G*α-CLOSED SETS AND G*α- LOCALLY CLOSED SETS IN BITOPOLOGICAL SPACES

¹ DR.A.PUNITHA THARANI, ²T.DELCIA,

¹ Associate Professor, ²Research Scholar(Register No: 12335),

¹ Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi-628001, TamilNadu, India.

Affiliated to Manonmanium Sundaranar University, Abishekapatti, Tirunelveli-627012, India.

² Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi-628001, TamilNadu, India.

Affiliated to Manonmanium Sundaranar University, Abishekapatti, Tirunelveli-627012, India.

Abstract : In this paper we introduce and study $g^*\alpha$ -closed sets in topological and Bitopological spaces. Also we discuss some of their properties and investigate the relations between other closed sets in Bitopological Spaces.

I. INTRODUCTION

In the year 1963, Kelly initiated a systematic study of the concept of bitopological Spaces where X is the nonempty set and τ_i and τ_j are two topologies on X. In 1985, Fukutake introduced and studied the notions of generalized closed(g-closed) sets in bitopological spaces and after that several authors turned their attention towards generalization of various concepts of topology by considering bitopological spaces. We have introduced $g^*\alpha$ -closed and $g^*\alpha$ - locally Closed sets in Bitopological Spaces.

II. PRELIMINARIES:

Before entering into our work we recall the following definitions..

Definition 2.1:

1. a generalized closed set [7](briefly g-closed set) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ).

2. a generalized star closed set[11] (briefly g*-closed set) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ)

3. $g^*\alpha$ -closed if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* -open in (X, τ) .

Definition 2.2 A subset A of a topology (X, τ_i, τ_j) is called

1. (i, j)-g-closed[2] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .

$1. (1, j) - g - closeu[2] II (j - cl(A) \subseteq$	0 whenever $A \subseteq 0$ at	id O is open in a.				
2.(i,j)g*-closed[1]if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is g-open in τ_i .						
III.g*α-CLOSED	SETS	IN	BITOPOLOGI	CAL	S	PACES
Definition 3.1: A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2 - g^* \alpha$ closed if $\tau_2 - \alpha cl(A) \subseteq U$ whenever $A \subseteq U$,						
$U \in G^*O(X,\tau_1)$. The collection of all $\tau_1\tau_2$ -g* α closed sets of (X,τ_1,τ_2) are denoted by $G^*\alpha(\tau_1,\tau_2)$.						
Remark 3.2 By setting $\tau_1 = \tau_2$ in Definition 3.1, a $\tau_1\tau_2$ - g* α closed set is a g* α closed set.						
Definition 3.3 A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2 - g^* \alpha$ closed if $\tau_2 - \alpha cl(A) \subseteq U$ whenever $A \subseteq U$,						
$U \in G^*O(X,\tau_1)$. The collection of all $\tau_1\tau_2$ -g* α closed sets of (X,τ_1,τ_2) are denoted by $G^*\alpha(\tau_1,\tau_2)$.						
Remark 3.4 By setting $\tau_1 = \tau_2$ in Definition 3.1, a $\tau_1\tau_2$ - g* α closed set is a g* α closed set.						
Proposition 3.5 If A is a τ_2 - α closed subset of (X, τ_1, τ_2) , then A is $\tau_1 \tau_2$ - $g^* \alpha$ closed.						
Proof Let $U \in G^*O(X,\tau_1)$ be such that $A \subseteq U$. Then by hypothesis, $\tau_2 - \alpha cl(A) \subseteq U$ and so A is $\tau_1\tau_2 - g^*\alpha$ closed.						
Example 3.6 Let $X = \{1, 2, 3, 4\}$ with $\tau_1 = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$ and $\tau_2 = \{\emptyset, X, \{3\}, \{4\}, \{3, 4\}\}$. Then the set						
A = {3,4} is $\tau_1 \tau_2$ - g* α closed but not τ_2 - α - closed in (X, τ_1,τ_2).						
Proposition 3.7If A	is both τ_1 -g*op	pen and $\tau_1\tau_2$ -g	* α closed ther	n A is	τ_2 - α	closed.
Proof If $A \in G^*O(X,\tau_1)$, then by hypothesis $\tau_2 - \alpha cl(A) \subseteq A$. Therefore $\tau_2 - \alpha cl(A) = A$ (ie) A is $\tau_2 - \alpha$ closed.						
Proposition 3.8 (i) Every (i,j) - g closed set is $\tau_1\tau_2$ - g* α closed.						
(ii) Every (i,j) - g*closed set is $\tau_1\tau_2$ - g* α closed.						
Proof follows from the Definition 3.1 and from the Definitions of (i,j)-g*closed and (i,j)-g closed sets.						
Example 3.9 Let $X = \{1, 2, 3, 4\}$ with $\tau_1 = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3, 4\}\}$ and $\tau_2 = \{\emptyset, X, \{1\}, \{1, 4\}, \{1, 2, 4\}\}$. Here the subset $\{4\}$ is						
$\tau_1 \tau_2$ - g* α closed but not (1,2) - g closed.						

