n-Step Iterative Algorithm for a System of General Variational Inequalities

¹ Monika

¹ Research Scholar
 ¹ Department of Mathematics,
 ¹ Maharshi Dayanand University, Rohtak India

Abstract: The purpose of this paper is to introduce n-step iterative algorithm for a system of general variational inequality. The idea is motivated from [10].

IndexTerms - Variational Inequality, monotone mapping, iteration, projection mapping.

I. INTRODUCTION

Let H be a real Hilbert space whose inner product and norm are denoted by (.,.) and ||.||, respectively. Let C be a nonempty closed convex set in H. For given nonlinear operators T_1 , T_2 , T_3 ,..., T_n , g: $H \rightarrow H$, consider the problem of finding $u \in H$, $g(u) \in C$ such that $\langle T_1u, g(v) \cdot g(u) \rangle \ge 0$,

 $\langle T_2 u, g(v) - g(u) \rangle \geq 0$, $< T_3 u, g(v) - g(u) > \ge 0,$ $\langle T_n u, g(v) - g(u) \rangle \geq 0$, for all $g(v) \in C$. (I) It will be called a system of n-general variational inequalities (n-SGVI). **Special Cases: 1.** If $T_1 = T_2 = T_3 = \dots = T_n$, the SGVI(I) collapses to find $u \in H$, $g(u) \in C$ such that $\langle Tu,g(v)-g(u) \rangle \ge 0$ for all $g(v) \in C$. (II) **2.** For g = I, the identity operator, the general variational inequality reduces to find $u \in C$ such that $\langle Tu.v - u \rangle > 0$ for all $v \in C$. (III) which is called the variational inequality (Stampacchia [11]). 3. Let C(u) be a closed convex-valued set in Hilbert space. Consider the problem of finding $u \in C(u)$ such that $\langle Tu, v - u \rangle \ge 0$ for all $v \in C(u)$, (IV) which is called quasi-variational inequality problem (Baiocchi and Capelo [1]). The purpose of this paper is to develop the n-iterative algorithm to approximate the solution of the n-system of general Variational inequalities (n-SGVI). Our result has a considerable improvement upon others and generalizes a number of iterative algorithms used earlier by many authors in the field of general variational inequalities (see [3, 4, 5, 7, 8]). Section 1.1 contains basic definitions and idea about the n-step iteration scheme for the n-system of general variational inequalities and its convergence theorem. Our results generalize the results of Noor [5,8]. n-step iterative algorithm and its convergence analysis: 1.1. **Definition 1.1.** Let H be a real Hilbert space. An operator T: $H \rightarrow H$ is said to be: A. strongly monotone if there exists a constant $\alpha > 0$ such that $\langle Tu - Tv, u - v \rangle \ge \alpha ||u - v||^2$ for all $u, v \in H$, B. Lipschitz continuous if there exists a constant $\beta > 0$ such that $||Tu - Tv|| \le \beta ||u-v||$ for all $u, v \in H$. **Definition 1.2.** (1)**Projection mapping** Let H be a real Hilbert space and $C \subset H$ a nonempty closed convex set. If $u \in H$, by projection of u on C we mean the element $Pc(u) \in C$ such that $||\mathbf{u}-\mathbf{Pc}(\mathbf{u})||_{\mathbf{H}} \leq ||\mathbf{u}-\mathbf{v}||_{\mathbf{H}}$ for all $\mathbf{v} \in \mathbf{C}$. In other words, we can say that Pc (u) is the element of C closest to u. **Lemma 1.1.** (Brezis [2]). Let C be a nonempty closed subset of H. For a given $z \in H$, $u \in C$ satisfies the inequality $\langle u-z, v-u \rangle \ge 0$ for all $v \in C$ (1.1)if and only if $u = P_C z$ (1.2)where $\rho > 0$ is a constant. This property of the projection operator Pc plays an important role in obtaining our results. We now prove the following lemma: **Lemma 1.2**. The element $u \in H$ is a solution of the SGVI(I) if and only $u \in H$ satisfies the relation $g(u) = Pc [g(u) - \rho_1 T_1 u],$ $g(u) = Pc [g(u) - \rho_2 T_2 u],$ $g(u) = Pc [g(u) - \rho_3 T_3 u],$

