GENERALIZATION OF SOMEWHAT CONTINUOUS FUNCTIONS

P.GOMATHI SUNDARI*, N.RAJESH* AND S. VINOTH KUMAR** * Assistant Professor of Mathematics, Rajah Serfoji Govt. College, Thanjavur 613005, TamilNadu, India ** Assistant Professor of Mathematics, Swami Dayananda College of Arts and Science, Manjakkudi 612610, TamilNadu, India

Abstract: The aim of this paper is to introduce and study somewhat sg α -continuous functions on generalized topological space. 2000 Mathematics Subject Classification. 54A05, 54A10, 54D10

Key words and phrases: Topological spaces, sgα-open set.

1. INTRODUCTION

In 1963, Levine [2] initiated the study of so-called semi-open sets. The notion has been studied extensively in recent years by many topologists. The notion somewhat continuous functions plays a very important role in topology. By definition, a homeomorphism between two topological spaces X and Y is a bijective map f: $X \rightarrow Y$ when both f and f⁻¹ are continuous. As generalization of closed sets, sg α -closed sets were introduced and studied by Rajesh and Krsteska [5].introduced the concept of generalized closed maps in topological spaces. In this paper, to introduce and study somewhat sg α -continuous functions on topological space.

2. PRELIMINARIES

Throughout this paper (X, τ) and (Y, σ) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A, respectively. If $A \subseteq B \subseteq X$, then $cl_B(A)$ and $int_B(A)$ denote the closure of A relative to B and an interior of A relative to B.

We recall the following definitions, which are useful in the sequel.

Definition 2.1: A subset A of a space (X, τ) is called

(i). a semi-open set [3] if $A \subseteq cl(int(A))$ and

(ii).an α -open set [5] if A \subseteq int(cl(int(A))).

The complement of α -closed set is called α -open. The α -closure [4] of a subset A of X, denoted by $\alpha cl_X(A)$ (briefly $\alpha cl(A)$) is defined to be the intersection of all α -closed sets containing A.

Definition 2.2: A subset A of a topological space (X, τ) is called a semi-generalized α -closed (briefly sg- α -closed) set [7] if α cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ). The complement of sg- α -closed sets is called sg- α -open.

2. SOMEWHAT SGα-CONTINUOUS FUNCTIONS

Definition 2.1. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be somewhat sga-continuous if for $U \in \sigma$ and $f^{-1}(U) \neq \emptyset$, there exists a open set V in X such that $V \neq \emptyset$ and $V \subset f^{-1}(U)$.

Definition 2.2. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be sga-continuous if [1] if for $U \in \sigma$, there exists an open set V in X such that $V \subset f^{-1}(U)$.

It is clear that every sgα-continuous function is somewhat sgα-continuous but the converse is not true as shown by the following examples.

Example 2.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}, \{a, c\}\}$ and $\sigma = \{\emptyset, X, \{a, b\}\}$. Then the identity function f: (X, τ) \rightarrow (Y, σ) is somewhat sga-continuous but not sga-continuous.

Definition 2.4. A subset M of a topological space is said to be $sg\alpha$ -dense in X if there is no proper $sg\alpha$ -closed set C in X such that $M \subset C \subset X$

Theorem 2.5. For a surjective function $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (*i*) f is somewhat sg α -continuous
- (*ii*) If C is a closed subset of Y such that $f^{-1}(C) \neq X$, then there is a proper sga-closed subset D of X such that $D \supset f^{-1}(C)$.
- (*iii*) If A is a open subset of Y such that $f^{-1}(A) \neq X$, then there is a proper sga-open subset B of X such that $f^{-1}(A) = B$;
- (iv) If M is a sga-dense subset of X, then f(M) is dense subset of Y.

Proof. (i) \Rightarrow (ii): Let C be a open subset of Y such that $f^{-1}(C) \neq X$. Then Y\C is open set in Y such that $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C) \neq \emptyset$. By (i), there exists a sga-open set V in X such that $V \neq \emptyset$ and $V \subset f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$. This means that $X \setminus V \supset f^{-1}(C)$ and $X \setminus V = D$ is a proper sga-closed set in X.

(ii) \Rightarrow (i): If U is open in Y and $f^{-1}(U) \neq \emptyset$. Then Y\U is closed and $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U) \neq X$. By (ii), there exists a proper sga-closed set D such that $D \supset f^{-1}(Y \setminus U)$. This implies $X \setminus D \subset f^{-1}(U)$ and $X \setminus D$ is sgaopen and $X \setminus D = \emptyset$.

(ii) \Leftrightarrow (iii): Clear.

(ii) \Leftrightarrow (iv): Let M be a sga-dense set in X. Suppose that f(M) is not dense in Y. Then there exists a proper closed set C in Y such that $f(M) \subset C \subset Y$. Clearly $f^{-1}(C) \neq X$. By (ii), there exists a proper sga-closed set D such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is sga-dense in X.

