πgb-NORMAL SPACES IN TOPOLOGICAL SPACES

 ¹M. C. Sharma and ²Hamant Kumar Department of Mathematics
¹N. R. E. C. College, Khurja-203131, U.P. (India)
²Government Degree College, Bilaspur-Rampur, U.P. (India)

Abstract. The aim of this paper is to introduce a new class of normal spaces, called π gb-normal spaces by using π gb-closed and b-open sets. The relationships among π gp-normal, π g\beta-normal, π gb-normal, p-normal, β -normal, γ -normal, π -normal, π p-normal, $\pi\gamma$ -normal, $\pi\beta$ -normal, almost p-normal, almost p-normal, almost β -normal, quasi normal, quasi p-normal, quasi γ -normal, quasi β -normal, mildly normal, mildly γ -normal and mildly β -normal spaces are investigated. We also prove that π gb-normality is a topological property and it is a hereditary property with respect to π -open, π gb-closed subspaces. Further we obtain a characterization and some preservation theorems for π gb-normal spaces.

2010 AMS Subject classification: 54D10, 54D15, 54C08, 54C10.

Keywords: regular closed, π -closed, π gb-closed, and b-open sets; pre b-closed, π -continuous, π gb- continuous, π -irresolute, π gb-irresolute, and almost b-irresolute functions; π gb-normal spaces.

1. Introduction

In 1958, Kuratowski [14] introduced the concepts of regular open and regular closed sets in topological spaces. In 1968, Zaitsev [39] introduced the notion of quasi-normal spaces and obtained some characterizations and preservation theorems for quasi-normal spaces. In 1970, Levine [16] defined generalized closed sets in topological spaces. In 1970, Singal and Arya [32] introduced the notion of almost normal spaces and obtained their characterizations. In 1973, Singal and Singal [33] introduced the concept of mildly normal spaces and obtained their properties. In 1989, Nour [24] introduced the notion of p-normal spaces and obtained their characterizations and preservation theorems for p-normal spaces. In 1990, Mahmoud and Monsef [17] introduced the concept of β -normal spaces. In 2007, Ekici [8] introduced the concept of γ -normal spaces and obtained their characterizations and preservation theorems for γ -normal spaces. In 2008, Kalantan [9] introduced the notion of π -normal spaces and obtained some characterizations. In 2010, Tahiliani [35] introduced the notion of $\pi g\beta$ -closed sets and their properties are studied. In 2010, M. C. Sharma and Hamant Kumar [29] introduced the notion of $\pi\beta$ -normal spaces and obtained their characterizations. In 2012, Thabit and Kamaruihaili [36] introduced the notion of πp -normal spaces and obtained their characterizations. In 2012, Thabit and Kamaruihaili [37] introduced a weaker form of p-normality called quasi p-normality, which lies between π p-normality and mild p-normality. In 2013, Thanh and Thinh [38] introduced the notion of π gp-normal spaces and prove that π gp-normality is a topological property and it is a hereditary property with respect to π -open, π gp-closed subspaces. In 2015, M. C. Sharma and Hamant Kumar [31] introduced the concept of softly normal spaces and obtained their characterizations. In 2016, Hamant Kumar and M. C. Sharma [12] introduced the notions of almost γ normal and $\pi\gamma$ -normal spaces and obtained their characterizations. In 2016, Hamant Kumar and M. C. Sharma [11] introduced the concepts of quasi γ -normal and mildly γ -normal spaces and obtained their properties.

2. Preliminaries

Throughout in this paper, the spaces (X, τ) , (Y, σ) , and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by cl(A) and int(A) respectively.

2.1 Definition. A subset A of a space X is said to be

(1) regular open [14] if A = int(cl(A)).

(2) The finite union of regular open sets is said to be π -open [39].

(3) **b-open [4]** if $A \subset cl(int(A)) \cup int(cl(A))$.

(4) **p-open [20] if** $A \subset int(cl(A))$.

(5) s-open [15] if $A \subset cl(int(A))$.

(6) α -open [22] if $A \subset int(cl(int(A)))$.

(7) β -open [1] if $A \subset cl(int(cl(A)))$.

