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Abstract :  This paper analyzes Nanoliquids flow over a stretching sheet and the characteristics of heat and mass transfer with 

uniform heat generation.Cu-water and Ag-water nanoliquids are considered in the study.  To obtain a system of the non-linear 

ordinary differential equation similarity variables have been applied and an optimal homotopy asymptotic method (OHAM) have 

been used to work out these equations. Various parametric influences on the velocity, temperature, and mass transfer have been 

shown by means of tables and graphs and the result we found is in an excellent agreement with the previous results in the 

literature.  It was displayed that the Ag-water nanoliquid exhibits higher thermal conductivity compared to Cu-water nanoliquid. 

In addition, the presence of a uniform heat source has a reducing effect on the concentration profile and increasing effect on the 

temperature. 

 

IndexTerms - Nanoliquid flow, OHAM, Stretching sheet, Soret number,Schmidt number,heat generation 

  

I. INTRODUCTION 

A flow on a stretching surface has fascinated the concentration of many researchers over the past few decades because of its 

application in the field of engineering. Some of its application are like melt-spinning, etc. The first person who studied about a 

two-dimensional steady Newtonian fluid passion, in extrusion processes, wire drawing, the manufacture of plastic, the 

performance of lubricants by a stretching elastic sheet with a  linearly varying velocity a certain distance from a fixed point 

moving in its plane was Crane [1]. Later on, this work has been extended by several authors to discover various aspects of the 

flow and a fluid heat transfer of infinite extent neighboring a stretching sheet. The following are amongst them. Awaludin et al. 

[2], Noor and Hashim [3], Reda G. Abdel-Rahman [4], Bhattacharyya et al. [5], Reza et al. [6], Ullah et al. [7], Ahmad and Ishak 

[8], Shah et al. [9]. Kameswaran et al. [10] investigated the convective transfer of heat and mass in a Nanofluid flow over a sheet 

stretched subject to viscous dissipation, hydromagnetic, chemical reaction and Soret effects. They obtained that the Ag-Water 

Nanofluid exhibits lower rates of wall heat and mass transfer comparing withCu-water Nanofluid. 

 

Raju et al. [11] presented his study on MHD Casson fluid and the behavior of heat and mass transport over an exponentially 

stretching permeable surface in the incidence of parameters like viscous dissipation, thermal radiation, chemical reaction, and 

magnetic field. Also, the MHD flow of a Jeffery fluid through a porous media over a stretching sheet under chemical reaction 

effect with heat generation has been studied by Jena et al. [12]. Their result has shown that the distribution of a temperature in the 

flow domain was enhanced by the porous matrix and magnetic field. Velocity slip parameter and heat source influences on MHD 

flow of a Jeffery fluid on a stretching surface were analyzed by Gizachew and Shankar [13]. Furthermore, Gaffar et al. [14] 

examined a steady boundary layer flow of an incompressible non-Newtonian Jeffery's fluid past a semi-infinite non-linear vertical 

plate. Ali et al. [15]studied a viscous MHD flow of a fluid problem on a porous non-linear shrinking sheet. In their study, they 

have found that dual solutions exist only for positive values of the controlling parameter. The transfer of heat on a fluid and an 

MHD Boundary layer flow with variable viscosity in a porous medium towards a stretching sheet with an influence of viscous 

dissipation in the incidence of heat source/ sink were considered by Dessie and Kishan [16]. 

 Brownian motion and thermophoresis influences on a nanofluid over a nonlinearly permeable stretching sheet have been 

analyzed by Falana et al. [17]. Ibrahim and Shankar [18]numerically examinedunsteadylaminar viscous boundary layer flow and 

heat transport in an incompressible fluid over a stretching sheet. They explained that the stretching velocity of time-dependent and 

surface temperature causes the flow and temperature unsteadiness.  Abd El- Aziz and Yahaya[19] presented the joint effect of 

thermal and concentration diffusions in unsteady MHD free convection flow past a moving plate maintained at constant heat flux 

and embedded in a viscous fluid-saturated porous medium. A flow on a boundary layer and the influence of heat and mass 

transfer in a viscoelastic electrically conducting fluid through a porous medium subject to a magnetic transverse field in the 

incidence of chemical reaction and heat source/sink has been studied by Nayak et al. [20]. In their analysis, they accomplished the 

field of temperature for both (PST) and (PHF) results. Swain et al. [21] have made an effort to study the impact of heat and mass 

transport in a boundary layer MHD flow of a viscous electrically conducting fluid through a porous medium over a stretching 

exponentially sheet. 

 

Most of the exceeding studies are limited to boundary layer flow and transmission of heat in Newtonian fluids. Nevertheless, 

because of the growingsignificance of nanofluids, a marvelous amount of concern has been given to the study of nanofluids 
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convective transport in recent years. The word ‘nanofluid’ invented by Choi [22]explains a liquid stretching sheet, it was formed 

by suspending nanoparticles into a base fluid. The nanoparticles that are used commonly are metals like copper, aluminum, iron, 

and gold and the base fluids usually used are like glycol, water and toluene or oil. Later on, several authors studied Nanofluids. 

