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I. INTRODUCTION 

Let H be a real Hilbert space whose inner product and norm are denoted by (.,.) and ||.||, respectively. Let C be a nonempty closed  

convex set in H. For given nonlinear operators T1 , T2, T3,……Tn, g: H → H, consider the problem of finding u  H, g(u)  C 
such that 

<T1u, g(v)-g(u)> ≥ 0, 

   <T2u, g(v)-g(u)> ≥ 0, 

<T3u, g(v)-g(u)> ≥ 0, 

. 

. 

. 

  <Tnu, g(v)-g(u)> ≥ 0,   for all g(v)  C.          (I) 
It will be called a system of n-general variational inequalities (n-SGVI). 

Special Cases: 

1. If T1 = T2 = T3=……..= Tn, the SGVI(I) collapses to find u  H, g(u)  C such that  

<Tu,g(v)-g(u)> ≥ 0 for all g(v)  C.         (II) 

2. For g = I, the identity operator, the general variational inequality reduces to find u  C such that 

 <Tu,v –u> ≥ 0 for all v  C,           (III) 
which is called the variational inequality (Stampacchia [11]). 
3. Let C(u) be a closed convex-valued set in Hilbert space. Consider the problem of finding              

u  C(u) such that <Tu,v –u> ≥ 0 for all v  C(u),                (IV) 
which is called quasi-variational inequality problem (Baiocchi and Capelo [1]). 

The purpose of this paper is to develop the n-iterative algorithm to approximate the solution of the n-system of general 

Variational inequalities (n-SGVI). 

Our result has a considerable improvement upon others and generalizes a number of iterative algorithms used earlier by many  

authors in the field of general variational inequalities (see [3, 4, 5, 7, 8]). 

Section 1.1 contains basic definitions and idea about the n-step iteration scheme for the n-system of general variational  

inequalities and its convergence theorem. Our results generalize the results of Noor [5,8].  

 

1.1. n-step iterative algorithm and its convergence analysis: 
Definition 1.1. Let H be a real Hilbert space. An operator T: H →H is said to be: 

A. strongly monotone if there exists a constant α > 0 such that  <Tu - Tv,u –v> ≥ α ||u –v ||2 for all  

u, v  H, 

B. Lipschitz continuous if there exists a constant β > 0 such that ||Tu –Tv || ≤ β || u-v || for all  

u, v  H. 
Definition 1.2. 

(1) Projection mapping Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. If  

u  H, by projection of u on C we mean the element Pc(u)  C such that 
||u-Pc(u)||H ≤ ||u-v ||H for all v  C. 

In other words, we can say that Pc (u) is the element of C closest to u. 

Lemma 1.1. (Brezis [2]). Let C be a nonempty closed subset of H. For a given z  H, u  C satisfies the inequality 

<u-z,v-u> ≥ 0 for all v C                  (1.1) 
if and only if  

u = PCz                    (1.2) 

where  > 0 is a constant. 
This property of the projection operator Pc plays an important role in obtaining our results. 

We now prove the following lemma: 

Lemma 1.2. The element u  H is a solution of the SGVI(I) if and only u  H satisfies the relation 

g(u) = Pc [g(u)-1T1u],  

g(u) = Pc [g(u)-2T2u], 

g(u) = Pc [g(u)-3T3u], 
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. 

. 

. 

g(u) = Pc [g(u)-nTnu],                  (1.3) 

where 1, 2, 3, …..n > 0 are some constants. 

Proof. Let u be the solution of n-SGVI(I). Then for g(u)  C, we have 
<T1u, g(v)-g(u)> ≥ 0,  

<T2u, g(v)-g(u)> ≥ 0,  
<T3u,g(v)- g(u)> ≥ 0, 

. 

. 

. 

<Tnu,g(v)- g(u)> ≥ 0,                     for all g(v)  C. 

For any  1, 2, 3, …..n > 0 , we have 

<g(u) - {g(u) - 1T1u}, g(v)-g(u)> ≥ 0, 

<g(u) - {g(u) - 2T2u}, g(v)-g(u)> ≥ 0, 

<g(u) - {g(u) - 3T3u}, g(v)-g(u)> ≥ 0, 
. 

. 

. 

<g(u) - {g(u) - nTnu}, g(v)-g(u)> ≥ 0,    for all g(v)  C. 
It follows from Lemma 1.1.1 that 

g(u) = Pc [g(u)-1T1u],  

g(u) = Pc [g(u)-2T2u], 

g(u) = Pc [g(u)-3T3u], 
. 

. 

. 

g(u) = Pc [g(u)-nTnu]. 