The complement of a regular open (resp. π -open, b-open, p-open, s-open, α -open β -open) set is said to be regular closed (resp. π -closed, b-closed, p-closed, s-closed, α -closed, β -closed).

The intersection of all b–closed (resp. p–closed, s–closed, α –closed, β -closed) sets containing A is called **b–closure** (resp. **p–closure**, s–closure, α –closure, β -closure) of A, and is denoted by **bcl**(A) (resp. **pcl**(A), scl(A), α cl(A), β cl(A)). The **b-Interior** of A, denoted by bint(A), is defined as union of all b-open sets contained in A.

2.2 Definition. A subset A of a space X is said to be

- (1) generalized closed (briefly g-closed) [16] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.
- (2) generalized pre-closed (briefly gp-closed) [23]) if $pcl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.
- (3) generalized semi-closed (briefly gs-closed) [3]) if $scl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.
- (4) α -generalized closed (briefly α g-closed) [18]) if α cl(A) \subset U whenever A \subset U and U $\in \tau$.
- (5) generalized β closed (briefly $g\beta$ -closed) [6]) if β cl(A) \subset U whenever A \subset U and U $\in \tau$.
- (6) generalized b-closed (briefly gb-closed) [2]) if $bcl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.

(7) π **g-closed** [7] if cl(A) \subset U whenever A \subset U and U is π -open in X.

(8) π **gp-closed** [25] if pcl(A) \subset U whenever A \subset U and U is π -open in X.

(9) **\pigs-closed** [5] if scl(A) \subset U whenever A \subset U and U is π -open in X.

(10) π ga-closed [27] if α cl(A) \subset U whenever A \subset U and U is π -open in X.

(11) $\pi g\beta$ -closed [35] if $\beta cl(A) \subset U$ whenever $A \subset U$ and U is π -open in X.

(12) π gb-closed [34] if bcl(A) \subset U whenever A \subset U and U is π -open in X.

(13) g-open (resp. gp-open, gs-open, α g-open, g β -open, gb-open, π g-open, π gp-open, π gs-open, π gs-open, π gb-open, π gb-open) if the complement of A is g-closed (resp. gp-closed, gs-closed, α g-closed g β -closed, gb-closed, π g-closed, π gp-closed, π gc-closed, π gb-closed).

Clearly, from above definitions, we have the following diagram:

Where none of the above implications is reversible as can be seen from the following examples:

- **2.3 Example.** Let $X = \{a, b, c, d\}$ and $\Im = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. Then $A = \{a\}$ is gb-closed as well as $g\beta$ -closed but not closed.
- **2.4 Example.** Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\emptyset, \{b\}, \{d\}, \{b, d\}, X\}$. Then $A = \{a, b, d\}$ is gb-closed as well as $g\beta$ -closed but it is not closed.

2.5 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\emptyset, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then $A = \{a, b\}$ is gb-closed as well as π gb-closed but it is not closed.

2.6 Example Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Then the subset $A = \{b\}$ is g-closed as well as gb-cloed but not closed.

2.7 Example. Let $X = \{a, b, c, \}$ and $\tau = \{\phi, \{a\}, X\}$. Then the subset $A = \{a, b\}$ is g-closed as well as gb-closed but not closed.

2.8 Example Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then the subset $A = \{a, c\}$ is g-closed as well gb-closed but not closed.

2.9 Example. Let $X = \{a, b, c, d, e\}$ and $\mathfrak{I} = \{\emptyset, \{a, b\}, \{b, d\}, \{a, b, c, d\}, X\}$. Then $A = \{a, e\}$ is πg -closed as well as $\pi g \alpha$ -closed but it is not closed.

2.10 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Then $A = \{c\}$ is $\pi g\alpha$ -closed as well as πgp -closed but it is not closed.

2.11 Example. Let $X = \{a, b, c, d\}$ and $\Im = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}, X\}$. Then $A = \{a\}$ is π gs-closed as well as π gb-closed but it is not closed.

2.12 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Then $A = \{c\}$ is πgp -closed but it is not closed.

3. π gb-normal spaces

In this section, we introduce the notion of π gb-normal space and study some property of it. First, we begin with the following definitions and examples.

