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Abstract. The aim of this paper is to introduce a new class of normal spaces, called gb-normal spaces by 
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gb-normality is a topological property and it is a hereditary property with respect to -open, gb-closed 

subspaces. Further we obtain a characterization and some preservation theorems for gb-normal spaces. 
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1. Introduction 

 

In 1958, Kuratowski [14] introduced the concepts of regular open and regular closed sets in topological 

spaces. In 1968, Zaitsev [39] introduced the notion of quasi-normal spaces and obtained some 

characterizations and preservation theorems for quasi-normal spaces. In 1970, Levine [16] defined 

generalized closed sets in topological spaces. In 1970, Singal and Arya [32] introduced the notion of almost 

normal spaces and obtained their characterizations. In 1973, Singal and Singal [33] introduced the concept 

of mildly normal spaces and obtained their properties. In 1989, Nour [24] introduced the notion of p-normal 

spaces and obtained their characterizations and preservation theorems for p-normal spaces. In 1990, 

Mahmoud and Monsef [17] introduced the concept of -normal spaces. In 2007, Ekici [8] introduced the 

concept of -normal spaces and obtained their characterizations and preservation theorems for -normal 

spaces. In 2008, Kalantan [9] introduced the notion of π-normal spaces and obtained some characterizations. 

In 2010, Tahiliani [35] introduced the notion of g-closed sets and their properties are studied. In 2010, M. 

C. Sharma and Hamant Kumar [29] introduced the notion of β-normal spaces and obtained their 

characterizations. In 2012, Thabit and Kamaruihaili [36] introduced the notion of p-normal spaces and 

obtained their characterizations. In 2012, Thabit and Kamaruihaili [37] introduced a weaker form of              

p-normality called quasi p-normality, which lies between πp-normality and mild p-normality. In 2013, 

Thanh and Thinh [38] introduced the notion of gp-normal spaces and prove that gp-normality is a 

topological property and it is a hereditary property with respect to -open, gp-closed subspaces. In 2015, 

M. C. Sharma and Hamant Kumar [31] introduced the concept of softly normal spaces and obtained their 

characterizations. In 2016, Hamant Kumar and M. C. Sharma [12] introduced the notions of almost -

normal and -normal spaces and obtained their characterizations. In 2016, Hamant Kumar and M. C. 
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Sharma [11] introduced the concepts of quasi -normal and mildly -normal spaces and obtained their 

properties. 

   

2. Preliminaries 

 

Throughout in this paper, the spaces (X, ), (Y, ), and (Z, ) always mean topological spaces on which no 

separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and 

interior of A are denoted by cl(A) and int(A) respectively. 

 

2.1 Definition. A subset A of a space X is said to be 

(1) regular open [14] if A  int(cl(A)). 

(2) The finite union of regular open sets is said to be -open [39]. 

(3) b-open [4] if A cl(int(A))  int(cl(A)). 

(4) p-open [20] if A int(cl(A)). 

(5) s-open [15] if A cl(int(A)). 

(6) α-open [22] if A  int(cl(int(A))). 

(7) -open [1] if A cl(int(cl(A))). 

The complement of a regular open (resp. -open, b–open, p–open, s–open, α–open–open) set is said to 

be regular closed (resp. -closed, b–closed, p–closed, s–closed, α–closed,-closed). 

The intersection of all b–closed (resp. p–closed, s–closed, α–closed,-closed) sets containing A is called 

b–closure (resp. p–closure, s–closure, α–closure,-closure) of A, and is denoted by bcl(A) (resp. pcl(A), 

scl(A), αcl(A), βcl(A)). The b-Interior of A, denoted by bint(A), is defined as union of all b-open sets 

contained in A. 

 

2.2 Definition. A subset A of a space X is said to be 

(1) generalized closed (briefly g-closed) [16] if cl(A) U whenever A U and U   

(2) generalized pre-closed (briefly gp-closed) [23]) if pcl(A) U whenever A U and U   

(3) generalized semi-closed (briefly gs-closed) [3]) if scl(A) U whenever A U and U   

(4) -generalized closed (briefly g-closed) [18]) if cl(A) U whenever A U and U   

(5) generalized - closed (briefly g-closed) [6]) if cl(A) U whenever A U and U   

(6) generalized b-closed (briefly gb-closed) [2]) if bcl(A) U whenever A U and U   

(7) g-closed [7] if cl(A)  U whenever A U and U is open in X. 

