
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904480 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 544

Network Security Virtualization

With Minimal Management Cost

Vrushali N. Huchhe1, S.S.Ponde2

1 Department of Computer Science and Engineering Marathwada Shikshan Prasarak Mandal’s Deogiri Institute of Engineering &

Management Studies, Aurangabad Maharashtra State, India 2017-2018

2 Associate Professor, Department of Computer Science and Engineering Marathwada Shikshan Prasarak Mandal’s Deogiri Institute of

Engineering & Management Studies, Aurangabad Maharashtra state, India 2017-2018

Abstract: . Network management became so complex due increased requirement of using security devices It is very difficult to provide

required security at correct places at needed time with less amount of time NSV presents a concept of network security virtualization

which virtualizes security resources to network administrators users and thus maximally use existing security devices It provides

security to the networks with minimum cost We developed a prototype that do the maximum use of pre installed static security devices

and SDN to virtualizes security functions. It contains-

(1) a simple language to record security services and policies

 (2) a routing algorithm to decide shortest routing paths for different requirement and

(3) a set of security response functions to handle security incidents.

Keywords: SDN, Openflow.

1. Introduction

Network management became very complicated because of big

requirement of security devices in the network.

One example of this type of network is cloud network. A cloud

network commonly consists of a large amount of hosts and

network devices to serve to a large number of dynamic users,

each having a logically separated network. Network becomes

complex due to many security devices. Many security devices

are used to improve the performance, sturdiness, and security

of networks. The security devices can serve many applications

to networks, but it makes the network more complex to handle.

So, there is need to solve this problem.

Extra security devices make network security compex to

handle. The security devices have different security functions

to solve different problems. For example, firewall & Network

intrusion detection system (NIDS) controls the network access

& observes the attacks. So, the network administrator should

select proper security functions/devices and employ them into

proper places. It is very critical for the administrator, to know

network attacks of various network users and the administrator

cannot understand the demands of different tenants before. The

pre-installed security devices can not be in the proper positions

that can serve the different security demands of different

network users.

To solve this problem, it is required to leverage fixed security

devices, and abstract these security devices to serve an

interface for network users.

So, this is a new concept of Network Security Virtualization

(NSV) that makes great use of fixed location, security devices

and serves active, flexible, and on-demand security services to

the users. So it is not needed to have the knowledge of pre-

installed security devices.

NSV has two methods.

(i) Properly manage the flows to required network

Security services, and

 (ii) Provides network security response Functions on a

network device.

It leverages the use of pre-installed security devices, NSV

clearly redirect network flows to desired security devices when

needed. For example, if a security policy wants that a network

flow should be monitored by a security service, NSV

technology reroutes the flow to the mentioned security middle

devices.

 It provides a security reaction on each network device. Latest

techniques provide a method to manage network flows actively

at a network device, e.g. SDN; can understand some basic

security reply functions at a network device. It can conduct

required security response functions on a network device when

needed. In SDN, a network administrator can route the traffic

from a centralized control console without having to touch

individual switches. It can dynamically control network flows

and monitor whole network status easily. It is a modern

approach to networking that removes the complex and static

nature of network architectures through the use of a standard-

based software abstraction between the network control planes

and underlying data forwarding plane, including both physical

& virtual devices.

2. Literature Survey

In [1] paper, R. Ballard proposed OpenSAFE, a system which

enables the random way of traffic for security observing

applications at line rates. It presents a flow specification

language ALARMS which easily handles management of

network monitoring appliances. It shows a validation of

currently undertaking to observe traffic across the network.

OpenSAFE has three components: a set of design abstractions

about the flow of network traffic; ALARMS (A flow

specification language, and an OpenFlow component which

implements the policy. For the ease of handling monitoring

architecture to the network administrators, it uses ALARMS, a

language for random route management for security traffic.