3.1 Definition. A space X is said to be πgb -normal (resp. πgp -normal [38], $\pi g\beta$ -normal [10]) if for every pair of disjoint πgb -closed (resp. πgp -closed, $\pi g\beta$ -closed) subsets H and K of X, there exist disjoint b-open (resp. p-open, β -open) sets U, V of X such that H \subset U and K \subset V.

3.2 Definition. A space X is said to be γ -normal [8] (resp. p-normal [24], β -normal [17]) if for every pair of disjoint closed subsets A, B of X, there exist disjoint γ -open (resp. p-open, β -open) sets U, V of X such that A \subset U and B \subset V.

3.3 Definition. A space X is said to be $\pi\gamma$ -normal [11] (resp. π p-normal [36], $\pi\beta$ -normal [29]) if for every pair of disjoint closed subsets A, B of X, one of which is π -closed, there exist disjoint γ -open (resp. p-open, β -open) sets U, V of X such that A \subset U and B \subset V.

3.4 Definition. A space X is said to be **almost normal** [32] (resp. **almost p-normal** [21], **almost** γ -normal [12], **almost** β -normal [28]) if for any two disjoint closed subsets A and B of X, one of which is regularly closed, there exist disjoint open (resp. p-open, γ -open, β -open) sets U, V of X such that A \subset U and B \subset V.

3.5 Definition. A space X is said to be **softly normal** [31] (resp. **softly p-normal** [13], **softly \gamma-normal** [13], **softly \beta-normal**) if for any two disjoint subsets A and B of X, one of which is π -closed and other is

regularly closed, there exist disjoint open (resp. p-open, γ -open, β -open) sets U, V of X such that $A \subset U$ and $B \subset V$.

3.6 Definition. A space X is said to be **quasi-normal** [**39**] (resp. **quasi p–normal** [**37**], **quasi \gamma-normal** [**11**], **quasi \beta-normal** [**30**]) if for every pair of disjoint π -closed subsets A, B of X, there exist disjoint open (resp. p–open, γ -open, β -open) sets U, V of X such that A \subset U and B \subset V.

3.7 Definition. A space X is said to be **mildly-normal** [**33**] (resp. **mildly p–normal** [**21**], **mildly \gamma-normal** [**12**], **mildly \beta-normal** [**30**]) if for every pair of disjoint regularly closed subsets A, B of X, there exist disjoint open (resp. p–open, γ -open, β -open) sets U, V of X such that A \subset U and B \subset V.

Clearly, from above definitions, we have the following diagram:

		normal	$\Rightarrow \pi$	-normality	\rightarrow	almost normal	=	> softly normal	-	> mildly normal
		\Downarrow		Ų			Г '			Ų
πgp–normal	\Rightarrow	p-normal	$\Rightarrow \pi_{l}$	o-normal	⇒	almost p-norm	al ≓	softly p-norma	վ ⇒	mildly p-normal
\Downarrow		\Downarrow		Ų		Ų		↓		Ų
πgb –normal	⇒	γ-normal	$\Rightarrow \pi$	/-normal	⇒	almost γ <mark>-norm</mark>	al ≓	> softly γ-norma	ıl ⇒	- mildly γ-normal
\Downarrow		\Downarrow		Ų		Ų		Ų		Ų
$\pi g\beta$ –normal	\Rightarrow	β-normal	$\Rightarrow \pi$	β-normal	\Rightarrow	almost β-norm	al ≓	> softly β -norma	ıl ⇒	- mildly β-normal
						ar	nd			
		normal	$\Rightarrow \pi$	-normal	\Rightarrow	quasi normal	⇒	softly normal	\Rightarrow	mildly normal
		\Downarrow		Ų		Ų		Ų		\Downarrow
πgp–normal	\Rightarrow	p-normal	$\Rightarrow \pi p$ -	normal	\Rightarrow	quasi p-normal	⇒	softly p-normal	\Rightarrow	mildly p-normal
\Downarrow		\Downarrow		\Downarrow		\Downarrow		Ų		\downarrow
πgb–normal	\Rightarrow	γ-normal	$\Rightarrow \pi \gamma$ -	normal	\Rightarrow	quasi γ-normal	\Rightarrow	softly γ -normal	\Rightarrow	mildly γ-normal
\Downarrow		\Downarrow		\Downarrow		\Downarrow		\Downarrow		\downarrow
πgβ–normal	\Rightarrow	β-normal	$\Rightarrow \pi\beta$ -	normal	⇒	quasi B-normal	\Rightarrow	softlv 8-normal		mildlv β-normal