Ebaid et al. [23] analyzed the effect of velocity slip boundary on the flow and heat transfer of Cu-Water and TiO_2-Water 

Nanofluids in the presence of a magnetic field. They obtained that the Cu-Water is slower than the TiO_2-Water Nanofluid for 

both cases of the stretching/shrinking sheets. However, the temperature of the Cu-Water Nanofluid is always higher than the 

temperature of the TiO_2-Water Nanofluid. Ibrahim [24]inspectedNanofluid stagnation MHD flow and heat transportof a melting 

past a stretching sheet. He found that an increase of melting heat transfer and magnetic parameter reduces both the skin friction 

coefficient and Sherwood number. Anki Reddy et al. [25]focused their study on the numerical solution of MHD boundary layer 

slip flow of a Maxwell Nanofluid over an exponentially stretching surface with convective boundary condition. Daniel et al. 

[26]considered the concurrentimpact of magnetic and applied electric fields, thermal stratification, thermal radiation, viscous 

dissipation and heating of Joules are numerically on a boundary layer flow of electrically conducting Nanofluid over a nonlinearly 

stretching sheet with variable thickness. 

Bal Reddy et al. [32] investigated numerically the radiation effects on MHD fluid flow of a nanofluid past an exponential 

stretching sheet in a porous medium. Reddy et al. [27]also inspecteda flow on a boundary layer with MHDand the transport of 

heat and mass for Williamson Nanofluid over a stretching sheet with variable thickness and variable thermal conductivity 

underradiation influences.The effects of Soret and Dufour are essential when density variationsoccur in the flow regime. 

 

The impact of Dufour and Soret on free convective heat and mass transport over a stretching surface with suction or injection 

were investigated by Ahmed [28]. He established that the coefficient of skin friction and the local Nusselt number raises with 

Dufour numbers but reduces with the Soret influence. Alternatively, an increase of Dufour numbers enhances the local Sherwood 

number, but it decreases with an increase of Soret number.On observingthat in almost above literature the mass transfer effects for 

the considered nano-liquids are ignored. Hence, we have investigated heat and mass transfer characteristics of copper and silver 

nano-liquids due to a stretching sheet in the presence of a uniform heat source for which an OHAM is used. 

II. FORMULATION OF THE PROBLEM 

An incompressible two-dimensional laminar steady nanoliquidflow over a stretching sheet is reflected on. The origin of the 

system is situated at the slit where the sheet is drawn. The stretching continuous surface is taken in thex −axis direction and the 

y −axis is consideredperpendicular to the surface of the sheet.The liquids are considered to be a water-based nanoliquidhaving 

two different types of nanoparticles: copper and Silver nano-particles. It is thoughtthat the base fluid and the nanoparticles are 

found to bein thermal equilibrium and between them no slip exists. The nano-fluid thermophysical properties are given in Table-1 

with the above hypothesis, the governing boundary layer equations of the nanoliquid flow, the heat and the concentration fields 

can be inscribed in dimensional form. 
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Where u and v are the velocity components in the x and y −directions respectively,ρ is the fluid density,T is the temprature, C is 

the concentration,C∞ is the concentration of the fluid far from the sheet. Cp is the specific heat at constant pressure, D is 

thediffusivity of specifies, and  D1 is the coefficient that indicates the contribution to mass flux through temperature gradient: 

The boundary conditions for Eqs. (1)-(4) are assumed in the form: 

      

𝑢 = 𝑢𝑤 = 𝑏𝑥, 𝑣 = 0, 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝐴(
𝑥

𝑙
)
2

,

𝐶 = 𝐶𝑤 = 𝐶∞ + 𝑄 (
𝑥

𝑙
)
2

𝑎𝑡 𝑦 = 0

𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞𝑎𝑠 𝑦 → ∞, }
 
 

 
 

                             (5) 

Where A, Q,and b are constants,l is the characteristic length,T∞ is the fluidtemperature far from the sheeThe 

nano-fluid effective dynamic viscosity was given by Brinkman[29] as𝜇
𝑛𝑓=

𝜇𝑓

(1−𝜙)2.5

                                      (6) 

Where 𝜙 is the solid volume fraction of the nano-particles. The effective density, 𝜌𝑛𝑓, thermal 

diffusivity,𝛼𝑛𝑓 and the heat capacitance of the nano fluid are given by: 

𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠,                                   (7) 

𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓
,                                    (8) 

(𝜌𝑐𝑝)𝑛𝑓 = (1 − 𝜙)(𝜌𝑐𝑝)𝑓 + 𝜙(𝜌𝑐𝑝)𝑠                                (9) 
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The nanofluids thermal conductivity restricted to spherical nano particles is estimated by the Maxwell-

Garnett model(see Max-well Garnett [30] and Guerin etal.[31]).  