ALARMS utilize the abstractions to create simple policy

language syntax to describe paths. Paths are defined between

named components, and each component cause to a

distribution rule in the situation of multiple, parallel

components. ALARMS are a high-level programming language

which depends on a low-level programmatic interface to a

network switch.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904480 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 545

In [2] Sekar explores NIDS or NIPS deployment through

discerning monitoring packets at diverse nodes. In this paper,

V. Sekar describes a design that leverage spatial, network wide

chances for sharing NIDS and NIPS functions. In case of

NIDS, it assures that no node is overloaded by using a linear

programming arrangement while giving detection

responsibilities to nodes. It shows a prototype NIDS

implementation to examine traffic per these assignments, and

shows that the approach can be achieved. In case of NIPS, it

presents how to do the maximum use of specialized hardware

(e.g., TCAMs) to decrease the outline of redundant traffic on

the network. These hardware conditions make the optimization

problem NP-hard, and also give practical nearly exact

algorithms based on randomized rounding. In this paper, a

systematic formulation is given for effectively handling NIDS

and NIPS deployments. Network-wide organized method, is

used where various NIDS/NIPS abilities can be optimally

shared throughout the various network locations depending on

the operating conditions – traffic profiles, routing policies, and

the resources ready at each location.

In [3], an infrastructure is proposed for Network-wide NIDS

deployment that maximally uses three scaling opportunities:

on-path sharing to divide responsibilities, repeating traffic to

NIDS clusters, and collecting together intermediate results to

divide expensive NIDS processing. It is challenging to equalize

both the compute load across the network and the total

communication cost incurred via replication and aggregation. It

implements a backwards-compatible method to enable existing

NIDS architecture to maximally use these benefits. It shows

that the proposed method can significantly decrease the

maximum computation time, also provides best elasticity under

traffic variability, and gives enhanced detection coverage. A

general NIDS design is proposed to maximum use of three

opportunities: offloading processing to other nodes on a

packet’s routing path, traffic replication to off-path nodes (e.g.,

to NIDS clusters), and aggregation to split expensive NIDS

tasks. It allows networks to understand these benefits with

fewer changes to existing NIDS software. Many real-world

arrangement of networks show that this system decrease the

maximum compute load substantially, provides best elasticity

under traffic variability, and offers improved detection

coverage.

In [4] paper, describes FRESCO, an OpenFlow security

application development framework proposed to simplify the

process of rapid design, and modular arrangement of OF-

enabled detection and mitigation modules. FRESCO, is an

OpenFlow application, which gives a Click-inspired

programming framework that allows security researchers to

implement, share, and compose together, various security

detection and mitigation modules. It shows the application of

FRESCO with the implementation of many well-known

security defenses as OpenFlow security services, and use them

to analyze various performance and efficiency of proposed

framework. FRESCO is used to solve the issues that can

accelerate the constitution of new OF-enabled security

services. FRESCO exports a scripting API that allows security

practitioners to code security monitoring and threat detection

logic as modular libraries. These modular libraries present the

basic processing units in FRESCO, and may be distributed and

connected together to provide complicated network security

applications. It presents the FRESCO security enforcement

kernel. It shows that FRESCO produces less overhead and

allows active creation of well-known security functions with

substantially fewer lines of code.

In [5] consider two aspects of OpenFlow that accept security

challenges, and propose two solutions that could solve the

problem. The first challenge is the inherent communication

traffic constriction that comes between the data plane and the

control plane, which an opponent could take advantage by

supporting device a control plane saturation attack that

interrupts network operations. Even well mined relating to

conflict models, such as scanning or denial-of-service (DoS)

activity, can produce more strong impact on OpenFlow

networks than usual networks. To solve this problem,

introduced an extension to the OpenFlow data plane called

connection relocation, which considerably decreases the

amount of data to- control-plane communications that comes

during such attacks. The second problem is that of allowing the

control plane to expedite detection of, and reaction to, the

changing flow dynamics within the data plane. For this,

introduced actuating triggers over the data plane’s existing

statistics collection services. These triggers are fixed by control

layer applications to both record for asynchronous call backs,

and fix conditional flow rules that are only activated when a

trigger condition is validated within the data plane’s statistics

module. It describes AVANT-GUARD, an implementation of

two data plane extensions, explains the performance impact,

and analyze its use for forming more scalable and flexible SDN

security services. The aim of AVANTGUARD is to create

SDN security applications more scalable and reactive to active

network threats. The challenge, which to be solved here, is the

inherent traffic constriction introduced by the interface

between the control plane and the data plane that known

opponent can take the advantage. Connection migration allows

the data plane to shield the control plane from such saturation

attacks. The second problem is the issue of reactivates. A SDN

security application requires expeditious access to network

statistics from the data plane as a method for quickly

responding to network threats. To solve this, it introduces

actuating triggers that automatically fix flow rules when the

network is under illegal coercion.