Where none of the above implications is reversible as can be seen from the following examples:

3.8 Example. We consider the topology $\tau = \{\emptyset, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$ on the set $X = \{a, b, c, d\}$. Then, the space X is p-normal as well as β -normal. But it is neither π gp-normal nor π g β -normal.

3.9 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then the space X is β -normal as well as $\pi\beta$ -normal but it is not p-normal.

3.10 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint closed subsets of X are A = $\{a\}$ and B = $\{c\}$. Also U = $\{a, b\}$ and V = $\{c, d\}$ are β -open sets such that A \subset U and B \subset V. Hence X is β -normal as well as $\pi\beta$ -normal.

3.11 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then, the space X is β -normal.

3.12 Example. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then the space X is πp -normal as well as $\pi \gamma$ -normal but not p-normal.

3.13 Example. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the space X is p-normal as well as πp -normal.

3.14 Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then the space X is γ -normal as well as $\pi\gamma$ -normal but not p-normal.

3.15 Example. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{e\}, \{a, b\}, \{c, d\}, \{a, b, e\}, \{c, d, e\}, \{a, b, c, d\}, X\}$. The pair of disjoint π -closed subsets of X are $A = \{a, b\}$ and $B = \{c, d\}$. Also $U = \{a, b, e\}$ and $V = \{c, d\}$ are γ -open sets such that $A \subset U$ and $B \subset V$. Hence X is quasi γ -normal but not quasi-normal, since U and V are not open sets.

3.16 Theorem. For a topological space X, the following are equivalent:

(a) X is π gb-normal.

(b) For every pair of disjoint π gb-open subsets U and V of X whose union is X, there exist b-closed subsets G and H of X such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(c) For every π gb-closed set A and every π gb-open set B in X such that $A \subset B$, there exists a b-open subset V of X such that $A \subset V \subset bcl(V) \subset B$.

(d) For every pair of disjoint π gb-closed subsets A and B of X, there exists a b-open subset V of X such that $A \subset V$ and $bcl(V) \cap B = \emptyset$.

(e) For every pair of disjoint π gb-closed subsets A and B of X, there exist b-open subsets U and V of X such that $A \subset U, B \subset V$ and $bcl(U) \cap bcl(V) = \emptyset$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d), (d) \Rightarrow (e) and (e) \Rightarrow (a).

(a) \Rightarrow (b). Let U and V be any πgb -open subsets of a πgb -normal space X such that $U \cup V = X$. Then, $X \setminus U$ and $X \setminus V$ are disjoint πgb -closed subsets of X. By πgb -normality of X, there exist disjoint b-open subsets U₁ and V₁ of X such that $X \setminus U \subset U_1$ and $X \setminus V \subset V_1$. Let $G = X \setminus U_1$ and $H = X \setminus V_1$. Then, G and H are b-closed subsets in X such that $G \cup H = X$.

(b) \Rightarrow (c). Let A be a π gb–closed and B is π gb–open subsets of X such that A \subset B. Then, A \cap (X \ B) = \emptyset . Thus, X \ A and B are π gb–open subsets of X such that (X \ A) \cup B = X. By the Part (b), there exist b– closed subsets G and H of X such that $G \subset (X \setminus A)$, $H \subset B$ and $G \cup H = X$. Thus, we obtain that $A \subset (X \setminus G) \subset H \subset B$. Let $V = X \setminus G$. Then V is b-open subset of X and $bcl(V) \subset H$ as H is b-closed set in X. Therefore, $A \subset V \subset bcl(V) \subset B$.

(c) \Rightarrow (d). Let A and B be disjoint π gb-closed subset of X. Then A \subset X \ B, where X \ B is π gb-open. By the part (c), there exists a b-open subset U of X such that A \subset U \subset bc1(U) \subset X \ B. Thus, bc1(U) \cap B = \emptyset .