Conversely, let u  H such that (1.1.3) holds, then it follows from Lemma 1. 1. 1 that g(u)  C and 

<g(u) - {g(u) - 1T1u}, g(v)-g(u)> ≥ 0, 

<g(u) - {g(u) - 2T2u}, g(v)-g(u)> ≥ 0, 

<g(u) - {g(u) - 3T3u}, g(v)-g(u)> ≥ 0, 
. 

. 

. 

<g(u) - {g(u) - nTnu}, g(v)-g(u)> ≥ 0,    for all g(v)  C. 
Thus, 

<T1u, g(v)-g(u)> ≥ 0,  

<T2u, g(v)-g(u)> ≥ 0,  

<T3u,g(v)- g(u)> ≥ 0, 

. 

. 

. 

<Tnu,g(v)- g(u)> ≥ 0,     

and so u is a solution of n-SGVI(I).  

II. MAIN RESULT 

Based on n-SGVI(I) and equation (1.3), we are now in a position to propose the following general and unified new n-step iteration  

scheme for solving n-SGVI(I). 

Algorithm 1.1. For a given u1,0  H, compute the approximate solution {u1,n} by the iterative scheme: 

u1,n+1 = (1-α1,n)u1,n + α1,n{u2,n- g(u2,n) + PC[g(u2,n) - 1T1u2,n]},                (1.4) 

u2,n = (1-α2,n)u1,n + α2,n{u3,n- g(u3,n) + PC[g(u3,n) - 2T2u3,n]},                (1.5) 

u3,n = (1-α3,n)u1,n + α3,n{u4,n- g(u4,n) + PC[g(u4,n) - 3T3u4,n]},                (1.6) 
. 

. 

. 

un,n = (1-αn,n)u1,n + αn,n{u1,n- g(u1,n) + PC[g(u1,n) - nTnu1,n]},                (1.7) 

where 0 ≤ α1,n , α2,n , α3,n ,…, αn,n ≤ 1 for all n ≥ 0 and ∑ α∞
𝑛=0 1,n an diverges. 

 

Special Cases: 
For g =I, the identity operator, Algorithm 1.1.1 collapses to the following algorithm for a system of variational inequality, which 

appear to be a new one. 

Algorithm 1.2. For a given u1,0  C, compute {u1,n} by the iterative scheme: 

u1,n+1 = (1-α1,n)u1,n + α1,nPC[u2,n - 1T1u2,n],           

u2,n = (1-α2,n)u1,n + α2,nPC[u3,n- 2T2u3,n],       

u3,n = (1-α3,n)u1,n + α3,nPC[u4,n - 3T3u4,n],                
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. 

. 

. 

un,n = (1-αn,n)u1,n + αn,nPC[u1,n - nTnu1,n],                

where 0 ≤ α1,n , α2,n , α3,n ,…, αn,n ≤ 1 for all n ≥ 0 and ∑ α∞
𝑛=0 1,n an diverges. 

If T1 =T2 =T3 =…=Tn= T, 1=2=3=…=n=, then Algorithm 1.1.2 reduces to: 

Algorithm 1.3. For a given u1,0  H, compute the approximate solution {u1,n} by the iterative scheme: 

u1,n+1 = (1-α1,n)u1,n + α1,n{u2,n- g(u2,n) + PC[g(u2,n) - Tu2,n]},               (1.8) 

u2,n = (1-α2,n)u1,n + α2,n{u3,n- g(u3,n) + PC[g(u3,n) - Tu3,n]},                (1.9) 

u3,n = (1-α3,n)u1,n + α3,n{u4,n- g(u4,n) + PC[g(u4,n) - Tu4,n]},               (1.10) 
. 

. 

. 

un,n = (1-αn,n)u1,n + αn,n{u1,n- g(u1,n) + PC[g(u1,n) - Tu1,n]},               (1.11) 
 n = 0,1,2,3……., 

which is known as near to n-generalized Ishikawa iteration process of rank n. Algorithm 1.3 was also suggested by Noor[72] for  

n=3 to approximate the solution of the general variational inequalities. 

For α3,n ,…, αn,n = 0, Algorithm 1.3 reduces to: 

Algorithm 1.4. For a given u1,o  H, compute the approximate solution {un,n} by the iterative scheme: 

u1,n+1 = (1-α1,n)u1,n + α1,n{u2,n- g(u2,n) + PC[g(u2,n) - Tu2,n]},              (1.12) 

u2,n = (1-α2,n)u1,n + α2,n{u1,n- g(u1,n) + PC[g(u1,n) - Tu1,n]},              (1.13) 
which is known as the Ishikawa iterative scheme [45] for the general variational inequality. 