JETIR1904136Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org272

(1.3) $g(u) = Pc [g(u)-\rho_n T_n u],$ where $\rho_1, \rho_2, \rho_3, \dots, \rho_n > 0$ are some constants. **Proof.** Let u be the solution of n-SGVI(I). Then for $g(u) \in C$, we have $< T_1 u, g(v) - g(u) \ge 0,$ $< T_2 u, g(v) - g(u) > \ge 0,$ $< T_3 u, g(v) - g(u) > \ge 0,$ for all $g(v) \in C$. $< T_n u, g(v) - g(u) \ge 0,$ For any $\rho_1, \rho_2, \rho_3, \dots, \rho_n > 0$, we have $< g(u) - \{g(u) - \rho_1 T_1 u\}, g(v) - g(u) \ge 0,$ $\langle g(u) - \{g(u) - \rho_2 T_2 u\}, g(v) - g(u) \rangle \geq 0,$ $\langle g(u) - \{g(u) - \rho_3 T_3 u\}, g(v) - g(u) \rangle \geq 0,$ $\langle g(u) - \{g(u) - \rho_n T_n u\}, g(v) - g(u) \rangle \geq 0,$ for all $g(v) \in C$. It follows from Lemma 1.1.1 that $g(u) = Pc [g(u) - \rho_1 T_1 u],$ $g(u) = Pc [g(u) - \rho_2 T_2 u],$ $g(u) = Pc [g(u) - \rho_3 T_3 u],$ $g(u) = \Pr[g(u) - \rho_n T_n u].$ Conversely, let $u \in H$ such that (1.1.3) holds, then it follows from Lemma 1. 1. 1 that $g(u) \in C$ and $< g(u) - \{g(u) - \rho_1 T_1 u\}, g(v) - g(u) \ge 0,$ $\langle g(u) - \{g(u) - \rho_2 T_2 u\}, g(v) - g(u) \rangle \geq 0,$ $\langle g(u) - \{g(u) - \rho_3 T_3 u\}, g(v) - g(u) \rangle \geq 0,$ $\langle g(u) - \{g(u) - \rho_n T_n u\}, g(v) - g(u) \rangle \geq 0,$ for all $g(v) \in C$ Thus, $\langle T_1u, g(v)-g(u) \rangle \geq 0$, $< T_2 u, g(v) - g(u) \ge 0,$ $< T_3 u, g(v) - g(u) \ge 0,$ $< T_n u, g(v) - g(u) \ge 0,$ and so u is a solution of n-SGVI(I). **II. MAIN RESULT**

Based on n-SGVI(I) and equation (1.3), we are now in a position to propose the following general and unified new n-step iteration scheme for solving n-SGVI(I).

Algorithm 1.1. For a given $u_{1,0} \in H$, compute the approximate solution $\{u_{1,n}\}$ by the iterative scheme:

$u_{1,n+1} = (1-\alpha_{1,n})u_{1,n} + \alpha_{1,n}\{u_{2,n} - g(u_{2,n}) + P_C[g(u_{2,n}) - \rho_1 T_1 u_{2,n}]\},$	(1.4)
$u_{2,n} = (1 - \alpha_{2,n})u_{1,n} + \alpha_{2,n} \{u_{3,n} - g(u_{3,n}) + P_C[g(u_{3,n}) - \rho_2 T_2 u_{3,n}]\},$	(1.5)
$u_{3,n} = (1 - \alpha_{3,n})u_{1,n} + \alpha_{3,n} \{u_{4,n} - g(u_{4,n}) + P_C[g(u_{4,n}) - \rho_3 T_3 u_{4,n}]\},$	(1.6)