(d) \Rightarrow (e). Let A and B be any disjoint π gb-closed subset of X. Then by the part (d), there exists a b-open set U containing A such that bcl(U) \cap B = \emptyset . Since bcl(U) is b-closed, then it is π gb-closed. Thus bcl(U) and B are disjoint π gb-closed subsets of X. Again by the part (d), there exists a b-open set V in X such that B \subset V and bcl(U) \cap bcl(V) = \emptyset .

(e) \Rightarrow (a). Let A and B be any disjoint π gb-closed subsets of X. Then by the part (e), there exist b-open sets U and V such that A \subset U, B \subset V and bcl(U) \cap bcl(V) = \emptyset . Therefore, we obtain that U \cap V = \emptyset and hence X is π gb-normal.

2.17 Definition. A subset A of a space X is said to be a **b–neighbourhood** [4] of x if there exists a b–open set U such that $x \in U \subset A$.

3.18 Definition. A function $f: X \rightarrow Y$ is said to be

(1) regular open [26] if f(U) is regular open in Y for every open set U in X.

(2) π -continuous [7] if f⁻¹ (F) is π -closed in X for each closed set F in Y.

(3) **strongly-b-closed** [8] (resp. **strongly b-open** [8]) f(F) is b-closed (resp. b-open) set in Y for every b-closed (resp. b-open) set F in X.

(4) π gb-continuous [34] if f⁻¹(F) is π gb-closed in X for every closed set F in Y.

(5) π gb-irresolute [34] if f⁻¹(F) is b-open in X for every b-open set F in Y.

(6) **b-irresolute** [8] if $f^{-1}(V)$ is b-open in X for every b-open set V in Y.

(7) almost b-irresolute [8] if for each $x \in X$ and b-neighbourhood V of f(x) in Y, bcl(f⁻¹(V)) is neighbourhood of x in X.

3.19 Lemma.

(a) The image of b-open subset under an open continuous function is b-open.

(b) The inverse image of b-open (resp. b-closed) subset under an open continuous function is b-open (resp. b-closed) subset.

3.20 Lemma [38]. The image of a regular open subset under open and closed continuous function is regular open subset.

3.21 Proposition [38]. The image of a π -open subset under open and closed continuous function is π -open set.

3.22 Proposition. If $f : X \to Y$ be an open and closed continuous bijection function and be a π gb-closed set in Y, then $f^{-1}(A)$ is π gb-closed set in X.

Proof. Let A be a π gb–closed subset of Y and U be any π –open subset of X such that $f^{-1}(A) \subset U$. Then by the **Proposition 3.21**, we have f (U) is π –open subset of Y such that $A \subset f(U)$. Since A is π gb-closed subset of Y and f(U) is π –open set in Y, thus bcl(A) \subset U. By the **Lemma 3.19**, we obtain that $f^{-1}(A) \subset f^{-1}(bcl(A)) \subset U$, where $f^{-1}(bcl(A))$ is b-closed in X. This implies that bcl($f^{-1}(A)$) \subset U. Therefore, $f^{-1}(A)$ is π gb-closed set in X.

3.23 Theorem. π gb-normality is a topological property.

Proof. Let X be a π gb-normal space and f : X \rightarrow Y be an open and closed bijection continuous function. We need to show that Y is π gb-normal. Let A and B be any disjoint π gb-closed subsets of Y. Then by the **Proposition 3.22**, f⁻¹(A) and f⁻¹(B) are disjoint of π gb-closed subsets of X. By π gb-normality of X, there exist b-open subsets U and V of X such that f⁻¹(A) \subset U, f⁻¹(B) \subset V and U \cap V = \emptyset . By assumption, we have A \subset f(U), B \subset f (V) and f(U) \cap f (V) = \emptyset . By the **Lemma 3.19**, f(U) and f(V) are disjoint b-open subsets of Y such that A \subset f(U). Hence, Y is π gb-normal.