In [6], presented an architecture called Jingling, which adds

operations to networks through outsourcing. Here the

commercial company network forwards data and extra process

is done by external Feature Providers (FPs). It gives the

advantages such as decreased cost and complicated

management. Feature API(FAPI) allows communication

between enterprise control and configure features. Here SDN

concept is used. SDN solves the problem of middlebox

placement.

3 SYSTEM DESIGN

NETSEC contains five main modules: (i) Device and policy

manager, (ii) Routing rule generator, (iii) Flow rule enforcer,

(iv) Response manager, and (v) Data manager.

Device and policy manager performs two main functions. First,

it takes the information of security devices from a cloud

administrator, and registers that information into a device table

for usage. Second, this module also takes security requests

from each network users, and it converts them into security

policies and registers the policies into a policy table. So, this

module has two type of information: (i) locations/types of

security devices from a cloud administrator and (ii) security

policies from each user. It makes system to manage network

security devices easily.

Response manager takes detection results from security

devices, and it enables security response strategies that are

mentioned in security policies, when it is required. For e.g. if a

user mentions a security policy to drop all corresponding

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904480 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 546

packets when a threat is detected by a NIDS, the response

manager will enable drop function to remove network packets

belonging to the detected network flows on a network device.

Enabled functions will be identified as a set of network flow

rules, which are forwarded to routers or switches, and so the

system can maximally use each network device as a kind of

security device (e.g., firewall).

Routing rule generator forms routing paths to control each

network flow. When forming routing paths, this module checks

security polices of each user to fulfill their needs. For e.g., if a

user defines a security policy that mentions all network flows

to port 80 should be checked by a NIDS attached to a router A,

then this module created (a) routing path(s) which allows all

network packets routing to port 80 pass through the router A. It

helps the system assign security needs to each security device

depending on value and usefulness

Flow rule enforcer allows flow rules to each OpenFlow router

and switch. If the response manager allows response strategies

or the routing rule generator creates routing paths, this module

converts them into flow rules that could be recognized by

OpenFlow routers/switches. After conversion, it sends

converted rules to concerning routers or switches.

Data manager acquires network packets from routers or

switches to hold up to some security devices send their

detection results to NETSEC. It holds packets are for allowing

some in-line style security functions as how generic Intrusion

Prevention Systems provide. This module does not hold

packets all the time, but only captures and stores when needed.

Figure 1: NSV Architecture

 Working of NETSEC

A network administrator records network security devices both

physical devices and virtual appliances to NETSEC. After

registration cloud users required to create their security

requests and send them into NETSEC. Then NETSEC analyzes

the submitted security requests to understand the aim of users

and writes the corresponding security policies to policy table.

Next if NETSEC receives a new flow setup request from a

network device it checks whether this flow is matched with any

submitted policies. If it is NETSEC will create a new routing

path and corresponding flow rules for the path, at this time

NETSEC assures that the routing path includes required

security devices that are defined in a matched policy i e the

first NSV function. After this operation it allows flow rules to

each corresponding network device to forward a network flow.

If any of security devices detects malicious connection/content

from monitored traffic they will report this information to

NETSEC. Based on the report and submitted policies NETSEC

enables a security response function to respond to malicious

flows accordingly.

3.1 Registration of Security Devices

To use pre-installed fixed security devices, a cloud

administrator requires to record them to NETSEC using a

simple script language. The script language asks for the

following information in registration: (i) device ID, (ii) device

type (e.g. firewall and IDS), (iii) device location (e.g., attached

to a router A), (iv) device mode (passive or in-line), (v)

supported functions (e.g., detect HTTP attacks).