(iii) \Leftrightarrow (ii): Suppose (ii) is not true. This means that there exists a closed set C in Y such that $f^{-1}(C) \neq X$ but there is no proper sga-closed set D in X such that $f^{-1}(C) \subset D$. This means that $f^{-1}(C)$ is sga-dense in X. But by (iii), $f(f^{-1}(C)) = C$ must be dense in Y, which is a contradiction to the choice of C.

Definition 2.6. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be somewhat sga-open provided that if for every sga-open set U of X and U $\neq \emptyset$, then there exists a open set V in Y such that $V \neq \emptyset$ and $V \subset f(U)$.

Definition 2.7. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be somewhat sga-open provided that if U is sgaopen in X and U $\neq \emptyset$, then there exists a open set V in Y such that $V \subset f(U)$.

It is clear that every open function is somewhat $sg\alpha$ -open but the converse is not true as the following example shows.

Example 2.8. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}\}$ and $\sigma = \{\emptyset, \{a\}, X\}$. Then the identity function $f: (X, \tau) \rightarrow (Y, \sigma)$ is somewhat sga-open but not open.

Proposition 2.9. For a bijection function f: $(X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- (i) f is somewhat $sg\alpha$ -open.
- (ii) If C is a sga-closed subset of X, such that $f(C) \neq Y$, then there is a closed subset D of Y such that $D \neq Y$ and $D \supset f(C)$.

Proof. (i) \Rightarrow (ii): Let C be a sga-closed subset of X such that $f(C) \neq Y$. Then X\C is sga-open in X and X\C $\neq \neq \emptyset$. Since f is somewhat sga-open, there exists a open set $V \neq \emptyset$ in Y such that $V \subset f(X \setminus C)$. Put D = Y\V. Clearly D is closed in Y and we claim D \neq Y. If D = Y then V = \emptyset , which is a contradiction. Since $V \subset f(X \setminus C)$, D = Y\V \supset (Y\f(X \setminus C)) = f(C).

(ii) \Rightarrow (i): Let U be any nonempty sga-open subset of X. Then C = X\U is a sga-closed set in X and $f(X\setminus U) = f(C) = Y \setminus f(U)$ implies $f(C) \neq Y$. Therefore, by (ii), there is a closed set D of Y such that D \neq Y and $f(C) \subset$ D. Clearly V = Y \D is a open set and V $\neq \emptyset$. Also, V = Y \D \subset Y \f(C) = Y \f(X \setminus U) = f(U).

Proposition 2.10. For a function f: $(X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- (i) f is somewhat $sg\alpha$ -open.
- (ii) If A is a dense subset of Y, then $f^{-1}(A)$ is a sga-dense subset of X.

Proof. (i) \Rightarrow (ii): Suppose A is a dense set in Y. We want to show that $f^{-1}(A)$ is a sga-dense subset of X. Suppose not, then there exists a sga-closed set B in X such that $f^{-1}(A) \subset B \subset X$. Since f is somewhat sgaopen and X\B is sga-open, there exists a nonempty sga-open set C in Y such that $C \subset f(X \setminus B)$. Therefore, $C \subset f(X \setminus B) \subset f(f \boxtimes^{-1}(Y \setminus A)) \subset Y \setminus A$. That is, $A \subset Y \setminus C \subset Y$. Now, $Y \setminus C$ is a closed set and $A \subset Y \setminus C \subset$ Y. This implies that A is not a dense set in Y, which is a contradiction. Therefore, $f \boxtimes^{-1}(A)$ must be a sgadense set in X.

(ii) \Rightarrow (i): Suppose A is a nonempty open subset of X. We want to show that $int(f(A)) \neq \emptyset$. Suppose $int(f(A)) \neq \emptyset$. Then $cl(Y \setminus f(A)) = Y$. Therefore, by (ii), $f\mathbb{Z}^{-1}(Y \setminus f(A))$ is sga-dense in X. But $f\mathbb{Z}^{-1}(Y \setminus f(A)) \subseteq X \setminus A$. Now X \A is sga-closed. Therefore, $f\mathbb{Z}^{-1}(Y \setminus f(A)) \subseteq X \setminus A$ gives X = sgacl ($f\mathbb{Z}^{-1}(Y \setminus f(A))) \subseteq X \setminus A$. This implies that $A = \emptyset$, which is contrary to $A = \emptyset$. Therefore, $int(f(A)) = \emptyset$. This proves that f is somewhat sga-open.

Definition 2.11. A topological space (X, τ) is said to be sga-resolvable if there exists a sga-dense set A in (X, τ) such that A^c is also sga-dense in (X, τ) . Otherwise, (X, τ) is called sga-irresolvable.

Theorem 2.12. For a topological space (X, τ), the following statements are equivalent:

- (i) (X, τ) is sga-resolvable;
- (ii) (X, τ) has a pair of sg α -dense set A and B such that $A \subseteq B^{c}$.