4. π gb-normality in subspaces

4.1 Lemma. If M be an open subspace of a space X and $A \subset M$, then $bcl_M(A) = bcl_X(A) \cap M$.

4.2 Lemma [38]. If M be an open subspace of a space X and $A \subset M$, then $int_M(cl_M(A) = int_X(cl_X(A) \cap M)$.

4.3 Lemma [38]. If M be a π -open subspace of a space X and U be a π -open subset of X, then U \cap M is π -open set in M.

4.4 Lemma. If A is both π -open and π gb-closed subset of a space X, then A is b-closed set in X.

Proof. Since A is π gb–closed and π –open subset of X and since A \subset A, then bcl(A) \subset A. But A \subset bcl(A). Thus, A = bcl(A). Hence, A is b–closed set in X.

4.5 Corollary. If A is both π -open and π gb-closed subset of a space X, then A is regular closed set in X.

4.6 Theorem. Let M be a π -open subspace of a space X and A \subset M. If M is π gb-closed set in X and A is π gb-closed set in M. Then A is π gb-closed set in X.

Proof. Suppose that M is π gb-closed set in X and A is π gb-closed set in M. Let U be any π -open set in X such that $A \subset U$. Then by **Lemma 4.3**, we have $A \subset M \cap U$, where $M \cap U$ is π -open set in M. Since A is π gb-closed in M, thus $bcl_M(A) \subset M \cap U$. The by the **Lemma 4.1**, $bcl_X(A) \cap M \subset M \cap U$. By the **Lemma 4.4**, we obtain that $\beta cl_X(M) = M$. Thus, $bcl_X(A) \subset bcl_X(M) = M$. So, $bcl_X(A) \cap M = bcl_X(A)$. Hence, $bcl_X(M) \subset U \cap M$. Thus, $bcl_X(A) \subset U$. Therefore, A is π gb-closed set in X.

4.7 Lemma. Let M be a closed domain subspace of a space X. If U is b-open set in X, then $U \cap M$ is b-open set in M.

4.8 Theorem. A π gb–closed and π –open subspace of a π gb–normal space is π gb–normal.

Proof. Let M be a π gb–closed and π –open subspace of a π gb–normal space X. Let A and B be any disjoint π gb–closed subsets of M. Then by **Theorem 4.6**, we have A and B are disjoint π gb–closed sets in X. By π gb–normality of X, there exist b–open subsets U and V of X such that $A \subset U$, $B \subset V$ and $U \cap V = \emptyset$. By the **Corollary 4.5** and **Lemma 4.7**, we obtain that $U \cap M$ and $V \cap M$ are disjoint b–open sets in M such that $A \subset U \cap M$ and $B \subset V \cap M$. Hence, M is π gb–normal subspace of π gb–normal space X.

5. Preservation theorems for π gb-normal spaces

5.1 Definition. A function $f: X \to Y$ is said to be π -irresolute [5] if $f^{-1}(F)$ is π -closed in X for every π -closed set F in Y.

5.2 Theorem. If $f : X \to Y$ is π -irresolute, strongly b-closed and A is a π gb-closed subset of X, then f(A) is π gb-closed subset of Y.

Proof. Let A be a π gb-closed subset of X and U be any π -open set of Y such that $f(A) \subset U$. Then, $A \subset f^{-1}(U)$. Since f is π -irresolute function, then $f^{-1}(U)$ is π -open in X. Since A is π gb-closed set in X and $A \subset f^{-1}(U)$, then $bcl_X(A) \subset f^{-1}(U)$. This implies that $f(bcl_X(A)) \subset U$. Since f is pre b-closed and $bcl_X(A)$ is b-closed set in X, then $f(bcl_X(A))$ is b-closed in Y. Thus, we have $bcl_Y(f(A)) \subset U$. Hence, f(A) is π gb-closed subset of Y.

5.3 Corollary. If $f: X \to Y$ is π -continuous, strongly b-closed and A is a π gb-closed subset of X, then f(A) is π gb-closed subset of Y.

5.4 Theorem. If $f : X \to Y$ is π -irresolute, strongly b-closed and b-irresolute injection function from a space X to a π gb–normal Y, then X is π gb-normal.