Example 3.10 Let $X = \{1,2,3,4\}$ with $\tau_1 = \{\emptyset, X, \{2\}\}$ and $\tau_2 = \{\emptyset, X, \{1\}, \{1,2\}\}$. Here the subset $\{2,4\}$ is $\tau_1\tau_2 - g^*\alpha$ closed but not $(1,2) - g^*$ closed.

Proposition 3.11 If A, B \in G* α (X, τ_1 , τ_2) then A \cup B \in G* α (X, τ_1 , τ_2).

Proof Let U be a τ_1 - g*open set containing $A \cup B$. Since A, $B \in G^*\alpha(X, \tau_1, \tau_2)$, we have $\tau_2 - \alpha cl(A) \subseteq U$ and $\tau_2 - \alpha cl(B) \subseteq U$. Then $\tau_2 - \alpha cl(A) \cup \tau_2 - \alpha cl(B) = \tau_2 - \alpha cl(A \cup B) \subseteq U$. Hence $A \cup B \in G^*\alpha(X, \tau_1, \tau_2)$.

Remark 3.12 The intersection of two $\tau_1\tau_2$ - $g^*\alpha$ closed sets is not a $\tau_1\tau_2$ - $g^*\alpha$ closed set as seen from the following example. **Example 3.13** Let $X = \{1,2,3,4\}$ be endowed $\tau_1 = \{\emptyset, X, \{1\}, \{1,3\}, \{1,2,4\}\}$ and $\tau_2 = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}$. Here the subset $\{1,2,3\}$ and $\{1,3,4\}$ are $\tau_1\tau_2$ - $g^*\alpha$ closed sets but $\{1,2,3\} \cap \{1,3,4\} = \{1,3\}$ is not a $\tau_1\tau_2$ - $g^*\alpha$ closed set. **Remark 3.14** $G^*\alpha(\tau_1,\tau_2)$ is generally not equal to $G^*\alpha(\tau_2,\tau_1)$.

Example 3.15 Let $X = \{1,2,3\}$ with $\tau_1 = \{\emptyset, X, \{1\}, \{1,2\}\}$ and $\tau_2 = \{\emptyset, X, \{1\}\}$. Here $G^*\alpha(\tau_1,\tau_2) \neq G^*\alpha(\tau_2,\tau_1)$.

Proposition 3.16 If $\tau_1 \subseteq \tau_2$ in (X, τ_1, τ_2) then $G^*\alpha(\tau_2, \tau_1) \subseteq G^*\alpha(\tau_1, \tau_2)$.

Proof Let A be a $\tau_2\tau_1$ - $g^*\alpha$ closed set and U be a τ_1 - g^* open set containing A. Since $\tau_1 \subseteq \tau_2$, we have τ_2 - $\alpha cl(A) \subseteq \tau_1$ - $\alpha cl(A)$ and $G^{*}O(X \tau_1) \subseteq G^{*}\alpha(X \tau_2)$. Since $A \in G^{*}\alpha(\tau_2, \tau_1), \tau_2 - \alpha cl(A) \subseteq U$, U is $\tau_1 - g^{*}open$. Thus A is $\tau_1 \tau_2 - g^{*}\alpha$ closed. Hence $G^{*}\alpha(\tau_2, \tau_1) \subseteq G^{*}\alpha(\tau_2, \tau_1)$ $G^*\alpha(\tau_1,\tau_2)$.

Proposition 3.17 For each x of a bitopological space (X,τ_1,τ_2) , $\{x\}$ is τ_1 - g*closed or $\{x\}^c$ is $\tau_1\tau_2$ - g* α closed.

Proof Suppose $\{x\}$ is not τ_1 - g*closed. Then $\{x\}^c$ is not τ_1 - g*open. Therefore a τ_1 - g*open set containing $\{x\}^c$ is X only. Also $\tau_2 - \alpha cl(\{x\}^c) \subseteq X$. Hence $\{x\}^c$ is $\tau_1 \tau_2 - g^* \alpha$ closed.