𝑘𝑛𝑓 = 𝑘𝑓 [
𝑘𝑠+2𝑘𝑓−2𝜙(𝑘𝑓−𝑘𝑠)

𝑘𝑠+2𝑘𝑓+𝜙(𝑘𝑓−𝑘𝑠)
]                                           (10) 

In Eqs. (7)-(10), the subscripts 𝑛𝑓 , 𝑓 and𝑠 denote the thermo physical properties of the nano-fluid, base fluid 

and nano-solid particles, respectively.  

The continuity equation (1) is satisfied by introducing a stream function 𝜓(𝑥, 𝑦) such that  

𝑢 =
𝜕𝜓

𝜕𝑦
,    𝑣 = −

𝜕𝜓

𝜕𝑥
                                            (11) 

The following Similarity variables are also introduced: 

𝑢 = 𝑏𝑥𝑓′(𝜂),        𝑣 = −√𝑏𝑣𝑓  𝑓(𝜂)

𝑇 = 𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜂), 𝐶 = 𝐶∞ + (𝐶𝑤 − 𝐶∞)𝛽(𝜂)

𝜂 = √
𝑏

𝑣𝑓
 𝑦,     𝜓 = √𝑣𝑓𝑏 𝑥𝑓

}
 
 

 
 

                                       (12) 

Where ηis the similarity variable,f(η) is the dimensionless stream function, θ(η) is the dimensionless temperature and β(η) is the 

dimensionless concentration. 

on using Eqs. (6),(7), (8), (9), (10) and (12), Eqs. (2)-(4) transform in to the following two-point boundary value problems. 

f ′′′ − ϕ1[f
′2 − ff ′′] = 0                                                                 (13) 

θ
′′ − Pr

kf

knf
ϕ3[2f

′θ − fθ′ − δθ] = 0                                                                                               (14) 

β
′′ − Sc[2f ′β − fβ′] + Srθ′′ = 0                            (15) 

The corresponding boundary conditions are: 

f(0) = 0, f ′(0) = 1, f ′(∞) → 0                                                                                                           (16) 

θ(0) = 1, θ(∞) → 0,                                 (17) 

β(0) = 1, β(∞) → 0,                                                    (18) 

The non dimensional constants appearing in Eqs. (13)-(15) are the Prandtl number Pr, the Schmidt number Sc, the Soret number 

Sr and the heat generationparameterδ. 

They are respectively defined as: 

Pr =
vf(ρcp)f
kf

,   Sc =
vf
D
,      Sr =

D1(Tw − T∞)

D(Cw − C∞)
, andδ =

Q

b(ρcp)nf

 

Where 

{

ϕ1 = (1 − ϕ)2.5 [1 − ϕ + ϕ(
ρs

ρf
)]

ϕ3 = 1 − ϕ + ϕ
(ρcp)s

(ρcp)f

,
                                          (19)

 

III. SKIN FRICTION, HEAT AND MASS TRANSFER COEFFICIENTS 

The engineering parameterscontained in heat and mass transport problems are the skin friction coefficient 𝐶𝑓 , the local Nusselt 

number 𝑁𝑢𝑥 and the local Sherwood number 𝑆ℎ𝑥. These engineering parameters characterizes the surface drag, wall heat and 

mass transfer rates respectively. Thus, the shearing stress at the surface of the wall 𝜏𝑤  is given by 

𝜏𝑤 = −𝜇𝑛𝑓 [
𝜕𝑢

𝜕𝑦
]
𝑦=0

= −
1

(1−𝜙)2.5
𝜌𝑓√𝑣𝑓𝑏

3 𝑥𝑓 ′′(0)                             (20) 

where 𝜇𝑛𝑓 is the coefficient of viscosity. The skin friction coefficient is defined as𝐶𝑓 =
2𝜏𝑤

𝜌𝑢2𝑤
                                              (21) 

and using Eq. (20) in Eq. (21) we obtain 𝐶𝑓(1 − 𝜙)
2.5√𝑅𝑒𝑥 = −2𝑓′′(0)                                                            (22) 

The heat transfer rate at the surface flux at the wall is given by  

𝑞𝑤 = −𝑘𝑛𝑓 [
𝜕𝑇

𝜕𝑦
]
𝑦=0

= −𝑘𝑛𝑓𝐴 (
𝑥

𝑙
)
2

√
𝑏

𝑣𝑓
𝜃′(0)                                                               (23) 

where 𝑘𝑛𝑓 is the Nanofluids thermal conductivity. The Nusselt number is defined as:𝑁𝑢𝑥 =
𝑥

𝑘𝑓

𝑞𝑤

𝑇𝑤−𝑇∞
                (24) 

Using Eq. (23) in Eq. (24), the dimensionless wall heat transfer rate is obtained as 
𝑁𝑢𝑥

√𝑅𝑒𝑥
(
𝑘𝑓

𝑘𝑛𝑓
) = −𝜃 ′(0)                               (25) 