(8) gp-closed [25] if pcl(A)  U whenever A U and U is open in X. 

(9) gs-closed [5] if scl(A)  U whenever A U and U is open in X. 

(10) g-closed [27] if cl(A)  U whenever A U and U is open in X. 

(11) g-closed [35] if cl(A)  U whenever A U and U is open in X. 

(12) gb-closed [34] if bcl(A)  U whenever A U and U is open in X. 

(13) g-open (resp. gp-open, gs-open, g-open, g-open, gb-open, g-open, gp-open, gs-open, g-

open, g-open, gb-open) if the complement of A is gclosed (resp. gpclosed, gsclosed, gclosed g-

closed, gb-closed, gclosed, gpclosed, gsclosed, gclosed, gclosed, gbclosed). 

 

 

 

http://www.jetir.org/


© 2019 JETIR  April 2019, Volume 6, Issue 4                                          www.jetir.org  (ISSN-2349-5162) 

 

JETIR1904303 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 17 

 

Clearly, from above definitions, we have the following diagram: 

 

closed             g-closed              g-closed 

 





-closed             g-closed              g-closed 

 





p-closed             gp-closed              gp-closed 

 





b-closed           gb-closed            gb-closed 

 





-closed           g-closed            g-closed 

 

and 

 

closed             g-closed              g-closed 

 



-closed             g-closed              g-closed 

 





s-closed             gs-closed              gs-closed 

 





b-closed           gb-closed            gb-closed 

 





-closed           g-closed            g-closed 

 

Where none of the above implications is reversible as can be seen from the following examples: 

 

2.3 Example. Let X = {a, b, c, d} and  = {, {a}, {b, c}, {a, b, c}, X}. Then A = {a} is gb-closed as well 

as g-closed but not closed. 

 

2.4 Example. Let X = {a, b, c, d} and  = {, {b}, {d}, {b, d}, X}. Then A = {a, b, d} is gb–closed as well 

as g-closed but it is not closed. 

 

2.5 Example. Let X = {a, b, c, d} and  = {, {b, d}, {a, b, d}, {b, c, d}, X}. Then A = {a, b} is gb–closed 

as well as gb-closed but it is not closed. 
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2.6 Example Let X = {a, b, c} and  = {, {b}, {c}, {b, c}, X}. Then the subset A = {b} is   g-closed as well 

as gb-cloed but not closed.  

 

2.7 Example. Let X = {a, b, c,} and  = {, {a}, X}. Then the subset A = {a, b} is g-closed as well as gb-

closed but not closed. 

   

2.8 Example Let X = {a, b, c} and  = {, {a}, {a, b}, X}. Then the subset A = {a, c} is g-closed as well 

gb-closed but not closed.  

 

2.9 Example. Let X = {a, b, c, d, e} and  = {, {a, b}, {b, d}, {a, b, c, d}, X}. Then A = {a, e} is g–

closed as well as g-closed but it is not closed. 

 

2.10 Example. Let X = {a, b, c, d} and  = {, {a}, {d}, {a, d}, {c, d}, {a, c, d}, X}. Then A = {c} is 

g–closed as well as gp-closed but it is not closed. 

 

2.11 Example. Let X = {a, b, c, d} and  = {, {a}, {b}, {a, b}, {a, b, d}, X}. Then A = {a} is gs–closed 

as well as gb-closed but it is not closed. 

 

2.12 Example. Let X = {a, b, c, d} and  = {, {a}, {d}, {a, d}, {c, d}, {a, c, d}, X}. Then A = {c} is gp–

closed as well as gβ-closed but it is not closed. 

 

gb-normal spaces 

 

In this section, we introduce the notion of gb–normal space and study some property of it. First, we begin 

with the following definitions and examples. 