3.2 Creation of Security Policies

After a network administrator record security devices for a

cloud network to NETSEC, the information of the recorded

security devices is shown to users using the cloud network by

NETSEC. Then, the users can define their security requests

taking into account recorded security devices and security

functions allowed by NETSEC. The script for a request

consists of 3 fields: (i) flow condition, which describes the flow

to be observed, (ii) function set, which defines the needed

security devices for observing or investigating, and (iii)

response strategy, which defines how to manage the flow if a

threat is detected. The policy syntax is:

{{flow condition}, {function-list}, {action-list}}. Currently,

NETSEC supports 5 different response strategies and they are

drop, isolate for passive mode and drop, isolate, redirect for in-

line mode. Here, it provides an example script for the

following security request: one user (IP = 10.0.0.1) wants all

HTTP traffic regarding to his IP to be observed by a firewall

and IDS, and it wants to drop all packets detected as attacks by

the firewall and the IDS. This request can be sent to NETSEC

with the following script:

{{((DstIP = 10.0.0.1 OR SrcIP = 10.0.0.1) AND (DstPort = 80

OR SrcPort = 80))}, {firewall, IDS}, {drop}}.

Finally, NETSEC receives security requests from each user,

and it converts them into security policies that can be suitable

to a SDN enabled cloud network. At this time, NETSEC

requires to convert user described high-level constraints into

more specific network level conditions, and it also maps

function set into security devices registered before.

3.3 Decision of Routing Paths

If NETSEC finds network packets meeting a flow condition

specified by a security policy, then it will direct these packets

to fulfill security requirements. When NETSEC forward

network packets, it should take into account the following two

things: (i) network packets should pass through specific

security devices to meet the security needs, and (ii) the

produced routing paths for network packets should be

optimized. There are various existing routing algorithms for

intradomain to find shortest paths. However, they cannot be

used directly for our case. Since network packets only consist

of the source and destination information, existing routing

methods cannot discover needed ways to locations where

security devices are fixed. .

NETSEC supports two modes of security devices which are

passive mode and in-line mode. For a passive mode device, it

can route the traffic to pass through the device, or just mirror a

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904480 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 547

duplicate to the device and forward the original traffic in

another way. For an in-line mode device, all traffic should pass

through and be observed by this device. The generated routing

path should meet the needs from different modes of security

devices. Also, a network may contain only passive mode

devices or in-line mode devices, or both the two kinds.

Latest software-defined networking technologies (e.g.,

OpenFlow) serves several interesting functions and one of

them is to control network flows as per our desire. With the

help of this function, we propose a routing algorithms, which

can fulfill requirements. It defines the following 4 terms to

explain our algorithms more clearly: (i) start node, a node

sends network packets, (ii) end node, a node receives the

packets, (iii) security node, a node mirror packets to a passive

security devices, and (iv) security link, a link on which in-line

security devices are located. . To describe the proposed

algorithm are clearly, we will provide concrete example to

illustrate the key concept of each algorithm. For the

illustration, we use a simple network structure as shown in

Figure 2.

Figure 2: Layout

It contains six routers (R1 - R6), a start node (S), an end node

(E), and a security device (C) attached to node R4 (thus R4 is a

security node). We assume that node S sends packets to node

E, and our example security policy is specified that all packets

from node S to node E should be inspected by security device

C. Furthermore, Figure 3 shows the traditional packet delivery

based on the shortest path routing without considering the need

of security monitoring.

 Figure 3: Shortest Path

Thus, packets from node S are simply sent through the path of

(S → R1 → R5 → R6 →E), and obviously in this case they

cannot be checked by the security device C. Next we will

describe how our new algorithm work and illustrate them on

the same network structure.

3.3.1 Advanced -Shortest

OpenFlow supports the function of sending out network

packets to multiple outports of a router simultaneously, and it

can create multiple redundant network flows. Thus, we try to

propose an enhanced version of Algorithm. This approach

finds the shortest path between a start node and each a node,

which is nearest to a security node and in the shortest path

between a start node and an end node. If it finds the node, it

asks this node to send packets to multiple output ports: (i) a

port, which is connected to a next node in the shortest path, and

(ii) (a) port(s), which is (are) connected to (a) node(s) heading

to (a) security node(s). Therefore, network packets are sent

through the shortest path, and they are sent to each security

node as well.

