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Abstract : The purpose of this paper is to introduce n-step iterative algorithm for a system of general variational inequality. The
idea is motivated from [10].
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. INTRODUCTION

Let H be a real Hilbert space whose inner product and norm are denoted by (.,.) and ||.||, respectively. Let C be a nonempty closed
convex set in H. For given nonlinear operators Ty, Ty, Ts,...... Tn, g¢ H — H, consider the problem of finding u € H, g(u) € C
such that

<Tyu, g(v)-g(u)> >0,

<Tu, g(v)-g(u)>>0,

<Tsu, g(v)-g(w)> =0,

<Thu, g(v)-g(u)>>0, for all g(v) e C. ()]
It will be called a system of n-general variational inequalities (n-SGVI).
Special Cases:

LUTi=T=Ts=........ =Ty, the SGVI(I) collapses to find u € H, g(u) € C such that

<Tu,g(v)-g(u)>> 0 for all g(v) € C. )
2. For g = 1, the identity operator, the general variational inequality reduces to find u e C such that

<Tu,v-u>>0forallv e C, (nn

which is called the variational inequality (Stampacchia [11]).
3. Let C(u) be a closed convex-valued set in Hilbert space. Consider the problem of finding
u € C(u) such that <Tu,v —u> >0 for all v e C(u), (V)
which is called quasi-variational inequality problem (Baiocchi and Capelo [1]).
The purpose of this paper is to develop the n-iterative algorithm to approximate the solution of the n-system of general
Variational inequalities (n-SGV1).
Our result has a considerable improvement upon others and generalizes a number of iterative algorithms used earlier by many
authors in the field of general variational inequalities (see [3, 4, 5, 7, 8]).
Section 1.1 contains basic definitions and idea about the n-step iteration scheme for the n-system of general variational
inequalities and its convergence theorem. Our results generalize the results of Noor [5,8].

1.1. n-step iterative algorithm and its convergence analysis:
Definition 1.1. Let H be a real Hilbert space. An operator T: H —H is said to be:

A. strongly monotone if there exists a constant o> 0 such that <Tu - Tv,u—v>>a |ju —V ||* for all
u,veH,

B. Lipschitz continuous if there exists a constant > 0 such that |[Tu —Tv || < B || u-v || for all
u,veH.
Definition 1.2.

(1)Projection mapping Let H be a real Hilbert space and C < H a nonempty closed convex set. If
u € H, by projection of u on C we mean the element Pc(u) € C such that

lu-Pc(u)||n < |ju-v || for all v € C.
In other words, we can say that Pc (u) is the element of C closest to u.
Lemma 1.1. (Brezis [2]). Let C be a nonempty closed subset of H. For a given z € H, u e C satisfies the inequality

<u-z,v-u>>0 for allv eC (1.2)
if and only if
U=Pez 1.2)

where p > 0 is a constant.

This property of the projection operator Pc plays an important role in obtaining our results.

We now prove the following lemma:

Lemma 1.2. The element u € H is a solution of the SGVI(I) if and only u e H satisfies the relation
g(u) = Pc [g(u)-paTau],

g(u) = Pc [g(u)-p2Tau],

g(u) = Pc [g(u)-psTsu],
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g(u) = Pc [g(u)-pnTnul, 1.3
where p1, p2, p3, .....pn > 0 are some constants.

Proof. Let u be the solution of n-SGVI(I). Then for g(u) € C, we have

<Tyu, g(v)-g(u)> >0,

<Tou, g(v)-g(u)> >0,

<Tsu,9(v)- g(w> =0,

<Thu,g(Vv)- g(u)>>0, for all g(v) € C.
For any pa, p2, p3, -....pn >0, we have

<g(u) - {9(u) - p1Tau}, g(v)-g(w)> =0,

<g(u) - {9(u) - p2Tau}, g(v)-g(w)> =0,

<g(u) - {9(u) - psTsu}, g(v)-g(w)> =0,

<g(u) - {g(u) - paTnu}, g(v)-g(w)> =0, for all g(v) e C.
It follows from Lemma 1.1.1 that

g(u) = Pc [g(u)-paTau],

g(u) = Pc [g(u)-p2Tau],

g(u) = Pc [g(u)-psTsu],

g(u) = Pc [g(u)-pnTnu].