If α1,n , α2,n ,α3,n ,…, αn,n = 0 in Algorithm 1.3, we get the Mann iterative scheme [60] as below: 

 

Algorithm 1.5. For a given u1,o  H, compute the approximate solution {un,n} by the iterative scheme: 

u1,n+1 = (1-α1,n)u1,n + α1,n{u1,n- g(u1,n) + PC[g(u1,n) - 1T1u1,n]}.              (1.14) 
We now study the convergence criteria of Algorithm 1.1. 

Theorem 1.1. Let the operators T1, T2, T3,…,Tn , g:H → H be strongly monotone with constants 1, 2, 3,…, n, n+1 and  

Lipschitz continuous with constants 1, 2, 3, …, n, n+1 respectively and u  H be the solution of n-SGVI(I) and the following 
conditions hold: 

2 2

i ii
i 2 2

i i

k(2 k)
,

 


 

 
  i > i √𝑘(2 − 𝑘), k < 1               (1.15) 

where i = k + (l - 2ii + 2
i2

i)1/2, k=2 2
4n 11 2   and i= 1,2,3,…n+1, 

then the approximate solution {un,n} obtained from Algorithm 1.1 converges strongly to the exact solution u in H of the  

n-SGVI(I). 

Proof. Let u  H be the solution of n-SGVI(I). Then, using Lemma 1.2, we have 

u = (1- α1,n)u+ α1,n{u-g(u)+ Pc [g(u)-1T1u]}          (1.16) 

   = (1- α2,n)u+ α2,n{u-g(u)+ Pc [g(u)-2T2u]}          (1.17) 

   = (1- α3,n)u+ α3,n{u-g(u)+ Pc [g(u)-3T3u]}          (1.18) 
. 

. 

. 

  = (1- αn,n)u+ αn,n{u-g(u)+ Pc [g(u)-nTnu]}          (1.19) 
From (1.4) and (1.16), we have 

||u1,n+1– u||= ||(1– α1,n)(u1,n – u) + α1,n(u2,n– u– (g(u2,n) – g(u)) + α1,n{PC(g(u2,n) – 1T1u2,n)  –  PC(g(u) – 1T1u)}|| 

   ≤ (1 – α1,n)||u1,n– u|| + α1,n ||u2,n – u – (g(u2,n) – g(u)|| + α1,n||g(u2,n) – g(u) – 1(T1u2,n – T1u)|| 

   ≤ (1 – α1,n)||u1,n– u|| + α1,n ||u2,n – u – (g(u2,n) – g(u)|| + α1,n||u2,n – u – g(u2,n) – g(u) ||  + α1,n || u2,n – u –  1(T1u2,n – T1u)|| 

≤ (1 – α1,n)||u1,n– u|| + 2α1,n ||u2,n – u – (g(u2,n) – g(u)|| + α1,n || u2,n – u –  1(T1u2,n – T1u)|| 
Since 

|| u2,n – u –  1(T1u2,n – T1u)||2 = || u2,n – u ||2 – 21 <T1u2,n – T1u, u2,n – u> + 2
1||T1u2,n – T1u||2 

      ≤ || u2,n – u ||2 – 211|| u2,n – u ||2 + 1
21

2|| u2,n – u ||2 

which follows that 

|| u2,n – u –  1(T1u2,n – T1u)||2 ≤ (1 – 211 + 1
21

2)1/2|| u2,n – u ||. 
Again 

||u2,n – u – (g(u2,n) – g(u))||2 = ||u2,n – u||2 – 2< g(u2,n) – g(u), u2,n – u> + ||g(u2,n) – g(u)||2   

≤ ||u2,n – u||2  – 2n+1||u2,n – u||2 + 2
n+1||u2,n – u||2 

≤ (1 – 2n+1 + 2
n+1) ||u2,n – u||2, 

it follows that  

||u2,n – u – (g(u2,n) – g(u))||2 = (1 – 2n+1 + 2
n+1)1/2 ||u2,n – u||. 

Thus, 

||u1,n+1– u|| ≤ (1 – α1,n) ||u1,n– u|| + α1,n(2(1 – 2n+1 + 2
n+1)1/2 + (1 – 211 + 1

21
2)1/2) ||u2,n – u|| 

    ≤ (1 – α1,n) ||u1,n– u|| + α1,n 1||u2,n – u||,                    (1.20) 

where 1 = 2(1 – 2n+1 + 2
n+1)1/2 + (1 – 211 + 1

21
2)1/2 = k + (1 – 211 + 1

21
2)1/2. 