 $u_{n,n} = (1 - \alpha_{n,n})u_{1,n} + \alpha_{n,n} \{u_{1,n} - g(u_{1,n}) + P_C[g(u_{1,n}) - \rho_n T_n u_{1,n}]\},$ (1.7) where $0 \le \alpha_{1,n}, \alpha_{2,n}, \alpha_{3,n}, \dots, \alpha_{n,n} \le 1$ for all $n \ge 0$ and $\sum_{n=0}^{\infty} \alpha_{1,n}$ an diverges.

Special Cases:

For g = I, the identity operator, Algorithm 1.1.1 collapses to the following algorithm for a system of variational inequality, which appear to be a new one.

Algorithm 1.2. For a given $u_{1,0} \in C$, compute $\{u_{1,n}\}$ by the iterative scheme: $u_{1,n+1} = (1-\alpha_{1,n})u_{1,n} + \alpha_{1,n}P_C[u_{2,n} - \rho_1T_1u_{2,n}],$ $u_{2,n} = (1-\alpha_{2,n})u_{1,n} + \alpha_{2,n}P_C[u_{3,n} - \rho_2T_2u_{3,n}],$ $u_{3,n} = (1-\alpha_{3,n})u_{1,n} + \alpha_{3,n}P_C[u_{4,n} - \rho_3T_3u_{4,n}],$

(1.14)

(1.19)

 $u_{n,n} = (1-\alpha_{n,n})u_{1,n} + \alpha_{n,n}P_{C}[u_{1,n} - \rho_{n}T_{n}u_{1,n}],$ where $0 \le \alpha_{1,n}$, $\alpha_{2,n}$, $\alpha_{3,n}$,..., $\alpha_{n,n} \le 1$ for all $n \ge 0$ and $\sum_{n=0}^{\infty} \alpha_{1,n}$ an diverges. If $T_1 = T_2 = T_3 = ... = T_n = T$, $\rho_1 = \rho_2 = \rho_3 = ... = \rho_n = \rho$, then Algorithm 1.1.2 reduces to: **Algorithm 1.3.** For a given $u_{1,0} \in H$, compute the approximate solution $\{u_{1,n}\}$ by the iterative scheme: $u_{1,n+1} = (1-\alpha_{1,n})u_{1,n} + \alpha_{1,n}\{u_{2,n}-g(u_{2,n}) + P_C[g(u_{2,n}) - \rho Tu_{2,n}]\},\$ (1.8) $u_{2,n} = (1 - \alpha_{2,n})u_{1,n} + \alpha_{2,n} \{u_{3,n} - g(u_{3,n}) + P_C[g(u_{3,n}) - \rho T u_{3,n}]\},$ (1.9) $u_{3,n} = (1 - \alpha_{3,n})u_{1,n} + \alpha_{3,n} \{u_{4,n} - g(u_{4,n}) + P_C[g(u_{4,n}) - \rho T u_{4,n}]\},\$ (1.10)(1.11) $u_{n,n} = (1 - \alpha_{n,n})u_{1,n} + \alpha_{n,n} \{u_{1,n} - g(u_{1,n}) + P_C[g(u_{1,n}) - \rho T u_{1,n}]\},$ $n = 0, 1, 2, 3 \dots,$ which is known as near to n-generalized Ishikawa iteration process of rank n. Algorithm 1.3 was also suggested by Noor[72] for n=3 to approximate the solution of the general variational inequalities. For $\alpha_{3,n}, \ldots, \alpha_{n,n} = 0$, Algorithm 1.3 reduces to:

 $\begin{array}{ll} \mbox{Algorithm 1.4. For a given } u_{1,o} \in H, \mbox{ compute the approximate solution } \{u_{n,n}\} \mbox{ by the iterative scheme:} \\ u_{1,n+1} = (1-\alpha_{1,n})u_{1,n} + \alpha_{1,n}\{u_{2,n} - g(u_{2,n}) + P_C[g(u_{2,n}) - \rho Tu_{2,n}]\}, \\ u_{2,n} = (1-\alpha_{2,n})u_{1,n} + \alpha_{2,n}\{u_{1,n} - g(u_{1,n}) + P_C[g(u_{1,n}) - \rho Tu_{1,n}]\}, \\ \mbox{ which is known as the Ishikawa iterative scheme [45] for the general variational inequality.} \end{array}$

If $\alpha_{1,n}$, $\alpha_{2,n}$, $\alpha_{3,n}$, ..., $\alpha_{n,n} = 0$ in Algorithm 1.3, we get the Mann iterative scheme [60] as below:

Algorithm 1.5. For a given $u_{1,0} \in H$, compute the approximate solution $\{u_{n,n}\}$ by the iterative scheme:

 $u_{1,n+1} = (1-\alpha_{1,n})u_{1,n} + \alpha_{1,n}\{u_{1,n} - g(u_{1,n}) + P_C[g(u_{1,n}) - \rho_1 T_1 u_{1,n}]\}.$

We now study the convergence criteria of Algorithm 1.1.

Theorem 1.1. Let the operators $T_1, T_2, T_3, ..., T_n$, g:H \rightarrow H be strongly monotone with constants $\sigma_1, \sigma_2, \sigma_3, ..., \sigma_n, \sigma_{n+1}$ and Lipschitz continuous with constants $\delta_1, \delta_2, \delta_3, ..., \delta_n, \delta_{n+1}$ respectively and $u \in H$ be the solution of n-SGVI(I) and the following conditions hold:

$$\left|\rho_{i} - \frac{\sigma_{i}}{\delta_{i}^{2}}\right| < \frac{\sqrt{\sigma_{i}^{2} - \delta_{i}^{2} k(2-k)}}{\delta_{i}^{2}}, \sigma_{i} > \delta_{i} \sqrt{k(2-k)}, k < 1$$

$$(1.15)$$

where
$$\theta_i = k + (1 - 2\rho_i\sigma_i + \rho_i^2\delta_i^2)^{1/2}$$
, $k=2\sqrt{1-2\sigma_{n+1}} + \delta_4^2$ and $i=1,2,3,...n+1$,

then the approximate solution $\{u_{n,n}\}$ obtained from Algorithm 1.1 converges strongly to the exact solution u in H of the n-SGVI(I).

 $\begin{array}{ll} \mbox{Proof. Let } u \in H \mbox{ be the solution of } n-SGVI(I). \mbox{ Then, using Lemma 1.2, we have} \\ u = (1 - \alpha_{1,n})u + \alpha_{1,n} \{u - g(u) + Pc \ [g(u) - \rho_1 T_1 u] \} \\ = (1 - \alpha_{2,n})u + \alpha_{2,n} \{u - g(u) + Pc \ [g(u) - \rho_2 T_2 u] \} \\ = (1 - \alpha_{3,n})u + \alpha_{3,n} \{u - g(u) + Pc \ [g(u) - \rho_3 T_3 u] \} \end{tabular}$