IV.g*α-locallyclosedsets

in

BitopologicalSpaces

Definition 4.1 A subset A of a bitopological space (X,τ_1,τ_2) is called $\tau_1\tau_2 - g^*\alpha$ locally closed (briefly $\tau_1\tau_2 - g^*\alpha | c | S \cap F$ where S is τ_1 - g* α open and F is τ_2 - g* α closed in (X, τ_1 , τ_2).

Definition 4.2 A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2 - g^* \alpha$ locally closed^{*} (briefly $\tau_1 \tau_2 - g^* \alpha lc^*$) set if there exists τ_1 - g* α open set S and τ_2 - closed set F of (X, τ_1, τ_2) such that $A = S \cap F$.

Definition 4.3 A subset A of a bitopological space (X,τ_1,τ_2) is called $\tau_1\tau_2$ - $g^*\alpha$ locally closed^{**} (briefly $\tau_1\tau_2$ - $g^*\alpha$ lc**) set if there exists τ_1 - open set S and τ_2 - g* α closed set F of (X, τ_1, τ_2) such that $A = S \cap F$.

Remark 4.4 If $\tau_1 = \tau_2 = \tau$ in Definitions 4.1, 4.2, 4.3 then $\tau_1\tau_2$ - $g^*\alpha lc(resp \tau_1\tau_2 - g^*\alpha lc^*, \tau_1\tau_2 - g^*\alpha lc^{**})$ is a $g^*\alpha lc$ ($g^*\alpha lc^*$, $g^*\alpha lc^{**}$) set in a topological space. The collection of all $\tau_1\tau_2$ - $g^*\alpha lc$ (resp $\tau_1\tau_2$ - $g^*\alpha lc^{**}$) sets of (X, τ_1 , τ_2) will be denoted by $\tau_1\tau_2$ - G* α LC (resp $\tau_1\tau_2$ - G* α LC*, $\tau_1\tau_2$ - G* α LC**).

Example 4.5 Let $X = \{1, 2, 3, 4\}$ with $\tau_1 = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}\}$ and $\tau_2 = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3, 4\}\}$. Then $\tau_1 - g^* \alpha$ open sets in (X,τ_1,τ_2) are { \emptyset , X, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, {1,2,4}}. \tau_2 - g^*\alpha-closed sets in (X,τ_1,τ_2) are { \emptyset , X, $\{2\}, \{3\}, \{4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{2,3,4\}, \{1,2,4\}\}.$

(a) $\tau_1\tau_2$ - $\mathfrak{g}^*\mathfrak{alc}$ sets in (X,τ_1,τ_2) are $\{\emptyset, X, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}\}$.

(b) $\tau_1\tau_2$ - g*alc* sets in (X, τ_1 , τ_2) are { \emptyset , X, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {2,3,4}.

(c) $\tau_1\tau_2$ - $g^*\alpha lc^{**}$ sets in (X,τ_1,τ_2) are { $\emptyset, X, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}\}$.

Theorem 4.6 Let A be a subset of a space (X,τ_1,τ_2) .

(i) If $A \in (\tau_1, \tau_2) - LC(X)$ then $A \in \tau_1 \tau_2 - G^* \alpha LC$, $\tau_1 \tau_2 - G^* \alpha LC^*$, $\tau_1 \tau_2 - G^* \alpha LC^{**}$.

(ii) If $A \in \tau_1 \tau_2$ -G* α LC* then $A \in \tau_1 \tau_2$ -G* α LC.

(iii) $A \in \tau_1 \tau_2 - G^* \alpha L C^{**}$ then $A \in \tau_1 \tau_2 - G^* \alpha L C$.

Proof Since every closed set is a $g^*\alpha$ -closed set, the proof follows.

The converse of the above theorem need not be true in general as seen from the following examples.

Example 4.7 X = {1,2,3,4} with $\tau_1 = \{\emptyset, X, \{1,3\}, \{4\}, \{1,3,4\}\}$ and $\tau_2 = \{\emptyset, X, \{2\}\}$. Then the subset $\{1,4\} \in \tau_1\tau_2 - G^*\alpha LC$, $τ_1 τ_2$ - G*αLC*, $τ_1 τ_2$ - G*αLC** but{1,4} ∉ ($τ_1, τ_2$) - LC(X).