The mass flux at the wall surface is given by  𝐽𝑤 = −𝐷 [
𝜕𝐶

𝜕𝑦
]
𝑦=0

= −𝐷 (
𝑥

𝑙
)
2

√
𝑏

𝑣𝑓
𝛽′(0)                  (26) 

and the Sherwood number is defined as 𝑆ℎ𝑥 =
𝑥

𝐷

𝐽𝑤

𝐶𝑤−𝐶∞
                     (27) 

Using (26) in (27) the dimensionless wall mass transfer rate is obtained as
𝑆ℎ𝑥

√𝑅𝑒𝑥
= −𝛽′(0)                  (28) 

In Eqs. (22),(25) and (28), Rex represents the local Reynolds number defined as:𝑅𝑒𝑥 =
𝑥𝑢𝑤

𝑣𝑓
 

 

http://www.jetir.org/


© 2019 JETIR  April 2019, Volume 6, Issue 4                                          www.jetir.org  (ISSN-2349-5162) 
 

JETIR1904185 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 610 

 

IV. SOLUTION BY OHAM 

Pursuing the basic theories and procedure of OHAM as done by Nandeppanavar et al.[33]. The solution of Eq (13) -(15) with 

respect to the corresponding boundary conditions (16) to (18) can be explainedby optimal homotopy asymptotic method as: 

Using the OHAM procedure we can write Eqs. (13),(14) and (15) respectively as: 

(1 − 𝑝)(𝑓′′ + 𝑓′) − 𝐻1(𝑝)[((𝑓
′′′ − 𝜙1(𝑓

′2 − 𝑓𝑓′′)) − (𝑓′′ + 𝑓′)] = 0,

(1 − 𝑝)(𝜃′ + 𝜃) − 𝐻2(𝑝) [(𝜃
′′ − 𝑃𝑟

𝑘𝑓

𝑘𝑛𝑓
𝜙3(2𝑓

′𝜃 − 𝑓𝜃′ − 𝛿𝜃)) − (𝜃 ′ + 𝜃)] = 0,

(1 − 𝑝)(𝛽′ + 𝛽) − 𝐻3(𝑝)[(𝛽
′′ − 𝑆𝑐(2𝑓 ′𝛽 − 𝑓𝛽′) + 𝑆𝑟𝜃 ′′) − (𝛽′ + 𝛽)] = 0 }

 
 

 
 

                         (29) 

Evidently when 𝑝 = 0 and 𝑝 = 1 

𝜓(𝜂, 0) = 𝑣0(𝜂)    and𝜓(𝜂, 1) = 𝑣(𝜂)                                                                             (30) 

Thus, as 𝑝increases from 0 to 1, the solution varies from 𝑣0(𝜂) to 𝑣1(𝜂). for 𝑝 = 0, we can write 

𝐿(𝑣0(𝜂)) + 𝑔(𝜂) = 0, 𝐵(𝑣0) = 0,                                                                 (31) 

The auxiliary equation H(p) is chosen as: 

𝐻(𝑝) = 𝑝𝐶1 + 𝑝
2𝐶2 + 𝑝

3𝐶3 +⋯,                                                                 (32) 

Where 𝐶1, 𝐶2, 𝐶3…are constants. 

In the same way,  the auxiliary equations for the momentum, heat transfer and mass transfer shall be explains of(31) as: 

𝐻1(𝑝) = 𝑝𝐶11 + 𝑝
2𝐶12 +⋯

𝐻2(𝑝) = 𝑝𝐶21 + 𝑝
2𝐶22 +⋯

𝐻3(𝑝) = 𝑝𝐶31 + 𝑝
2𝐶32 +⋯

}                                                                 (33) 

The expansion ofϕ(η, p) in series with respect to 𝑝 can be expressed as: 

𝜓(𝜂, 𝑝, 𝐶)𝑖 = 𝑣0(𝜂) + ∑ 𝑣𝑘(𝜂, 𝐶𝑖)𝑝
𝑘 , 𝑖 = 1,2,3…𝑘≥1                                                                         (34) 

Now following the method and substituting (33) into (29) we can write: 

The Zeroth order as 

𝑝0:                             𝑓 ′′
0
+ 𝑓 ′

0
= 0

𝑓0(0) = 0, 𝑓 ′
0
(0) = 1

𝜃 ′0 + 𝜃0 = 0

𝜃0(0) = 1

𝛽′
0
+ 𝛽0 = 0

𝛽0(0) = 1 }
  
 

  
 

                                           (35) 

The first order: 