 

3.1 Definition. A space X is said to be gb–normal(resp. gp–normal [38], g–normal [10]) if for 

every pair of disjoint gb–closed (resp. gp-closed, gβ-closed) subsets H and K of X, there exist disjoint 

b–open (resp. p-open, -open) sets U, V of X such that H  U and K  V. 

 

3.2 Definition. A space X is said to be –normal [8] (resp. p-normal [24], -normal [17]) if for every pair 

of disjoint closed subsets A, B of X, there exist disjoint –open (resp. p-open, -open) sets U, V of X such 

that A  U and B  V.  

 

3.3 Definition. A space X is said to be -normal [11] (resp. p-normal [36], –normal [29]) if for every 

pair of disjoint closed subsets A, B of X, one of which is –closed, there exist disjoint –open (resp. p-open, 

-open) sets U, V of X such that A  U and B  V. 

 

3.4 Definition. A space X is said to be almost normal [32] (resp. almost p-normal [21], almost –normal 

[12], almost -normal [28]) if for any two disjoint closed subsets A and B of X, one of which is regularly 

closed, there exist disjoint open (resp. p-open, -open, -open) sets U, V of X such that A  U and B  V. 

  

3.5 Definition. A space X is said to be softly normal [31] (resp. softly p-normal [13], softly –normal 

[13], softly -normal) if for any two disjoint subsets A and B of X, one of which is π–closed and other is 
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regularly closed, there exist disjoint open (resp. p-open, -open, -open) sets U, V of X such that A  U and 

B  V.  

 

3.6 Definition. A space X is said to be quasi-normal [39] (resp. quasi  p–normal [37], quasi  -normal 

[11], quasi -normal [30]) if for every pair of disjoint π-closed subsets A, B of X, there exist disjoint open 

(resp. p–open, -open, -open) sets U, V of X such that A  U and B  V.  

 

3.7 Definition. A space X is said to be mildly-normal [33] (resp. mildly p–normal [21], mildly -normal 

[12], mildly -normal [30]) if for every pair of disjoint regularly closed subsets A, B of X, there exist 

disjoint open (resp. p–open, -open, -open) sets U, V of X such that A  U and B  V.  

 

Clearly, from above definitions, we have the following diagram: 

 

                                 normal      -normality  almost normal      softly normal      mildly normal 

 

 

 

gp–normal       p-normal     p-normal    almost p-normal     softly p-normal    mildly p-normal 

 

   

 

gb –normal      -normal     -normal    almost -normal      softly -normal    mildly -normal 



 

   

g –normal    -normal     -normal   almost -normal      softly -normal    mildly -normal 

 

and 

 

                               normal        -normal    quasi normal     softly normal      mildly normal 

 

 

 

gp–normal     p-normal     p-normal    quasi p-normal     softly p-normal   mildly p-normal 

  

   

 

gb–normal     -normal     -normal    quasi -normal   softly -normal   mildly -normal 





   

g–normal     -normal    -normal    quasi -normal     softly -normal     mildly -normal 

 



Where none of the above implications is reversible as can be seen from the following examples: 

 

3.8 Example. We consider the topology  = {, {b, d}, {a, b, d}, {b, c, d}, X} on the set X = {a, b, c, d}. 

Then, the space X is p-normal as well as –normal. But it is neither gp–normal nor g–normal. 
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3.9 Example. Let X = {a, b, c, d} and  = {, {b}, {d}, {b, d}, {a, b, d}, {b, c, d}, X}. Then the space X is 

–normal as well as –normal but it is not p-normal. 

 

3.10 Example. Let X = {a, b, c, d} and  = {, {a}, {c}, {a, c}, {a, b, d}, {b, c, d}, X}. The pair of disjoint 

closed subsets of X are A = {a} and B = {c}. Also U = {a, b} and V = {c, d} are –open sets such that A  

U and B  V. Hence X is –normal as well as -normal. 

 

3.11 Example.  Let X = {a, b, c, d} and  = {, {a}, {b, d}, {a, b, d}, {b, c, d}, X}. Then, the space X is –

normal. 

 

3.12 Example. Let X = {a, b, c} and  = {, {a}, {a, b}, {a, c}, X}. Then the space X is πp-normal as well 

as π–normal but not p–normal. 