 $= (1 - \alpha_{n,n})u + \alpha_{n,n} \{u - g(u) + Pc [g(u) - \rho_n T_n u]\}$

From (1.4) and (1.16), we have

$$\begin{split} \|u_{1,n+1} - u\| &= \|(1-\alpha_{1,n})(u_{1,n} - u) + \alpha_{1,n}(u_{2,n} - u - (g(u_{2,n}) - g(u)) + \alpha_{1,n}\{P_C(g(u_{2,n}) - \rho_1 T_1 u_{2,n}) - P_C(g(u) - \rho_1 T_1 u)\}\| \\ &\leq (1-\alpha_{1,n})\|u_{1,n} - u\| + \alpha_{1,n}\|u_{2,n} - u - (g(u_{2,n}) - g(u))\| + \alpha_{1,n}\|g(u_{2,n}) - g(u) - \rho_1 (T_1 u_{2,n} - T_1 u)\| \\ &\leq (1-\alpha_{1,n})\|u_{1,n} - u\| + \alpha_{1,n}\|u_{2,n} - u - (g(u_{2,n}) - g(u))\| + \alpha_{1,n}\|g(u_{2,n}) - g(u) - \rho_1 (T_1 u_{2,n} - T_1 u)\| \\ &\leq (1-\alpha_{1,n})\|u_{1,n} - u\| + \alpha_{1,n}\|u_{2,n} - u - (g(u_{2,n}) - g(u))\| + \alpha_{1,n}\|g(u_{2,n}) - g(u) - \rho_1 (T_1 u_{2,n} - T_1 u)\| \\ &\leq (1-\alpha_{1,n})\|u_{1,n} - u\| + \alpha_{1,n}\|u_{2,n} - u - (g(u_{2,n}) - g(u))\| + \alpha_{1,n}\|g(u_{2,n}) - g(u) - \rho_1 (T_1 u_{2,n} - T_1 u)\| \\ &\leq (1-\alpha_{1,n})\|u_{1,n} - u\| + \alpha_{1,n}\|u_{2,n} - u - (g(u_{2,n}) - g(u))\| + \alpha_{1,n}\|g(u_{2,n}) - g(u) - \rho_1 (T_1 u_{2,n} - T_1 u)\| \\ &\leq (1-\alpha_{1,n})\|u_{1,n} - u\| + \alpha_{1,n}\|u_{2,n} - u - (g(u_{2,n}) - g(u))\| + \alpha_{1,n}\|g(u_{2,n}) - g(u) - \rho_1 (T_1 u_{2,n} - T_1 u)\| \\ &\leq (1-\alpha_{1,n})\|u_{1,n} - u\| + \alpha_{1,n}\|u_{2,n} - u - (g(u_{2,n}) - g(u))\| + \alpha_{1,n}\|g(u_{2,n}) - g(u) - \rho_1 (T_1 u_{2,n} - T_1 u)\| \\ &\leq (1-\alpha_{1,n})\|u_{1,n} - u\| + \alpha_{1,n}\|u_{2,n} - u - (g(u_{2,n}) - g(u))\| + \alpha_{1,n}\|u_{2,n} - g(u) - \rho_1 (T_1 u_{2,n} - T_1 u)\| \\ &\leq (1-\alpha_{1,n})\|u_{1,n} - u\| + \alpha_{1,n}\|u_{2,n} - u - (g(u_{2,n}) - g(u))\| + \alpha_{1,n}\|u_{2,n} - g(u) - g(u)\| + \alpha_{1,n}\|u_{2,n} - g(u)\| + \alpha_{1,n}\|u_{2,n}\|u_{2,n}\|u_{2,n} - g(u)\| + \alpha_{1,n}\|u_{2$$

$$\leq (1 - \alpha_{1,n}) \|u_{1,n} - u\| + \alpha_{1,n} \|u_{2,n} - u - (g(u_{2,n}) - g(u)\| + \alpha_{1,n} \|u_{2,n} - u - g(u_{2,n}) - g(u)\| + \alpha_{1,n} \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\| \leq (1 - \alpha_{1,n}) \|u_{2,n} - u - \rho_1(T_1 u_{2,n} - T_1 u)\|$$

$$\leq (1-\alpha_{1,n}) \|u_{1,n} - u\| + 2\alpha_{1,n} \|u_{2,n} - u - (g(u_{2,n}) - g(u)\| + \alpha_{1,n} \|u_{2,n} - u - \rho_1(T_1u_{2,n} - T_1u)\| + \alpha_1(T_1u_{2,n} - T_1u)\| + \alpha_1(T_1u_{2,n} - T_1u)\| + \alpha_1(T_1u_{2,n} - T_1u)\| + \alpha_1(T_1u_{2,n} - T_1u)\| + \alpha_$$