Example 4.8 X = {1,2,3} with $\tau_1 = \{\emptyset, X, \{2\}, \{3\}, \{1,3\}, \{2,3\}\}, \tau_2 = \{\emptyset, X, \{1,3\}\}$. Then the subset $\{1,2\} \in \tau_1 \tau_2 - G^* \alpha LC$ but $\{1,2\} \notin \tau_1\tau_2 - G^* \alpha L C^*.$

Example 4.9 X = {1,2,3} with $\tau_1 = \{\emptyset, X, \{2\}, \{2,3\}\}, \tau_2 = \{\emptyset, X, \{1,2\}\}$. Then the subset {1} $\in \tau_1 \tau_2$ - G*aLC but {1} $\notin \tau_1 \tau_2$ -G*αLC**.

Remark 4.10 Every $\tau_1\tau_2$ - $g^*\alpha$ locally closed set in (X,τ_1,τ_2) are not τ_2 - closed in general as it can be seen from the following example.

Example 4.11 In example 4.7, $\{1,2,3\}$ is $\tau_1\tau_2$ - $g^*\alpha$ locally closed set in (X,τ_1,τ_2) but $\{1,2,3\}$ is not τ_2 -closed in (X,τ_1,τ_2) .

Remark 4.12 Every $\tau_1\tau_2$ - $g^*\alpha$ locally closed set in (X,τ_1,τ_2) are not τ_1 -open in general as it can be seen from the following example.

Example 4.13 In example 4.7, $\{1,2\}$ is $\tau_1\tau_2$ - $g^*\alpha$ locally closed set in (X,τ_1,τ_2) but not τ_1 -open in (X,τ_1,τ_2) .

Theorem 4.14 (i) If $A \in \tau_2 - g^* \alpha - C(X, \tau_1, \tau_2)$ then $A \in \tau_1 \tau_2 - G^* \alpha LC$

(ii) If $A \in \tau_1 - g^* \alpha - O(X, \tau_1, \tau_2)$ then $A \in \tau_1 \tau_2 - G^* \alpha LC$.

Proof (i) Since $A = A \cap X$ and A is τ_2 - $g^*\alpha$ closed and X is τ_1 - $g^*\alpha$ open in (X, τ_1, τ_2) , we have $A \in \tau_1 \tau_2$ - $G^*\alpha LC$.

(ii) Since $A = A \cap X$ and A is τ_1 - $g^*\alpha$ open and X is τ_2 - $g^*\alpha$ closed in (X, τ_1, τ_2) , we have $A \in \tau_1 \tau_2$ - $G^*\alpha LC$.

The converses of (i) and (ii) of the above theorem need not be true in general as it can be seen from the following example.

Example 4.15 Let $X = \{1, 2, 3, 4\}$ with $\tau_1 = \{\emptyset, X, \{1\}, \{2, 3\}, \{1, 2, 3\}\}$ and $\tau_2 = \{\emptyset, X, \{1\}, \{1, 2, 4\}\}$. Then the subset $\{1\} \in \tau_1 \tau_2$. G^{*}αLC but {1}∉ τ₂ - g^{*}α-C(X,τ₁,τ₂) and {2,3,4} ∈ τ₁τ₂ - G^{*}αLC but {2,3,4} ∉ τ₁ - g^{*}α-O(X,τ₁,τ₂).

V. τ1τ2 - g*α-Submaximal Spaces

Definition 5.1 A bitopological space (X, τ_1, τ_2) is

(i) $\tau_1\tau_2$ - g* α Submaximal space if every τ_1 -dense subset of X is τ_2 - g* α open in X.

(ii) $\tau_2\tau_1$ - g* α Submaximal space if every τ_2 -dense subset of X is τ_1 - g* α open in X.

Example 5.2 Let $X = \{1, 2, 3\}$ with $\tau_1 = \{\emptyset, X, \{1\}\}$ and $\tau_2 = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\}$. $\tau_2 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \tau_1, \tau_2\}$ are $\{\emptyset, X, \tau_1, \tau_2\}$. {1}, {1,2}, {1,3}}. Here every τ_1 -dense subsets of (X, τ_1, τ_2) are τ_2 - g* α open sets. Hence it is $\tau_1 \tau_2$ - g* α Submaximal.

Example 5.3 Let $X = \{1,2,3\}$ with $\tau_1 = \{\emptyset, X, \{1\}, \{1,2\}, \{1,3\}\}$ and $\tau_2 = \{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of (X, τ_1, τ_2) are $\{\emptyset, X, \{1\}, \{1,2\}\}, \tau_1 - g^*\alpha$ open sets of $\{\{1,2\}, \{1,2\}\}, \tau_2 - g^*\alpha$ open sets of $\{1,2\}, \tau_2 - g^*\alpha$ open sets of $\{1,2\}, \tau_2 - g^*\alpha$ open sets open X, {1}, {1,2}, {1,3}}. Here every τ_2 -dense subsets of (X, τ_1 , τ_2) are τ_1 - g* α open sets. Hence it is a $\tau_1\tau_2$ - g* α -Submaximal space.