 

3.13 Example. Let X = {a, b, c} and  = {, {a}, {b}, {a, b}, X}. Then the space X is p-normal as well as 

πp–normal. 

 

3.14 Example. Let X = {a, b, c, d} and  = {, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}. Then the space X is 

-normal as well as π–normal but not p–normal. 

 

3.15 Example. Let X = {a, b, c, d, e} and  = {, {e}, {a, b}, {c, d}, {a, b, e}, {c, d, e}, {a, b, c, d}, X}. 

The pair of disjoint π-closed subsets of X are A = {a, b} and B = {c, d}. Also U = {a, b, e} and V = {c, d} 

are –open sets such that A  U and B  V. Hence X is quasi –normal but not quasi-normal, since U and V 

are not open sets. 

 

3.16 Theorem. For a topological space X, the following are equivalent: 

(a) X is gb-normal. 

(b) For every pair of disjoint gb-open subsets U and V of X whose union is X, there  exist b-closed subsets 

G and H of X such that G U, H V and G  H = X.  

(c) For every gb-closed set A and every gb-open set B in X such that A  B, there exists a b-open subset 

V of X such that A V  bcl(V)  B. 

(d) For every pair of disjoint gb-closed subsets A and B of X, there exists a b-open subset V of X such that 

A V and bcl(V)  B = . 

(e) For every pair of disjoint gb-closed subsets A and B of X, there exist b-open subsets U and V of X such 

that A U, B V and bcl(U)bcl(V) = . 

 

Proof. (a)  (b), (b)  (c), (c)  (d), (d)  (e) and (e)  (a). 

 

(a)  (b). Let U and V be any gb–open subsets of a gb–normal space X such that U  V = X. Then, X \ 

U and X \ V are disjoint gb–closed subsets of X. By gb–normality of X, there exist disjoint b–open 

subsets U1 and V1 of X such that X \ U  U1 and X \ V  V1. Let G =   X \ U1 and H = X \ V1. Then, G and 

H are b–closed subsets in X such that G H = X. 

 

(b)  (c). Let A be a gb–closed and B is gb–open subsets of X such that A B. Then, A  (X \ B) = . 

Thus, X \ A and B are gb–open subsets of X such that (X \ A)  B = X. By the Part (b), there exist b–
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closed subsets G and H of X such that G  (X \ A), H  B and G  H = X. Thus, we obtain that A  (X \ 

G)  H  B. Let V = X \ G. Then V is b–open subset of X and bcl(V)  H as H is b–closed set in X. 

Therefore, A  V bcl(V)  B. 

 

(c)  (d). Let A and B be disjoint gb-closed subset of X. Then AX \ B, where X \ B is gb-open. By  

the part (c),  there  exists a b-open subset U of X such that A U bc1(U) X \ B. Thus, bc1(U)  B = 

 

(d)  (e). Let A and B be any disjoint gb-closed subset of X. Then by the part (d), there exists a b-open set 

U containing A such that bcl(U) B = . Since bcl(U) is b-closed, then it is gb-closed. Thus bcl(U) and B 

are disjoint gb-closed subsets of X. Again by the part (d), there exists a b-open set V in X such that B V 

and bcl(U)  bcl(V) = .   

 

(e)  (a). Let A and B be any disjoint gb-closed subsets of X. Then by the part (e), there exist b-open sets 

U and V such that A U, B V and bcl(U) bcl(V) = . Therefore, we obtain that U V =  and 

hence X is gb-normal. 

 

2.17 Definition. A subset A of a space X is said to be a b–neighbourhood [4] of x if there exists a b–open 

set U such that x  U  A. 

 

3.18  Definition. A function f : X  Y is said to be  

(1) regular open [26] if f(U) is regular open in Y for every open set U in X. 

(2) -continuous [7] if f –1 (F) is -closed in X for each closed set F in Y. 

(3) strongly-b-closed [8] (resp. strongly b–open [8]) f(F) is b-closed (resp. b-open) set in Y for every 

bclosed (resp. b–open) set F in X.  

(4) gb-continuous [34] if f –1(F) is gb-closed in X for every closed set F in Y. 

(5) gb-irresolute [34] if f –1(F) is b-open in X for every b-open set F in Y. 