𝑝1 :    − 𝑓 ′
0
+ 𝐶11𝑓

′
0
− 𝑓 ′′

0
+ 𝐶11𝑓

′′
0
− 𝐶11𝑓

′′′
0
+ 𝑓 ′

1
+ 𝑓 ′′

1
+ 𝐶11𝑓

′
0

2
𝜙1 − 𝐶11𝑓0𝑓

′′
0
𝜙1 = 0  

𝑓1′(0) = 0, 𝑓1(0) = 0,

−𝜃0 + 𝐶21𝜃0 − 𝜃
′
0 + 𝐶21𝜃

′
0 − 𝐶21𝜃

′′
0 + 𝜃1 + 𝜃

′
1 +

2𝐶21𝑓
′
0
𝜃0𝐾𝑓𝑃𝑟𝜙3

𝐾𝑛𝑓
−
𝐶21𝑓0𝜃

′
0𝐾𝑓𝑝𝑟𝜙3

𝐾𝑛𝑓
−
𝐶21𝜃0𝐾𝑓𝑝𝑟𝛿𝜙3

𝐾𝑛𝑓
= 0

𝜃1(0) = 0

−𝛽0 + 𝐶31𝛽0 − 𝛽
′
0
+ 𝐶31𝛽

′
0
− 𝐶31𝛽

′′
0
+ 𝛽1 + 𝛽

′
1
+ 2𝐶31𝑓

′
0
𝛽0𝑆𝑐 − 𝐶31𝑓0𝛽

′
0
𝑆𝑐 − 𝐶31𝜃

′′
0𝑆𝑟 = 0

𝛽1(0) = 0 }
 
 
 
 

 
 
 
 

       (36) 

The second order: 

𝑝2:         𝐶12𝑓
′
0
+ 𝐶12𝑓

′′
0
− 𝐶12𝑓

′2

0
− 𝑓 ′

1
+ 𝐶11𝑓

′
1
− 𝑓 ′′

1
+ 𝐶11𝑓

′′
1
− 𝐶11𝑓

′2

1
+ 𝑓 ′

2
+ 𝑓 ′′

2
+ 𝐶12𝑓

′
0

2
𝜙1 − 𝐶12𝑓0𝑓

′′
0
𝜙1

− 𝐶11𝑓
′′
0
𝑓1𝜙1 + 2𝐶11𝑓

′
0
𝑓 ′
1
𝜙1 − 𝐶11𝑓0𝑓

′′
1
𝜙1 = 0 

𝑓2
′(0) = 0, 𝑓2(0) = 0 

𝐶22𝜃0 + 𝐶22𝜃
′
0 − 𝐶22𝜃

′′
0 − 𝜃1 + 𝐶21𝜃1 − 𝜃

′
1 + 𝐶21𝜃

′
1 − 𝐶21𝜃

′′
1 + 𝜃2 + 𝜃

′
2 +

2𝐶22𝑓
′
0
𝜃0𝑘𝑓𝑃𝑟𝜙3

𝑘𝑛𝑓
+
2𝐶21𝑓

′
1
𝜃0𝑘𝑓𝑃𝑟𝜙3

𝑘𝑛𝑓

−
𝐶22𝑓0𝜃

′
0𝑘𝑓𝑃𝑟𝜙3

𝑘𝑛𝑓
−
𝐶21𝑓1𝜃

′
0𝑘𝑓𝑃𝑟𝜙3

𝑘𝑛𝑓
+
2𝐶21𝑓

′
0
𝜃1𝑘𝑓𝑃𝑟𝜙3

𝑘𝑛𝑓
−
𝐶21𝑓0𝜃

′
1𝑘𝑓𝑃𝑟𝜙3

𝑘𝑛𝑓
−
𝐶22𝜃0𝑘𝑓𝑃𝑟𝜙3𝛿

𝑘𝑛𝑓

−
𝐶21𝜃1𝑘𝑓𝑃𝑟𝜙3𝛿

𝑘𝑛𝑓
= 0,    

𝜃2(0) = 0 

𝐶32𝛽0 + 𝐶32𝛽′0 − 𝐶32𝛽′′0 − 𝛽1 + 𝐶31𝛽1 − 𝛽′1 + 𝐶31′1 − 𝐶31𝛽′′1 + 𝛽2 + 𝛽′2 + 2𝐶32𝑓
′
0
𝛽0𝑆𝑐 + 2𝐶31𝑓

′
1
𝛽0𝑆𝑐 − 𝐶32𝑓0𝛽′0𝑆𝑐

− 𝐶31𝑓1𝛽′0𝑆𝑐 + 2𝐶31𝑓
′
0
𝛽1𝑆𝑐 − 𝐶31𝑓0𝛽′1𝑆𝑐 − 𝐶32𝛽

′′
0
𝑆𝑟 − 𝐶31𝛽′′1𝑆𝑟 = 0 

𝛽1(0) = 0                                                                                                       (37) 

Hence, we get general solution of Eq. (33) as: 

(𝜂, 𝐶𝑖) = 𝑣0(𝜂) + ∑ 𝑣𝑘(𝜂, 𝐶𝑖), 𝑖 = 1,2,3… .𝑚
𝑚
𝑘=1𝑣

(𝑚)
.                                                                         (38) 

One can obtain the zeroth order and first order solution with corresponding boundary conditions, respectively as: 
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𝑓0(𝜂) = 1 − 𝑒−𝜂