Since

 $\| u_{2,n} - u - \rho_1 (T_1 u_{2,n} - T_1 u) \|^2 = \| u_{2,n} - u \|^2 - 2\rho_1 < T_1 u_{2,n} - T_1 u, u_{2,n} - u > + \rho^2_1 \| T_1 u_{2,n} - T_1 u \|^2_2 = \| u_{2,n} - u \|^2_2 + \rho^2_1 \| T_1 u_{2,n} - T_1 u \|^2_2 + \rho^2_1 \| T_1 \|$ $\leq || \mathbf{u}_{2,n} - \mathbf{u} ||^2 - 2\rho_1 \sigma_1 || \mathbf{u}_{2,n} - \mathbf{u} ||^2 + \rho_1^2 \delta_1^2 || \mathbf{u}_{2,n} - \mathbf{u} ||^2$ which follows that $||u_{2,n} - u - \rho_1(T_1u_{2,n} - T_1u)||^2 \le (1 - 2\rho_1\sigma_1 + \rho_1^2\delta_1^2)^{1/2}||u_{2,n} - u||.$ Again $\|u_{2,n} - u - (g(u_{2,n}) - g(u))\|^2 = \|u_{2,n} - u\|^2 - 2 < g(u_{2,n}) - g(u), u_{2,n} - u > + \|g(u_{2,n}) - g(u)\|^2$ $\leq \|u_{2,n} - u\|^2 - 2\sigma_{n+1}\|u_{2,n} - u\|^2 + \delta^2_{n+1}\|u_{2,n} - u\|^2$ $\leq (1-2\sigma_{n+1}+\delta^2_{n+1})\; \|u_{2,n}-u\|^2,$ it follows that $\|u_{2,n}-u-(g(u_{2,n})-g(u))\|^2 \!=\! (1-2\sigma_{n+1}+\delta^2_{n+1})^{1/2}\;\|u_{2,n}-u\|.$ Thus, $\|u_{1,n+1} - u\| \leq (1 - \alpha_{1,n}) \|u_{1,n} - u\| + \alpha_{1,n} (2(1 - 2\sigma_{n+1} + \delta_{n+1}^{2})^{1/2} + (1 - 2\rho_{1}\sigma_{1} + \rho_{1}^{2}\delta_{1}^{2})^{1/2}) \|u_{2,n} - u\|$ $\leq (1 - \alpha_{1,n}) \|u_{1,n} - u\| + \alpha_{1,n} \theta_1 \|u_{2,n} - u\|,$ (1.20)where $\theta_1 = 2(1 - 2\sigma_{n+1} + \delta_{n+1}^2)^{1/2} + (1 - 2\rho_1\sigma_{1+}\rho_1^2\delta_1^2)^{1/2} = k + (1 - 2\rho_1\sigma_{1+}\rho_1^2\delta_1^2)^{1/2}$. In a similar way from (1.5) and (1.17), we have $\|u_{2,n} - u\| \leq (1 - \alpha_{2,n}) \|u_{1,n} - u\| + \alpha_{2,n} (2(1 - 2\sigma_{n+1} + \delta_{n+1}^2)^{1/2} + (1 - 2\rho_2\sigma_{2+}\rho_2^{-2}\delta_2^{-2})^{1/2}) \|u_{3,n} - u\|$