(6) b-irresolute [8] if f –1(V) is b-open in X for every b-open set V in Y. 

(7) almost b–irresolute [8] if for each x  X and b–neighbourhood V of f(x) in Y, bcl(f –1(V)) is 

neighbourhood of x in X. 

 

3.19 Lemma. 

(a) The image of b-open subset under an open continuous function is b-open. 

(b) The inverse image of b-open (resp. b-closed) subset under an open continuous function is b-open (resp. 

b-closed) subset. 

 

3.20 Lemma [38]. The image of a regular open subset under open and closed continuous function is regular 

open subset. 

 

3.21 Proposition [38]. The image of a -open subset under open and closed continuous function is -open 

set. 

 

3.22 Proposition. If f : X Y be an open and closed continuous bijection function and be a gb-closed set 

in Y, then f –1(A) is gb–closed set in X. 
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Proof. Let A be a gb–closed subset of Y and U be any –open subset of X such that f –1(A) U. Then by 

the Proposition 3.21, we have f (U) is –open subset of Y such that A f(U). Since A is gb-closed subset 

of Y and f(U) is –open set in Y, thus bcl(A) U. By the Lemma 3.19, we obtain that f –1(A)  f –1(bcl(A)) 

U, where f –1(bcl(A)) is b-closed in X. This implies that bcl(f –1(A))U. Therefore, f –1(A) is gb-closed 

set in X. 

 

3.23 Theorem. gb-normality is a topological property. 

 

Proof. Let X be a gb-normal space and f  :  X Y be an open and closed bijection continuous function. 

We need to show that Y is gb-normal. Let A and B be any disjoint gb-closed subsets of Y. Then by the 

Proposition 3.22, f –1(A) and f –1(B) are disjoint of   gb-closed subsets of X. By gb-normality of X, there 

exist b-open subsets U and V of X such that f –1(A)  U, f –1(B) V and U V = . By assumption, we 

have A f(U), B f (V) and f(U)  f (V) = . By the Lemma 3.19, f(U) and f(V) are disjoint b-open 

subsets of Y such that A f(U) and B f(V).  Hence, Y is gb-normal. 

 

4.gb-normality in subspaces 

 

4.1 Lemma. If M be an open subspace of a space X and A M, then bclM(A) = bclX(A) M. 

 

4.2 Lemma [38].If M be an open subspace of a space X and A M, then intM(clM(A) = intX(clX (A)  M. 

 

4.3 Lemma [38]. If M be a -open subspace of a space X and U be a –open subset of X, then U M is –

open set in M. 

 

4.4 Lemma. If A is both –open and gb-closed subset of a space X, then A is b-closed set in X. 

  

Proof. Since A is gb–closed and –open subset of X and since A A, then bcl(A)  A. But A bcl(A). 

Thus, A = bcl(A). Hence, A is b–closed set in X. 

 

4.5 Corollary. If A is both –open and gb-closed subset of a space X, then A is regular closed set in X.  

 

4.6 Theorem. Let M be a -open subspace of a space X and A M. If M is gb-closed set in X and A is 

gb-closed set in M. Then A is gb-closed set in X. 

 

Proof. Suppose that M is gb-closed set in X and A is gb-closed set in M. Let U be any –open set in X 

such that A U. Then by Lemma 4.3, we have A M U, where M U is –open set in M. Since A is 

gb–closed in M, thus bclM(A)  M U. The by the Lemma 4.1, bclX(A) M  M U. By the Lemma 

4.4, we obtain thatclX(M) = M. Thus, bclX(A) bclX(M) = M. So, bclX(A)  M = bclX(A). Hence, 

bclX(M)  U M. Thus, bclX(A)   U. Therefore, A is gb–closed set in X. 

 

4.7 Lemma. Let M be a closed domain subspace of a space X. If U is b–open set in X, then U M is b–

open set in M. 