Proof. Let A and B be any two disjoint π gb-closed subsets of X. By the **Theorem 5.2**, f(A) and f(B) are disjoint π gb-closed subsets of Y. By π gb-normality of Y, there exist disjoint b-open subsets U and V of Y such that $f(A) \subset U$, $f(B) \subset V$ and $U \cap V = \emptyset$. Since f is b-irresolute injection function, then f⁻¹(U) and f⁻¹(V) are disjoint b-open sets in X such that $A \subset f^{-1}(U)$ and $B \subset f^{-1}(V)$. Hence X is π gb-normal.

5.5 Corollary. If $f: X \to Y$ is π -continuous, strongly b-closed and b-irresolute injection function from a space X to a π gb–normal Y, then X is π gb-normal.

5.6 Lemma. If the bijection function $f: X \to Y$ is b–continuous and regular open, then f is π gb–irresolute.

5.7 Theorem. If $f: X \to Y$ is πgb -irresolute, strongly b-closed bijection function from a πgb -normal space X to a space Y, then Y is πgb -normal.

Proof. Let A and B be any two disjoint π gb-closed subsets of Y. Since f is π gb-irresolute, we have f⁻¹(A) and f⁻¹(B) are disjoint π gb-closed subsets of X. By π gb-normality of X, there exist disjoint b-open sets U and V in X such that f⁻¹(A) \subset U, f⁻¹(B) \subset V and U \cap V = \emptyset . Since f is pre b-open and bijection function,

we have f(U) and f(V) are disjoint b-open sets in Y such that $A \subset f(U)$, $B \subset f(V)$ and $f(U) \cap f(V) = \emptyset$. Therefore, X is π gb-normal.

5.8 Corollary. If $f: X \to Y$ is b-continuous, regular open and strongly b-open bijection function from a π gb–normal space X to a space Y, then Y is π gb–normal.

5.9 Theorem. If $f: X \to Y$ is a strongly b-open, πgb -irresolute and almost b-irresolute surjection function from a πgb -normal space X onto a space Y, then Y is πgb -normal.

Proof. Let A be a π gb–closed subset of Y and B be a π gb–open subset of Y such that $A \subset B$. Since f is π gb-irresolute, we obtain that $f^{-1}(A)$ is π gb–closed in X and $f^{-1}(B)$ is π gb–open in X such that $f^{-1}(A) \subset f^{-1}(B)$. Since X is π gb–normal, then by the Part (c) of the **Theorem 3.16**, there exists a b–open set U of X such that $f^{-1}(A) \subset U \subset bcl_X(U) \subset f^{-1}(B)$. Then, $f(f^{-1}(A)) \subset f(U) \subset f(bcl_X((U))) \subset f(f^{-1}(B))$. Since f is pre b–open, almost b–irresolute surjection, we obtain that $A \subset f(U) \subset bcl_Y(f(U)) \subset B$ and f(U) is b–open set in Y. Hence by the **Theorem 3.16**, we have Y is π gb–normal.

REFERENCES

1. M. E. Abd EI-Monsef, S. N. EL Deeb and R. A. Mohamoud, β -open sets and β -continuous mappings, Bull. Fac. Assiut Univ. Sci., **12**(1983), 77-90.

2. A. Al-Omariand M. S. M. Noorani, On generalized-closed sets, Bull. Malays. Math. Sci. Soc., **32**(1), (2009), 19-30.

3. S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., **21**(1990), 717-719.

4. D. Andrijevic, On b-open sets, Mat. Vesnik, 48(1996), 59-64.

5. A. Aslim, A. Caksu Guler and T. Noiri, On π gs-closed sets in topological spaces, Acta Math. Hungar., **112**(2006), 275-283.

6. J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16(1995), 35-48.

7. J. Dontchev and T. Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar., **89**(3)(2000), 211-219.

8. E. Ekici, On γ–normal spaces, Bulll. Math. Soc. Sci. Math. Roumanie Tome 50(98), 3(2007), 259-272.

9. L. Kalantan, π -normal topological spaces, Filomat, Vol. 22, No. 1, (2008), 173-181.

10. H. Kumar, U. Chand and R. Rajbhar, $\pi g\beta$ -normal topological spaces, International Journal of Science and Research, 2, **4**(2015), 1531-1534.