𝜃0(𝜂) = 𝑒
−𝜂

𝛽0(𝜂) = 𝑒−𝜂
}                                      (39) 

𝑓1 = −𝐶11𝑒
−𝜂(−1 + 𝜙1)(−1 + 𝑒

𝜂 − 𝜂)

𝜃1 =
𝐶21𝑒

−2𝜂(𝑘𝑓𝑃𝑟𝜙3−𝑒
𝜂𝑘𝑓𝑃𝑟𝜙3+𝑒

𝜂𝑘𝑛𝑓𝜂−𝑒
𝜂𝑘𝑓𝑃𝑟𝜙3𝜂+𝑒

𝜂𝑘𝑓𝑃𝑟𝜙3𝜂𝛿)

𝑘𝑛𝑓

𝛽1 = −𝐶31𝑒
−2𝜂(−𝑆𝑐 + 𝑒𝜂𝑆𝑐 − 𝑒𝜂𝜂 + 𝑒𝜂𝜂𝑆𝑐 − 𝑒𝜂𝜂𝑆𝑟) }

 

 
                        (40) 

Similarly, we can obtain second order solutions too, for brevity, the solutions for 𝑓2(𝜂), 𝜃2(𝜂) 𝑎𝑛𝑑 𝛽2(𝜂) are not presented here. 

Consequently, solutions for the equation of momentum, heat transfer and mass transfer (up to second-order terms) are given by 

𝑓(𝜂) = 𝑓0(𝜂) + 𝑓1(𝜂) + 𝑓2(𝜂) 
𝜃(𝜂) = 𝜃0(𝜂) + 𝜃1(𝜂) + 𝜃2(𝜂)                                                                                              (41) 

𝛽(𝜂) = 𝛽0(𝜂) + 𝛽1(𝜂) + 𝛽2(𝜂) 
The substitution of the values of 𝑓(𝜂) , 𝜃(𝜂) and  𝛽(𝜂) from (48) in to equations (13), (14) and (15), the residuals can be obtained 

as: 

𝑅1(𝜂, 𝐶11, 𝐶12), 𝑅2(𝜂, 𝐶21, 𝐶22) 𝑎𝑛𝑑 𝑅3(𝜂, 𝐶31, 𝐶32), Subsequently we can obtain the Jacobians  𝐽1,   𝐽2 𝑎𝑛𝑑 ,   𝐽3 as follows: 

   𝐽1(𝜂, 𝐶11, 𝐶12) = ∫ 𝑅1
2𝑏

0
(𝜂, 𝐶11, 𝐶12)𝑑𝜂                                                            (42) 

 𝐽2(𝜂, 𝐶21, 𝐶22) = ∫ 𝑅2
2𝑏

0
(𝜂, 𝐶21, 𝐶22)𝑑𝜂                             (43) 

  𝐽3(𝜂, 𝐶31, 𝐶32) = ∫ 𝑅3
2𝑏

0
(𝜂, 𝐶31, 𝐶32)𝑑𝜂                               (44) 

With these known constants, approximate solution of the problem(to order m) can be determined very easily.  

V. RESULTS AND DISCUSSION 

In the analytic solutions, the effects of nanoparticle volume fraction, heat generation parameter,Schmidt number and Soret 

number on heat and mass transfer characteristics of nanofluid were reflected on. Two types of nanoparticles, specifically, Copper 

and Silver, with water as the base fluid with a constant Prandtl number 𝑃𝑟 = 6.2,were taken into account. The 

transformednonlinear ordinary differential equations (13)-(15) subject to the boundary conditions (16-18) were solved analytically 

using the optimal homotopy asymptotic method(OHAM). The profiles of velocity, temperature, and concentration were acquired 

and we practiced the results to compute the coefficient of skin friction, the local Nusselt number, and local Sherwood number. 

The analytical results were discussed for distinct values of the parameters graphically and in tabular form. The analytic method 

was validated by comparing withearlier published journals by Yohannes and Danel [34] and Hamad [35]. As revealed in Table-2 

the results are found in a nice agreement.The coefficients of skin friction for distinct values of volume size of the nanoparticles 

𝜙and when 𝑃𝑟 = 6.2, 𝑆𝑐 = 1, 𝑆𝑟 = 0.2, 𝛿 = 0.1 are given in Table-2.  

The coefficients of heat transfer are shown in Table-3 for different Prandtl numbers. It is clear that the heat transfer coefficient 

increases with increasing Prandtl numbers. The results areattained in an excellent agreement with the previousresults by 

Kameswaran[10]. An enhancement in the values of Prandtl number reveals that the thermal diffusivity is dominated by 

momentum diffusivity. Hence, the rate of heat transfer at the surface raises with an increment of Prandtl number. 

Table-1 

Thermo physical properties of water, copper and silver nano-particles at  3000k 

(see Oztop and Abu-Nada [35]). 