Proof. (i) \Rightarrow (ii): Suppose that (X, τ) is sga-resolvable. There exists a sga-dense set A such that $X \setminus A$ is sga-dense. Set $B = X \setminus A$, then we have $A = X \setminus B$.

 $(ii) \Rightarrow (i)$: Suppose that the statement (ii) holds. Let (X, τ) be sga-irresolvable. Then $X \setminus B$ is not sgadense and sga-cl $(A) \subset sga - cl(X \setminus B) \neq X$. Hence A is not sgadense. This contradicts the assumption.

Theorem 2.13. For a topological space (X, τ) , the following statements are equivalent:

- (i) (X, τ) is sga-irresolvable;
- (ii) For any sga-dense set A in X, $sga int(A) \neq \emptyset$.

Proof. (i) \Rightarrow (ii): Let A be any sga-dense set of X. Then sga-cl(X\A) \neq X; hence $sga - int(A) \neq \emptyset$.

(*ii*) \Rightarrow (*i*): Suppose that (X, τ) is a μ -resolvable space. Then there exists a sg α -dense set A in (X, μ) such that A^c is also sg α -dense in X. It follows that $sg\alpha - int(A) \neq \emptyset$, which is a contradiction; hence (X, μ) is sg α -irresolvable.

Theorem 2.14. If $\bigcup_{i=1}^{n} A_i = X$, where A_i 's are subsets of X such that sga-int(A) $\neq \emptyset$, then (X, τ) is a sga-irresolvable.

Proof. By hypothesis, we have $\bigcap_{i=1}^{n} (X \setminus A_i) = \emptyset$. Then, there must be at least two nonempty disjoint subsets A_i^c and A_j^c in X. That is $A_i^c \cup A_j^c \subset X$. Then $A_i^c = A_j$; hence $\operatorname{sga-cl}(A_j) = X$. Also $\operatorname{sga-int}(A_j) = \emptyset$ implies that $\operatorname{sga-c}(X \setminus A_j) = X$. Therefore, (X, τ) has a $\operatorname{sga-dense}$ set A_j such that $\operatorname{sga-cl}(A_j) = X$. Hence (X, μ) is a $\operatorname{sga-irresolvable}$.

Theorem 2.15. If $f: (X, \tau) \to (Y, \sigma)$ is a somewhat sga-open function and $int(A) = \emptyset$ for a nonempty set A in Y, then sga-int $(f^{-1}(A)) = \emptyset$.

Proof. Let A be a nonempty set in Y such that $int(A) = \emptyset$. Then $cl(Y \setminus A) = Y$. Since f is somewhat sgaopen and Y \A is dense in Y, by Proposition 2.10 f $\mathbb{Z}^{-1}(Y \setminus A)$ is sga-dense in X. Then, sga-cl(X \f^{-1}(A)) = X; hence sga-int(f $\mathbb{Z}^{-1}(A)$) = \emptyset .

Theorem 2.16. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a somewhat sga-open function. If X is sga-irresolvable, then Y is irresolvable.

Proof. Let A be a nonempty set in Y such that cl(A) = Y. We show that $int(A) = \emptyset$. Suppose not, then $cl(Y \setminus A) = Y$. Since f is somewhat sga-open and Y \A is dense in Y, we have by Proposition 2.10 f⁻¹(Y \A) is dense in X. Then sga-int(f⁻¹(A)) = \emptyset . Now, since A is dense in Y, f⁻¹(A) is sga-dense in X. Therefore, for the sga-dense set f $\mathbb{Z}^{-1}(A)$, we have sga-int(f $\mathbb{Z}^{-1}(A)$) = \emptyset , which is a contradiction to Theorem 2.13. Hence we must have int(A) $\neq \emptyset$ for all dense sets A in Y. Hence by Theorem 2.13, Y is irresolvable.

REFERENCES

- [1]. Bourbaki, N. General Topology, Part 1, Addison-Wesley, Reading, Mass. 1966.
- [2].Ganster, M and Relly, I. L. Locally closed sets and LC-continuous functions, Internet. J. Math. & Math. Sci., Vol 12 No. 3 (1989), 417-424.
- [3].Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [4].Mashhour, A. S. Hasanein, I. A and El-Deeb, S. N. α-continuous and α-open mappings, Acta. Math. Hungr., 41(1983), 213-218.
- [5].Njastad, O. On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [6].Pipitone, V and Russo, G. Spazi semiconnessi e spazi semiaperiti, Rend. Circ. Mat. Palermo 24(1975), 273-285.
- [7]. Rajesh, N and Krsteska, B. Semi Generalized α-Closed Sets, Antartica J. Math., 6 (1) 2009, 1-12.
- [8].Rajesh, N and Krsteska, B. On semi-generalized α-continuous maps, (under preparation).
- [9]. Stone, A.H. Absolutely FG spaces, Proc. Amer. Math. Soc. 80(1980), 515-520.