Theorem 5.4 If (X,τ_1,τ_2) is $\tau_1\tau_2$ -Submaximal, then X is $\tau_1\tau_2$ -g* α Submaximal space but not conversely.

Proof Since (X,τ_1,τ_2) is $\tau_1\tau_2$ - Submaximal space, we have every τ_1 - dense subset of X is τ_2 - open in X. Since every τ_2 - open set in X is τ_2 - g* α open in X. Therefore (X, τ_1 , τ_2) is $\tau_1\tau_2$ - g* α - Submaximal space.

Example 5.5 Let $X = \{1, 2, 3, 4\}$ with $\tau_1 = \{\emptyset, X, \{2\}, \{1, 2\}\}$ and $\tau_2 = \{\emptyset, X, \{1, 2\}, \{3, 4\}\}$. Then τ_1 - dense subsets of (X, τ_1, τ_2) $\{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{1,2,4\}\}$. Therefore (X,τ_1,τ_2) is $\tau_1\tau_2 - g^*\alpha$ - Submaximal but not $\tau_1\tau_2 - g^*\alpha$ Submaximal space.

Theorem 5.6 A bitopological space (X,τ_1,τ_2) is $\tau_1\tau_2 - g^*\alpha$ -Submaximal Space iff $\tau_2\tau_1 - G^*\alpha LC^* = P(X)$.

Proof Suppose that (X,τ_1,τ_2) is $\tau_1\tau_2 - g^*\alpha$ - Submaximal space. Obviously $\tau_2\tau_1 - G^*\alpha LC^* \subseteq P(X)$. Let $A \in P(X)$ and $U = A \cup \{X - Q^*, X\}$ $[\tau_1 - cl(A)]$. Since $\tau_1 - cl(U) = X$, we have U is τ_1 -dense subset of X. Since (X, τ_1, τ_2) is $\tau_1 \tau_2 - g^* \alpha$ - Submaximal space, we have U is τ_2 - $g^*\alpha$ -open in X. Since every τ_2 - $g^*\alpha$ -open set in X is $\tau_2\tau_1$ - $g^*\alpha$ locally set in (X,τ_1,τ_2) , we have $U \in \tau_2\tau_1$ - $G^* \alpha L C^*$. Therefore $P(X) \subseteq \tau_2 \tau_1$ - $G^* \alpha L C^*$. Hence $\tau_2 \tau_1$ - $G^* \alpha L C^* = P(X)$.

Conversely suppose that $\tau_2\tau_1$ - G* α LC* = P(X). Let A be the τ_1 -dense subset of (X,τ_1,τ_2) . Then A $\cup \{X - [\tau_1 - cl(A)]\} = A \cup [\tau_1$ cl(A) = A. Therefore $A \in \tau_2 \tau_1 - G^* \alpha LC^*$ implies that A is $g^* \alpha$ - open in X (by theorem 7.3.18). Hence X is $\tau_1 \tau_2 - g^* \alpha$ -Submaximal Space.

References:

[1] Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D. Thesis, Bharathiar Univ., Coimbatore, 1997.

[2] T. Fukutake, Bull, Fukuoka Univ. Ed. Part III, 35(1985), 19 – 28.

[3] T. Fukutake, P. Sundaram and N. Nagaveni, Bull, Fukuoka Univ. Ed. Part III, 48(1999), 33 – 40.

[4] T. Fukutake, P. Sundaram, M. Sheik John, Bull, Fukuoka Univ. Ed. Part III, 51(2002), 1 – 9.

[5] J. C.Kelley, Proc., London Math. Sci. 13(1963), 71 – 89.

[6] N. Levine, Amer. Math. Monthly, 70 (1963), 36 – 41.

[7] N. Levine, Rend. Cire. Math. Palermo, 19 (1970), 89 – 96.

[8] M. Sheik John and P. Sundaram, Indian J. Pure Appl. Math. 35(1) (2004), 71 – 80. [9] M. Stone, Trans. Amer. Math. Soc. 41 (1937), 374 - 481.

[9]PunithaTharani,A,Delcia.T,g*α-closedsetsintopologicalSpaces,IJMA,8(10),2017,71-80.

365