Physical 

Quantity 

properties 

ρ(
kg

m3
) k(

w

m k
) β

np
x105(k−1) 

cp(
j

kg k
) 

water 997.1 0.613 21 4179 

Copper(Cu) 8933 401 1.67 385 

Siliver(Ag) 10500 429 1.89 235 

Table - 2 

Comparison of the skin friction coefficient −𝑓 ′′[0] for different values of Nanoparticle volume 

fraction(𝝓),when magnetic parameter M = 0 and Prandtl number 𝑃𝑟 = 6.2. 
 

 

 

 

 

 

 

 

 

 

M 𝝓 [36] [33] Present results 

Cu-water Ag-water Cu-water Ag-water Cu-water Ag-water 

0 0.05 1.10892 1.13966 1.1089 1.1397 1.10885 1.13951 

0.1 1.17475 1.22507 1.1747 1.2251 1.17446 1.22447 

0.15 1.20886 1.27215 1.2089 1.2722 1.20838 1.2711 

0.2 1.21804 1.28979 1.2180 1.2898 1.21749 1.28852 
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Table-3 

Comparison of the values of wall Temperature gradient −𝜃′(0) for different values of Prandtl numbers. 

Results P r=0.72 Pr = 1 Pr = 3 

Kameswaran [8] 1.08852 1.33333 2.50973 

Present 1.09039 1.33333 2.49531 

 

The volume size of nanoparticle 𝜙influence on the velocity, temperature and concentration profiles for both nanofluids is shown 

by Fig.1-3. It is indicated that as the nanoparticle volume fraction raises, the Cu-water and Ag-water nanoliquid velocity reduces. 

We also saw that the axial velocity in the case of a Cu-water nanoliquid is relatively greater than Ag-water nanoliquid. As it is 

revealed in Fig.2, the increment of the volume fraction of nanoparticles enhances the thermal conductivity of the nanoliquid and 

in turn results in the thermal boundary layer to be thickening. It is also noticed that the distribution of temperature is higher in Ag-

water nanoliquid than in Cu-water nanoliquid. This is apredictable result because Ag is a good heat conductor and electricity. In 

fig. 3, the nanoparticle volume size increment made the thickness of the concentration boundary layer enlarged for both types of 

nanoliquids considered. 

The coefficient of skin friction −𝑓′′(0) as a function of the nanoparticle volume size 𝜙 is demonstrated by Fig. 4. We watched 

that for clear fluid,𝜙 = 0, the coefficient of skin friction value is unity, a Crane's [9] problem standard result. An enlargement 

of 𝜙 enlarges the coefficient of skin friction monotonically to a maximum value before declining. The findings explained relating 

to the coefficient of skin friction hold for the two nanoliquids. For Cu-water nanoliquid the highest value of the skin friction is 

accomplished at a smaller value of 𝜙 in comparison with an Ag-water nanoliquid. Supplementary, the Cu-water nanoliquid 

display slower drag to the flow as compared to the Ag-water nanoliquid. The non-dimensional rate of wall heat transfer−𝜃′(0) 
and non-dimensional rate of wall mass transfer −𝛽′(0) are detained as a function of the volume size of the nanoparticle𝜙in Fig. 5 

and Fig. 6, respectively. We observed that −𝜃′(0) is a decreasing function of 𝜙while the opposite is true in the case of −𝛽′(0). 
The 𝐶𝑢–water nanofluid exhibits higher wall heat and mass transfer rates as compared to an𝐴𝑔–water nanoliquid. The presence of 

nanoparticles tends to reduce the wall heat transfer rate and to increase the wall mass transfer rates. 

Fig. 7 and 8 illustrate the influence of heat generation parameter 𝛿 on the temperature profile and concentration profile in the case 

of 𝐶𝑢-water and 𝐴𝑔-water nanoliquids. We saw that the temperature field increases for both cases of nanoliquids with increasing 

the values of the heat generation parameter 𝛿. It is explained that the temperature profileof𝐴𝑔-water is greater than that of 𝐶𝑢-

water nanofluids. Increasing the values of the heat generation parameter 𝛿 increases the thermal conductivity of nanofluid and the 

thickening of the thermal boundary layer. We also watched that the concentration profile decreases for both cases of nanoliquids 

with increasing the values of the heat generation parameter 𝛿. 
 

                   
        Figure 1: Velocity profile as a function of ϕ.       Fig. 2: Temperature profile as a function of ϕ when 

                                            𝛿 = 1𝑎𝑛𝑑 𝑃𝑟 = 6.2. 
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Fig. 3: Concentration profile as a function of ϕ     .               Fig. 4: Coefficient of skin friction as a function of ϕ  

              when 𝛿 = 1, 𝑃𝑟 = 6.2, 𝑆𝑐 = 1𝑆𝑟 = 0.2                           when 𝑆𝑐 = 1, 𝑆𝑟 = 0.2, 𝛿 = 1𝑎𝑛𝑑 𝑃𝑟 = 6.2. 
      