© 2019 JETIR April 2019, Volume 6, Issue 4	www.jetir.org (ISSN-2349-5162)
$\leq (1 - \alpha_{2,n}) \ u_{1,n} - u\ + \alpha_{2,n} \theta_2 \ u_{3,n} - u\ .$	(1.21)
From (1.6) and (1.18), we have	
$\ u_{3,n} - u\ \leq (1 - \alpha_{3,n}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2}) \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_3\sigma_3 + \rho_3^2\delta_3^2)^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} \ u_{1,n} - u\ + \alpha_{3,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1}$	$ u_{4,n} - u $
$\leq (1 - \alpha_{3,n}) u_{1,n} - u + \alpha_{3,n} \theta_2 u_{4,n} - u .$	(1.22)
When we take 2 nd last step of the iteration, we get	
$\ u_{n-1,n} - u\ \leq (1 - \alpha_{n-1,n}) \ u_{1,n} - u\ + \alpha_{n-1,n} (2(1 - 2\sigma_{n+1} + \delta^2_{n+1})^{1/2} + (1 - 2\rho_{n-1}\sigma_{n-1} + \rho_{n-1}^2\delta_{n-1}^2)^{1/2})$	$ u_{n,n}-u $
$\leq (1 - \alpha_{n-1,n}) \ u_{1,n} - u\ + \alpha_{n-1,n} \theta_{n-1} \ u_{n,n} - u\ .$	(1.23)
Similarly, from equation (1.7) and (1.19) {which are the n^{th} step of the iteration}, we have	
$\ u_{n,n} - u\ \leq (1 - \alpha_{n,n}) \ u_{1,n} - u\ + \alpha_{n,n} (2(1 - 2\sigma_{n+1} + \delta_{n+1}^2)^{1/2} + (1 - 2\rho_n \sigma_n + \rho_n^2 \delta_n^2)^{1/2}) \ = 0$	$ \mathbf{u}_{1,n} - \mathbf{u} $
$\leq (1-\alpha_{n,n}) \ u_{1,n} - u\ + \alpha_{n,n} \theta_n \ u_{1,n} - u\ .$	(1.24)
Then equation (1.23) gives	
$ u_{n,n}-u \leq (1-\alpha_{n,n}+\alpha_{n,n}\theta_n u_{1,n}-u .$	
$\leq (1-(1-\theta_n) \; \alpha_{n,n}) \; \ u_{1,n}-u\ $	
$\leq \mathbf{u}_{1,n} - \mathbf{u} .$	(1.25)
From (1.23) and (1.24), we get	
$\ u_{n\text{-}1,n} - u\ \leq (1 - \alpha_{n\text{-}1,n}) \ u_{1,n} - u\ + \alpha_{n\text{-}1,n} \theta_{n\text{-}1} \ u_{1,n} - u\ $	
$\leq (1 - (1 - \theta_{n-1}) \alpha_{n-1,n}) \ u_{1,n} - u\ $	
$\leq \ \mathbf{u}_{1,n} - \mathbf{u}\ .$	(1.26)
Similarly, from (1.21) and (1.26) we have	
$\ \mathbf{u}_{2,n} - \mathbf{u}\ \le (1 - \alpha_{2,n}) \ \mathbf{u}_{1,n} - \mathbf{u}\ + \alpha_{2,n} \theta_2 \ \mathbf{u}_{3,n} - \mathbf{u}\ .$	
$\leq (1 - \alpha_{2,n} + \alpha_{2,n} \theta_2) u_{3,n} - u .$	
$\leq \ \mathbf{u}_{1,n} - \mathbf{u}\ .$	(1.27)
From (1.20) and (1.27), we get	
$\ u_{1,n+1} - u\ \le (1 - \alpha_{1,n}) \ u_{1,n} - u\ + \alpha_{1,n} \theta_1 \ u_{2,n} - u\ ,$	
$\leq (1-\alpha_{1,n}+\alpha_{1,n}\theta_1)\ u_{1,n}-u\ ,$	
$\leq (1 - (1 - \theta_1) \alpha_{1,n}) u_{1,n} - u $	
$\ \mathbf{u}_{1,n+1} - \mathbf{u}\ \le \prod_{j=0}^{n} \{ 1 - (1 - \theta_i)\alpha_j \} \ \mathbf{u}_{1,0} - \mathbf{u}\ .$	
Since $\sum_{n=0}^{\infty} \alpha_n$ diverges and $1-\theta_i > 0$, we have $\prod_{i=0}^{n} \{1-(1-\theta_i)\alpha_i\} = 0$. Consequently, the	sequence $\{u_{n,n}\}$ converges strongly to