 

4.8 Theorem. A gb–closed and –open subspace of a gb–normal space is gb–normal. 
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Proof. Let M be a gb–closed and –open subspace of a gb–normal space X. Let A and B be any disjoint 

gb–closed subsets of M. Then by Theorem 4.6, we have A and B are disjoint gb–closed sets in X. By 

gb–normality of X, there exist b–open subsets U and V of X such that A U, B V and U V = . By 

the Corollary 4.5 and Lemma 4.7, we obtain that U M and V M are disjoint b–open sets in M such 

that A U M and B VM. Hence, M is gb–normal subspace of gb–normal space X. 

 

5. Preservation theorems for gb-normal spaces 

 

5.1 Definition. A function f : X  Y is said to be  -irresolute [5] if f –1 (F) is -closed in X for every -

closed set F in Y. 

 

5.2 Theorem. If f : X Y is -irresolute, strongly b-closed and A is a gb-closed subset of X, then f(A) is  

gb-closed subset of Y. 

 

Proof. Let A be a gb-closed subset of X and U be any -open set of Y such that f(A) U. Then, A         

f –1(U). Since f is -irresolute function, then f –1 (U) is -open in X. Since A is gb-closed set in X and A  

f –1(U), then bclX(A)  f –1(U). This implies that f(bclX(A))  U. Since f is pre b-closed and bclX(A) is b–

closed set in X, then f(bclX(A)) is b–closed in Y. Thus, we have bclY(f(A)) U. Hence, f(A) is gb–closed 

subset of Y.  

 

5.3 Corollary. If f : X Y is -continuous, strongly b-closed and A is a gb-closed subset of X, then f(A) 

is  gb-closed subset of Y. 

 

5.4 Theorem. If f : X  Y is -irresolute, strongly b-closed and b-irresolute injection function from a space 

X to a gb–normal Y, then X is gb-normal. 

 

Proof. Let A and B be any two disjoint gb-closed subsets of X. By the Theorem 5.2, f(A) and f(B) are 

disjoint gb-closed subsets of Y. By gb–normality of Y, there exist disjoint b-open subsets U and V of Y 

such that f(A)  U, f(B)   V and U  V =  Since f is b-irresolute injection function, then f –1(U) and       

f –1(V) are disjoint b-open sets in X such that A  f –1(U) and B   f –1(V). Hence X is gb-normal. 

 

5.5 Corollary. If f : X  Y is -continuous, strongly b-closed and b-irresolute injection function from a 

space X to a gb–normal Y, then X is gb-normal. 

 

5.6 Lemma. If the bijection function f : X  Y is b–continuous and regular open, then f is gb–irresolute. 

 

5.7 Theorem. If f : X  Y is gb-irresolute, strongly b-closed bijection function from a gb–normal space 

X to a space Y, then Y is gb–normal. 

 

Proof. Let A and B be any two disjoint gb-closed subsets of Y. Since f is gb–irresolute, we have f –1(A) 

and f –1(B) are disjoint gb-closed subsets of X. By gb–normality of X, there exist disjoint b-open sets U 

and V in X such that f –1(A)  U, f –1(B)   V and U V = . Since f is pre b–open and bijection function, 
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we have f(U) and f(V) are disjoint b-open sets in Y such that A f(U), B   f(V) and f(U)  f(V) = . 

Therefore, X is gb-normal. 

 

5.8 Corollary. If f : X  Y is b-continuous,  regular open and strongly b-open bijection function from a 

gb–normal space X to a space Y, then Y is gb–normal. 

 

5.9 Theorem. If f : X  Y is a strongly b–open, gb–irresolute and almost b–irresolute surjection function 

from a gb–normal space X onto a space Y, then Y is gb–normal. 

 

Proof. Let A be a gb–closed subset of Y and B be a gb–open subset of Y such that A B. Since f is gb-

irresolute, we obtain that f –1(A) is gb–closed in X and f –1(B) is gb–open in X such that f –1(A)  f –1(B). 

Since X is gb–normal, then by the Part (c) of the Theorem 3.16,  there exists a b–open set U of X such that 

f –1(A)  U bclX(U)  f –1(B). Then, f(f –1 (A))  f(U)  f(bclX((U))  f(f –1(B). Since f is pre b–open, 

almost b–irresolute surjection, we obtain that A  f(U)  bclY(f(U))  B and f(U) is b–open set in Y. Hence 

by the Theorem 3.16, we have Y is gb–normal.   
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