Conversely, let u € H such that (1.1.3) holds, then it follows from Lemma 1. 1. 1 that g(u) € C and
<g(u) - {9(u) - p1Tau}, g(v)-g(w)> =0,

<g(u) - {9(u) - p2Tau}, g(v)-g(uw)> =0,

<g(u) - {9(u) - psTau}, g(v)-g(w)> =0,

<g(U) - {9(U) - peTol}, gV)-g(w)> 2 0, for all g(v) € C.
Thus,

<y, g(v)-g(w)> >0,

<Tou, g(v)-g(w)> >0,

<Tsu.g(v)- glu)> >0,

<Tnu,g(v)- g(u)> =0,
and so u is a solution of n-SGVI(I).

Il. MAIN RESULT

Based on n-SGVI(I) and equation (1.3), we are now in a position to propose the following general and unified new n-step iteration
scheme for solving n-SGVI(I).
Algorithm 1.1. For a given uio € H, compute the approximate solution {us1,,} by the iterative scheme:

Uz,ne1 = (L-aan)Un + o nfU2n- 9(Uzn) + Pc[g(Uzn) - p1TaUzn]}, (1.4)
Uz,n = (L-a2,0)Usn + az2n{Usp- 9(Usn) + Pc[g(Usn) - p2T2Usn]}, 1.5)
U3zn = (1-(13,n)U1,n + (13,n{U4,n- g(U4,n) + Pc[g(U4,n) - p3T3U4,n]}, (16)
Unn = (L-ann)Uzn + annfUsn- 9(U1n) + Pc[g(Uin) - pnTalin]}, .7

where 0 < agn, O2n, Ogn ,..., 0nn < 1 for alln >0 and )}3_, 01,0 an diverges.

Special Cases:
IEor g =I, the identity operator, Algorithm 1.1.1 collapses to the following algorithm for a system of variational inequality, which
appear to be a new one.
Algorithm 1.2. For a given uio € C, compute {us,n} by the iterative scheme:
Ut = (1-0n)Usn + 0a,nPc[Uz2n - p1T1U2,],
Uz,n = (1-02n)Uzn + 02nPcUsn- p2T2Uzn],
Uzn = (1-03n)Un + 03nPc[Usn - paTaUan],
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Unn = (l'an,n)ul,n + an,an[Ul,n - pnTnul,n],

where 0 < ayn, O2n, Ogn ,..., 0nn < 1 for alln >0 and }}5_, 01, an diverges.

If Ty =T, =Ts=...=Tn=T, p1=p2=ps=...=pn=p, then Algorithm 1.1.2 reduces to:

Algorithm 1.3. For a given uip € H, compute the approximate solution {u,n} by the iterative scheme:

U = (L-0an)Us,n + 01 n{Uz2n- 9(U2,n) + Pc[g(Uzn) - pTU2n]}, (1.8)
Uon = (1-0tz,n)U1,n + aZ,n{U3,n' g(u3,n) + Pc[g(u3,n) - pTU3,n]}, (19)
Usn = (1'03,n)ul,n + a3,n{u4,n' g(u4,n) + Pc[g(U4,n) - pTU4,n]}, (110)
Unn = (1'an,n)ul,n + an,n{ul,n' g(ul,n) + Pc[g(ul,n) - pTUl,n]}, (111)
n=0,1,23....... R

which is known as near to n-generalized Ishikawa iteration process of rank n. Algorithm 1.3 was also suggested by Noor[72] for
n=3 to approximate the solution of the general variational inequalities.
For agp ,..., onn = 0, Algorithm 1.3 reduces to:
Algorithm 1.4. For a given ui1, € H, compute the approximate solution {unn} by the iterative scheme:
Ui+t = (1'a1,n)ul,n + 0t1,n{U2,n- g(Uz,n) + Pc[g(uz,n) - pTUZ,n]}, (112)
Uz,n = (1-a2,0)U1n + 02n{Usn- g(U1n) + Pc[g(un) - pTuin]}, (1.13)
which is known as the Ishikawa iterative scheme [45] for the general variational inequality.
If 010, 020,030 ,..., tnp = 0 in Algorithm 1.3, we get the Mann iterative scheme [60] as below:

Algorithm 1.5. For a given ui, € H, compute the approximate solution {unn} by the iterative scheme:
Uzni1 = (L-azn)Usn + oz nfUzn- 9(Usn) + Pc[g(Uin) - p1T1Uzn]}- (1.14)
We now study the convergence criteria of Algorithm 1.1.
Theorem 1.1. Let the operators Ty, To, Ts,...,Tn, g:H — H be strongly monotone with constants 1, 62, 63,..., Gn, Gn+1 and
Lipschitz continuous with constants 61, 2, 83, ..., s, On+1 respectively and u e H be the solution of n-SGVI(1) and the following
conditions hold:

| o —5% k(@K
pi_§_2'< 7 52'( ),ci>8i,/k(2—k),k<1 (1.15)

where 6i = k + (| - 2piGi 3 p2i82i)1/2, k=2,f1—20‘n+1+5421 and i= 1,2,3,...n+1,
then the approximate solution {un,} obtained from Algorithm 1.1 converges strongly to the exact solution u in H of the
n-SGVI(I).
Proof. Let u € H be the solution of n-SGVI(I). Then, using Lemma 1.2, we have

u = (1- agn)u+ azn{u-g(u)+ Pc [g(u)-p1 T1u]} (1.16)
= (1- agn)ut opnfu-g(u)+ Pc [g(u)-p2 T2ul} (2.17)
= (1- agn)ut azefu-g(u)+ Pc [g(u)-psTsul} (1.18)

| = (1- onn)ut onnfu-g(u)+ Pc [g(u)-pnTaul} (1.19)