In a similar way from (1.5) and (1.17), we have 

||u2,n – u|| ≤ (1 – α2,n )||u1,n– u|| + α2,n(2(1 – 2n+1 + 2
n+1)1/2 + (1 – 222 + 2

22
2)1/2) ||u3,n – u|| 
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 ≤ (1 – α2,n) ||u1,n– u|| + α2,n 2||u3,n – u||.       (1.21) 
From (1.6) and (1.18), we have 

||u3,n – u|| ≤ (1 – α3,n )||u1,n– u|| + α3,n(2(1 – 2n+1 + 2
n+1)1/2 + (1 – 233 + 3

23
2)1/2) ||u4,n – u|| 

 ≤ (1 – α3,n) ||u1,n– u|| + α3,n 2||u4,n – u||.       (1.22) 
When we take 2nd last step of the iteration, we get 

||un-1,n – u|| ≤ (1 – αn-1,n )||u1,n– u|| + αn-1,n(2(1 – 2n+1 + 2
n+1)1/2 + (1 – 2n-1n-1 + n-1

2n-1
2)1/2)  ||un,n – u|| 

     ≤ (1 – αn-1,n) ||u1,n– u|| + αn-1,n n-1||un,n – u||.      (1.23) 
Similarly, from equation (1.7) and (1.19) {which are the nth step of the iteration}, we have 

||un,n – u|| ≤ (1 – αn,n )||u1,n– u|| + αn,n(2(1 – 2n+1 + 2
n+1)1/2 + (1 – 2nn + n

2n
2)1/2) ||u1,n – u|| 

  ≤ (1 – αn,n) ||u1,n– u|| + αn,n n||u1,n – u||.       (1.24) 
Then equation (1.23) gives 

 ||un,n – u|| ≤ (1 – αn,n+ αn,n n||u1,n – u||. 

   ≤ (1 – (1 – n) αn,n) ||u1,n – u|| 
  ≤ ||u1,n – u||.          (1.25) 

From (1.23) and (1.24), we get 

  ||un-1,n – u|| ≤ (1 – αn-1,n )||u1,n– u|| + αn-1,nn-1||u1,n – u|| 

                 ≤ (1 – (1 – n-1) αn-1,n) ||u1,n – u||       
  ≤ ||u1,n – u||.           (1.26) 

Similarly, from (1.21) and (1.26) we have 

||u2,n – u|| ≤ (1 – α2,n) ||u1,n– u|| + α2,n 2||u3,n – u||.   

  ≤ (1 – α2,n+ α2,n 2) ||u3,n – u||.  
  ≤ ||u1,n – u||.          (1.27) 

From (1.20) and (1.27), we get 

 ||u1,n+1– u|| ≤ (1 – α1,n) ||u1,n– u|| + α1,n 1||u2,n – u||, 

      ≤ (1 – α1,n+ α1,n 1)||u1,n – u||, 

                  ≤ ( 1 – (1 – 1) α1,n) ||u1,n – u|| 

||u1,n+1– u|| ≤ ∏ {𝑛
𝑗=0  1 – (1 – i)αj} || u1,0 – u||. 

Since ∑  ∞
𝑛=0 αn diverges and 1– i > 0, we have ∏ {𝑛

𝑗=0  1 – (1 – i)αj} = 0. Consnequently, the sequence {un,n}converges strongly to 

u. From (1.25) , (1.26) and (1.27), it follows that the sequence {u2,n}, {u3,n}….and {un,n } also converges strongly to u in H. This  

completes the proof.  

 

As an immediate consequence of Theorem 1.1 is the following:  

Corollary 2.1. [Theorem 3.2, Noor [72]] Let the operators T, g:H →H be strongly monotone with constants α > 0,  > 0 and 

Lipschitz continuous with constants β > 0,  > 0, respectively. 

For a given u0  H, compute the approximate solution {un} by the iterative scheme: 

un+1 = (1-αn)un + αn{wn- g(wn) + PC[g(wn) - Twn]},                        (A1) 

wn = (1-βn)un + βn{yn- g(yn) + PC[g(yn) - Tyn]},                    (A2) 

yn = (1-γn)un + γn{un- g(un) + PC[g(un) - Tun]},                      (A3) 

where 0 ≤αn, βn, γn ≤1 for all n ≥ 0 and ∑  ∞
𝑛=0 αn diverges. If the following conditions hold: 

2 2

2 2

k(2 k)
,

 


 

 
  α > β √𝑘(2 − 𝑘), k < 1 , where k=2 21 2   then approximate solution {un} defined by (Al), 

(A2), (A3) converges strongly to the exact solution u in H of the general variational inequality problem. 
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