11. H. Kumar and M. C. Sharma, Quasi γ -normal spaces in topological spaces, International Journal of Advance Research in Science and Engineering, Vol. **5**, Issue No. 08, (2016), 451-458.

12. H. Kumar and M. C. Sharma, Almost γ -normal and mildly γ -normal spaces in topological spaces, International Journal of Advance Research in Science and Engineering, Vol. **5**, Issue No. 08, (2016), 451-458.

13. H. Kumar, Some weaker forms of normal spaces in topological spaces, Ph. D. Thesis, C. C. S. University Meerut, 2018.

14. C. Kuratowski, Topology I, 4th, ed, In French, Hafner, New York, 1958.

15. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70**(1963), 36-41.

16. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2),19(1970), 89-96.

17. R. A. Mahmoud, and M. E. Abd EI-Monsef, β -irresolute and β -topological invariant, Proc. Pakistan Acad. Sci., **27**(1990), 285-296.

18. H. Maki., R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., **5**(1994), 51-63.

19. H. Maki, J. Umehara and T. Noiri, Every topological space is $pre-T_{1/2}$, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 17(1996), 33-42.

20. A. S. Mashhour, M. E. Abd EI-Monsef and S. N.Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, **53**(1882), 47-53.

21. G. B. Navalagi, p-normal, almost p-normal and mildly p-normal spaces, Topology Atlas, Preprint #427. URL:http://at.yorku.ca/i/d/e/b/71.htm.

22. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

23. T. Noiri, H. Maki and J. Umehera, Generalized preclosed functions, Mem. Fac.Sci. Kochi Univ. (Math.), 19(1998), 13-20.

24. T. M. J. Nour, Contribution to the Theory of Bitopological Spaces, Ph. D. Thesis, Delhi Univ., 1989.

25. J. H. Park, On π gp-closed sets in topological spaces, Indian J. Pure Appl. Math., (2004).

26. J. H. Park and J. K. Park, On π gp-continuous functions in topological spaces, Chaos, Solitons and Fractals, **20**(2004), 467-477.

27. A. Rani and C. Janaki, $\pi g\alpha$ -closed sets and quasi α -normal spaces, Acta Ciencia Indica, Vol. XXXIII, M. No. 2, (2007), 657-666.

28. N. Sharma, Some weaker forms of separation axioms in topological spaces, Ph. D. Thesis, C. C. S. University Meerut, 2014.

29. M. C. Sharma and Hamant Kumar, $\pi\beta$ -normal Spaces, Acta Ciencia Indica, Vol. XXXVI M.no.4, (2010), 611-616.

30. M. C. Sharma and Hamant Kumar, Quasi β -normal Spaces and $\pi g\beta$ -closed functions, Acta Ciencia Indica, Vol. **XXXVIII** M. No.1, (2012), 149-154.

31. M. C. Sharma and Hamant Kumar, Softly normal topological spaces, Acta Ciencia Indica, Vol. **XLI** M. No.2, (2012), 81-84.

32. M. K. Singal and S. P. Arya, Almost normal and almost completely regular spaces, Glasnik Mat., **5**(25), No. 1, (1970), 141-152.

33. M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1973), 27-31.

34. D. Sreeja and C. Janaki, On π gb-closed sets in topological spaces, International Journal of Mathematical Archieve, 2, **8**(2011), 1314-1320.

35. S. Tahiliani, On π g β -closed sets in topological spaces, Node M. **30**(1), (2010), 49-55.

36. S. A. S. Thabit and H. Kamaruihaili, π p-normality on topological spaces, Int. J. Math. Anal., 6(21), (2012), 1023-1033.

37. S. A. S. Thabit and H. Kamaruihaili, On quasi p-normal spaces, Int. J. Math. Anal., 6(**27**), (2012), 1301-1311.

38. L. N. Thanh and B. Q. Thinh, π gp-normal topological spaces, Journal of Advanced Studied in Topology, Vol. **4**, No. 1 (2013), 48-54.

39. V. Zaitsev, On certain classes of topological spaces and their biocompactifications, Dokl. Akad. Nauk SSSR, **178**(1968), 778-779.