , ) (1 ) ( , )

2
    n n

n n n n n n n n

R
T x p x p T x x                                            

2 2 2( , ) (1 ) ( , ) (1 ) ( , )
2

    n n n

n n n n n n n n

R
T x T p x p T x x        

                  
2 2 2[ ( , ) ( ) ] (1 ) ( , ) (1 ) ( , )

2
       n

n n n n n n n n n n

R
x p M x p T x x           

                  
2 2 2( , ) (1 ) ( , ) (1 ) ( , )

2
       n

n n n n n n n n n n

R
x p x p A B T x x                

                 
2 2( , ) (1 ) ( , )

2
     n

n n n n n n n

R
x p A B T x x                                                              (3.1) 

For some A, B > 0. This implies that 
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2 2 2

1(1 ) ( , ) ( , ) ( , )
2

    n

n n n n n n n n

R
T x x x p x p A B        

Since 
1 nn





 and

1 nn





 , ( , ) 'nx p R   , we have  

2

1
(1 ) ( , )

2




  n

n n n nn

R
T x x   . 

Hence by the fact lim (1 ) 0  n n n  , we have 

lim ( , ) 0 n

n n nT x x .                                                                                                                              (3.2)  

By the uniform continuity of T, we have 
1lim ( , ) 0n

n n nT x Tx 

 
                                                                                                                           (3.3)   

 

By definitions of 1nx  and ny  , we have 

1( , ) ( , )  n

n n n nx x x T y   

                    ( , ) ( , ) n n n

n n n nx T x T x T y   

                   ( , ) ( , ) ( )   n

n n n n n nx T x x y v M     

                  ( , ) ( , ) ( )   n n

n n n n n nx T x x T z v M     

                  ( , ) ( , ) ( , ) ( )    n n n n

n n n n n n n nx T x x T x T x T z v M      

                  2 ( , ) ( , ) 2 ( ) 2   n

n n n n n nx T x x z v M     

                  2 ( , ) ( ,(1 ) ) 2 ( ) 2     n n

n n n n n n n n nx T x x x T x v M       

                  2 ( , ) ( , ) (1 ) ( , ) 2 ( ) 2     n n

n n n n n n n n n nx T x x T x x x v M        

                  (2 ) ( , ) 2 ( ) 2 0    n

n n n n nx T x v M     as n                                                     (3.4) 

By (3.2), (3.4) and the uniform continuity of T, we have 

1 1 1 1

1 1 1 1( , ) ( , ) ( , ) ( , ) ( , )n n n n

n n n n n n n n n nx Tx x x x T x T x T x T x Tx       

        

                    
1 1

1 1 1 1 1 1( , ) ( , ) ( , ) ( ) ( , ) 0n n

n n n n n n n n n nx x x T x x x M T x Tx       

            as

n . 

This completes the proof. 

Now, we are in a position to prove the   convergence theorem. 

Theorem 2.2.  Let k > 0 and ( , )X  be a complete CAT(k) space with 2( )diam X
k

 
  for some 

(0, )
2

  . Let K be a nonempty closed convex subset of X, and T: K K  be a uniformly continuous total 

asymptotically nonexpansive mapping with 
1 nn





  and 

1 nn





 . Let  nx  be a sequence in K defined 

by (1.1) where n is sequence in [0, 1] such that  lim (1 ) 0  n n n  . Then  nx   converges to a fixed 

point of T. 
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Proof. Let    ( ) : ( )w n nw x A u  where union is taken for all sequences  nu of nx . We first show that

 ( ) ( )w nw x F T . Let  ( )w nu w x , then there exists a subsequence  nu of  nx such that     nA u u  

. By lemma 2.6, there exists a subsequence  nv of  nx such that limn nv v K   . By lemma 3.1 and theorem 

2.11, we have v ϵ F(T). Since  lim ,n nx v  exists, so u=v by lemma 2.7. This shows that  ( ) ( )w nw x F T . 

Next, we show that   converges to a point in F(T), it is sufficient to show that   w nw x  consists of exactly one 

point. Let  nu be a subsequence of  nx with     nA u u and let     nA x x . Since 

 ( ) ( )w nu w x F T  , by lemma 3.1  lim ,n nx u  exists.  And by Lemma 2.7, we have x = u. This completes 

the proof. 

Now we prove strong convergence theorem. 

Theorem 3.3.  Let k > 0 and ( , )X  be a complete CAT(k) space with 2( )diam X
k

 
  for some 

(0, )
2

  . Let K be a nonempty closed convex subset of X, and T: K K  be a uniformly continuous total 

asymptotically nonexpansive mapping with 
1 nn





  and

1 nn





 . 

1 nn





 . Let  nx  be a 

sequence in K defined by (1.1) where n is sequence in [0, 1] such that lim (1 ) 0  n n n  . Suppose that 

mT  is semi-compact for some m ϵ N. Then  nx converges strongly to a fixed point of T. 

Proof. By Lemma 3.1,  lim , 0n n nx Tx  . By definition 2.12, there exist a subsequence  
jnx of  nx and 

p K  such that lim
jj nx p  . Again, by the uniform continuity of T, we have  

       , , , , 0
j j j jn n n nTp p Tp Tx Tx x x p        as j  . 

That is,  p F T . By Lemma 3.1,  lim ,n nx u exists, thus p is the strong limit of the sequence  nx itself.  
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