                 
Fig. 5: Heat transfer coefficient as a function of ϕ                                        Fig. 6: Mass transfer coefficient as a function of ϕ                

        when 𝑆𝑐 = 1, 𝑆𝑟 = 0.2, 𝛿 = 1𝑎𝑛𝑑 𝑃𝑟 = 6.2                                            when 𝑆𝑐 = 1, 𝑆𝑟 = 0.2, 𝛿 = 1𝑎𝑛𝑑 𝑃𝑟 = 6.2. . 
 

 

                       
Fig. 7:  Temprature profile with variation of δ for                                           Fig. 8: Concentration profile with variation of δ 
𝑆𝑐 = 1, 𝑆𝑟 = 0.2, 𝜙 = 0.3𝑎𝑛𝑑 𝑃𝑟 = 6.2.                  𝑓𝑜𝑟 𝑆𝑐 = 1, 𝑆𝑟 = 0.2, 𝜙 = 0.3𝑎𝑛𝑑 𝑝𝑟 = 6.2. 
 
Fig. 9 Shows that the temperature profile in both cases of the nanoliquids decreases as the Prandtl number increases. And we 

found that the temperature profile of Ag-water is higher than that of Cu-water. Fig.10reveals that the concentration profile for both 

cases of nanoliquids  increases as the Prandtl number increases. This shows that the increase of the Prandtl number increases the 

thickening of the boundary layer of the concentration profile. And the concentration profile of Ag-water is higher than that of Cu-

water. Fig. 11  illustrates the effect of the Soret number 𝑆𝑟on the concentration profile in the case of 𝐶𝑢-water and Ag_ water 

nanoliquids. As the Soret number increases, the boundary layer thickness of the concentration ofboth nanoliquids increases. It is 

described that the concentration increment of 𝐴𝑔–water is more than that of 𝐶𝑢–water nanoliquid.  

We note from Eqs. (14) and (15) that the functions 𝜃and 𝛽are partially despaired, hence the Schmidt number 𝑆𝑐and the Soret 

number 𝑆𝑟have no influence on heat transport.  Fig. 12displays the Schmidt number 𝑆𝑐impact on concentration profiles in the 
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case of 𝐶𝑢-water and 𝐴𝑔-water nanoliquids. As the values ofthe Schmidt number enlarges the concentration profiles of both 

nanoliquidslessens. We observed that the concentration increment of 𝐴𝑔 −water is more than that of𝐶𝑢–water. 

              
Fig. 9:  Temperature profile with variation of Pr                                   Fig. 10:  Concentration profile with variation of Pr 

         for 𝑆𝑐 = 1, 𝑆𝑟 = 0.2, 𝜙 = 0.3 𝑎𝑛𝑑 𝛿 = 0.1.                                       for 𝑆𝑐 = 1, 𝑆𝑟 = 0.2, 𝜙 = 0.3 𝑎𝑛𝑑𝛿 = 0.1. 
   

 

                   
Fig.11. The effect of Sr on the concentration profile                                  Fig.12. The effect of Sc on the concentration profile  

when 𝑆𝑐 = 1, 𝜙 = 0.3, 𝛿 = 0.1𝑎𝑛𝑑 𝑃𝑟 = 6.2.                      when 𝑆𝑟 = 0.2, 𝜙 = 0.3, 𝛿 = 0.1𝑎𝑛𝑑 𝑃𝑟 = 6.2.              
 

VI. CONCLUSION 

 
This paper presents the problem of heat and mass transfer in the flow of nanoliquiddue to a stretching sheet in the occurrence of 

heat generation. The governing nonlinear partial differential equations were transformed into ordinary differential equations using 

the similarity approach and solved analytically using the OHAM. Two types of nanoliquids were considered, Cu-water and Ag-

water, and our results revealed, among others, the following. 

 Cu-water shows a thicker velocity boundary than Ag-water nanoliquid. The thickness of the velocity boundary layer 

reduces with an increment of the volume size of nanoparticles. 

 Cu-water nanoliquidthickness of the thermal boundary layer is less than  Ag-water nanoliquid. An increase of 𝜙 enlarges 

the thermal boundary layer thickness. 

 The boundary layer thickness of concentration forAg-water nanoliquidisfaintlymore than Cu-water nanoliquid.  

 The increment of Prenhances concentration boundary layer thickness, while it reduces with increasing the values of the 

Sc. 

 The coefficient of skin friction increases with the nanoparticle volume fraction increment; the Ag-water nanoliquid 

showshigher skin friction than Cu-water nanoliquid. 

 The rate of heat transfer at the plate surface declines with rising the volume size ofthe nanoparticle. The Cu-water 

nanoliquid has a higher rate of heat transfer rate than the Ag-water nanoliquid. 

 The mass transfer rate at the plate surface raises with an increment of the nanoparticle volume fraction, The Ag-water 

nanoliquid has higher rate of mass transfer than the Cu-water nanoliquid. 

 We have compared the values of skin friction and heat transfer rate for some particular parameters, it is observed that our 

results are in very good agreement with earlier results. These values are tabulated in the table-2 and Table-3. 
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