u. From (1.25), (1.26) and (1.27), it follows that the sequence $\{u_{2,n}\}, \{u_{3,n}\}, \dots$ and $\{u_{n,n}\}$ also converges strongly to u in H. This completes the proof.

As an immediate consequence of Theorem 1.1 is the following:

Corollary 2.1. [Theorem 3.2, Noor [72]] Let the operators T, g:H \rightarrow H be strongly monotone with constants $\alpha > 0$, $\sigma > 0$ and Lipschitz continuous with constants $\beta > 0$, $\delta > 0$, respectively.

For a given $u_0 \in H$, compute the approximate solution $\{u_n\}$ by the iterative scheme:	
$u_{n+1} = (1-\alpha_n)u_n + \alpha_n \{w_n - g(w_n) + P_C[g(w_n) - \rho T w_n]\},$	(A1)
$w_n = (1 - \beta_n)u_n + \beta_n \{y_n - g(y_n) + P_C[g(y_n) - \rho Ty_n]\},$	(A2)
$y_n = (1 - \gamma_n)u_n + \gamma_n \{u_n - g(u_n) + P_C[g(u_n) - \rho T u_n]\},$	(A3)
where $0 \le \alpha_n$, β_n , $\gamma_n \le 1$ for all $n \ge 0$ and $\sum_{n=0}^{\infty} \alpha_n$ diverges. If the following conditions hold:	

 $\left|\rho - \frac{\alpha}{\beta^2}\right| < \frac{\sqrt{\alpha^2 - \beta^2 k(2-k)}}{\beta^2}, \alpha > \beta \sqrt{k(2-k)}, k < 1$, where $k = 2\sqrt{1 - 2\sigma + \delta^2}$ then approximate solution $\{u_n\}$ defined by (Al),

(A2), (A3) converges strongly to the exact solution u in H of the general variational inequality problem.

III. ACKNOWLEDGMENT

There is no funding agency..

REFERENCES

- [1] Baiocchi, C. and Capelo, A. 1984, Variational and quasivariational Inequalities J.Wiley and sons, New York.
- [2] Brezis, H. 1973, Operateurs max1maux Monotone et semigroups de contractions dans les Espaces de Hilbert, North Holland, Amsterdam.
- [3] Ishikawa, S., 1974. Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
- [4] Mann, W.R., 1952, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1952), 506-510.
- [5] Noor, M. A., 2000, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217-229.
- [6] Noor, M.A., 1988, General variational inequalities, Appl. Math. Lett., 1(1988), 119-121.
- [7] Noor, M.A., 2000, Projection-splitting algorithm for monotone variational inequalities, J. Com put. Math. Appl. 39 (2000), 73-79.
- [8] Noor, M.A., 2002, Two-step approximation schemes for multivalued quasivariational inclusions, Nonlinear Funct. Anal. Appl. 7 (1)(2002), 1-14.
- [9] Sahu, D.R., 2003, On generalized Ishikawa iteration process and nonexpansive mapping in Banach Spaces, Demonstrative Mathematics, Vol., XXXVI (3).

Sahu, D.R and Salhotra, R. 2007, Three step iterative algorithm for the system of general variational inequalities, Indian [10] Journal of Mathematics and Mathematical Sciences. 3(2007).

Stampacchia, G. 1964, Formes bilinearies coercitives sur les ensembles convexes, C.R. Acad. Sci. Paris Ser I. Math., [11] 258(1964), 4413-4416.