From (1.4) and (1.16), we have
[luzn+a—ull= [I(1— 0t1n)(Usn — 1) + 0,n(Uzn— U= (9(U2,n) — (W) + 0an{Pc(9(Uzn) — p1T1l2n) — Pc(g(u) — p1 T1U)H|
< (1 = azn)|uzn—ul[ + 01 [luzn — U = (9(Uzn) — W) + 0nl|g(U2,n) — G(U) — p2(T1lzn — TaU)||
< (1 = ogn)l[Un—ul| + @z [Juzn — U= (9(U2,) — g(W)[| + aanl|Uzn — U —g(Uzn) — G(U) || + azn || Uzn — U~ p1(T1lzn— TrU)]|
< (1 = o n)l[Uzn—ul| + 200 [luzn = U = (9(Uz2n) — gl + 0z || Uz — U= pa(Tatlzn — T1U)||
Since
| Uz — U — p1(TaUzn — TaU)|[> = || Uzn — U |]? = 2p1 <T1Uzn — T1U, Uzpn — U> + p?q|[T1lizn — Tau|]?
< || uzn—U [P = 2p151]| Uzn — U [P+ p128:?| Uz — U |2
which follows that
| Uz —u— p1(Tatzn — T1U)|P< (1 = 2p161 + p1°8:2) M uzn— U ||.
Again
[luzn —u = (9(U2n) — g(U))IP* = [luzn — Ul]* — 2< g(Uzn) — G(u), Uzn — U> + [Ig(U2n) — g(U)IP
< ||112,n - U”2 — 26n+1”U2,n - U”2 + 62n+1||U2,n - U||2
<(1-20n1+ 82n+1) luzpn — U”z;
it follows that
lJuzn — U — (9(Uzn) = U)IP = (1 — 20041 + &n+1)" [|uzn — ul.
Thus,
||U1,n+1— u|| < (1 — (xl,n) ||U1,n— uH + (ll,n(Z(l —20n41 + 62n+1)1/2 + (l — 2p161 + p12812)1’2) ||U2,n — U||
< (1 = oan) [lun—ul] + a1,0 O1]juz,n — U], (1.20)
where 61 = 2(1 — 26n41 + 52n+1)1/2 + (1-2pio1+ [)12512)1/2 =k+ (1-2pio1+ p12612)1/2.
In a similar way from (1.5) and (1.17), we have
lJuzn —ull < (1 = azn U=l + a2n(2(1 — 20041 + &n41)"? + (1 — 2202 + P282°)M2) [|uzn — ul|
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< (1 — U«Z,n) ||U1,n— uH + d2n 92||U3,n — U” (1.21)
From (1.6) and (1.18), we have
[Jusn —ull < (1 = agn )|usn—ull + azn(2(L — 26ne + &ne1)2 + (1 — 2p3cs + ps?8a%)"?) [Juan — Ul
< (1 — 0zn) [|Ura—ul| + a3 O2f|usn — Ul (1.22)
When we take 2" last step of the iteration, we get
”Un—l,n - u” < (1 — On-1,n )”Ul,n_ UH + an—l,n(z(l —2Gn+1 + 62n+1)1/2 + (1 - 2pn-1(5n-l + pn-126n—12)1/2) ||Un,n - U”
<(1- an—l,n) ”Ul,n_ ul| + on-1n en—lllun,n - U” (123)
Similarly, from equation (1.7) and (1.19) {which are the n'" step of the iteration}, we have
[lunn —ull < (1 = ana Mluzn—ull + 0nn(2(1 — 26041 + ne2)" + (L — 2pn0n + pnZ3n?)?) [JUrn — Ul
< (1 - an,n) ”Ul,n_ uH + Onn en”Ul,n - U” (124)
Then equation (1.23) gives
”Un,n _u” < (1 — Op,nt Onpn en”Ul,n - U”
< (1= (1= 6n) onn) [Jun—ull
< |[ugn —ull. (1.25)
From (1.23) and (1.24), we get
”Un—l,n - u|| < (1 — On-1,n )”Ul,n_ uH + an-l,nen-lllul,n - U”
< (1 - (1 - en—l) an-l,n) ”Ul,n - U”
< Jluzn —ul. (1.26)
Similarly, from (1.21) and (1.26) we have
lluzn —ull < (1 = azn) |luzn—ul] + 02,0 62]|uzn — ul.
< (1 — aznt 02,0 02) ||usn — ul|.
<|luz,n — ul|. (1.27)
From (1.20) and (1.27), we get
|luz,ne1— ]| < (1 = 0zn) [|Ur,n— || + ozn B1f|uzn —ul|,
< (1 —agnt ogn O1)|urn —ull,
< (1—(1-61) own) [[uzn —ull
[luvnea—ull < TTjoo{ 1 — (1 - O)a} || U0 —ull.
Since X5-o on diverges and 1-6; > 0, we have [I7_o{ 1 — (1 - 6i)a;} = 0. Consnequently, the sequence {un}converges strongly to
u. From (1.25), (1.26) and (1.27), it follows that the sequence {uzn}, {Usn}....and {unn } also converges strongly to u in H. This
completes the proof.

As an immediate consequence of Theorem 1.1 is the following:

Corollary 2.1. [Theorem 3.2, Noor [72]] Let the operators T, g:H —H be strongly monotone with constants o > 0, ¢ > 0 and
Lipschitz continuous with constants § > 0, & > 0, respectively.

For a given up € H, compute the approximate solution {un} by the iterative scheme:

Une1 = (L1-0n)Un + an{Wn- g(Wn) + Pc[g(wWn) - pTWa]}, (A1)
W = (1-Bn)un + Bn{Yn- 9(¥n) + Pc[a(¥n) - pTynl}, (A2)
Yn = (1-yn)un + yn{Un- g(Un) + Pc[g(Un) - pTun]}, (A3)

where 0 <o, Bn, yo <1 for all n >0and Y.%_, an diverges. If the following conditions hold:

,/ 2 _Bk(2-k
‘p—% <%(), a>Bk(2—k), k<1, where k=2,/1—2cy+52 then approximate solution {un} defined by (Al),

(A2), (A3) converges strongly to the exact solution u in H of the general variational inequality problem.
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