Here shortest path is found by considering the number of hops

& energy being consumed by the system. This approach is

presented in Algorithm.

Advanced Shortest Algorithm

Input: S (start node)

Input: E (end node)

Input: Ci = security node i , i = 1, 2, 3, .., n

Output: FPj , multiple shortest paths)

P0 = find_shortest_path(S, E);

FP ← P0;

foreach Ci do

foreach n j in P0 do

T Pi, j ← find_shortest_path(Ci , n j);

for each Ci do

 for each nj in P0 do

 ej = Cal energy(nj);

 TPi,j ← find_ shortest_path(Ci, nj, ej);

 FP ← T Pi, j ;

 End

End

Find_shortest_path(Ci, nj, ej)

 t1=√(ci – nj)2;

 t2=ej*0.5;

 Mj=(t1*0.5)+t2;

Return min(m);

Figure 4: Multipath- Shortest

Figure 4 presents an example scenario for this algorithm. It

first finds the shortest path between S and E, and it discovers

the shortest path between R4 and nodes on the found shortest

path, which is R6 → R4.

 Enabling Security Response Functions

NETSEC gives a way of 5 security response strategies, and

they do not require adding physical security devices or

changing network configurations for managing packets.

In this passive mode, NETSEC supports two response

strategies. First, NETSEC can drop packets that relate to

detected network flows. This strategy is beneficial to stop some

later malicious packets in the flow, but it does not give surety

that no malicious packets are delivered to the target host`.

Second, NETSEC can separate a specific host or a VM, if it is

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904480 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 548

detected as malicious. In this strategy, NETSEC is able to

avoid sending network packets to a detected host or a VM, or

from a detected host or a VM. A user can specify which kind of

packets should be blocked.

3 Evaluation

Virtual Network Environment: We select Network

Simulator -3, which is popularly used for emulating

OpenFlow network environments, to emulate 6-router

network topology. We create a 6- router network

topology with 6 OpenFlow-enabled switches (2 LinkSys

switches and 4 TP-Link switches), and 2 hosts for a client

a server.

Generation Time and Network Cost Measurement

We calculate four metrics to find the performance

overhead of NETSEC. First, we calculate the flow rule

generation time of Multipath and Advanced shortest

algorithm. Second, we estimate the response time

between a client host and a server host, when NETSEC

sets up a routing path between them.

 Third, we measure the network cost which represents

total cost when packets are delivering a packet between a

start node and an end node, and this cost can be

formulized as the following formula: ∑i,j∈M ci,j, is the

unit cost for flow along the arc between two nodes I and

j, and I, j are pairs of nodes belonging to path.

0

50

100

150

200

250

300

350

400

Multipath Advanced

Flow Rule Generation Time in (ms)

Flow Rule

Generation Time

Figure 5: Flow Rule Generation Time

0

2

4

6

8

10

12

Multipath Advanced

Response time in (ms)

Response time

Figure 6: Response Time

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

Multipath Advanced

cost

cost

Figure 6: Network Cost Measurement (in no. of Hops)

0

50

100

150

200

250

300

350

20 30 40 50 60 70 80 90 100

Multipath

Advanced

Figure 7: Throughput (in Mb)

Fourth, we measure Throughput, i.e. No. of packets delivered

over a channel. Fifth, we measure energy consumption of

devices. Sixth, we calculate PDR i.e. packet delivery ratio.

When we measure each metric, we compare our routing

algorithm with multi-path shortest. Based on comparison, we

can estimate the overhead of the proposed routing algorithm

.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904480 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 549

0

5

10

15

20

25

30

35

40

1 2 3 4 5

Multipath

Advanced

Figure 8: Energy Consumption Multipath shortest and

Advanced shortest algorithm in microwatts

4 Comparison

Table 1: Comparison of Multipath Shortest

algorithm with Advanced Shortest algorithm

Parameters Multipath-

Shortest

Advanced

Shortest

Response Time 10.4 ms 7.5 ms

Network cost 6 hops 5 hops

Rule generation

Time

210 ms 350 ms

Energy

Consumption

153 mw 67 mw

The results for routing path generation time are

shown in table. We can observe that the proposed

routing algorithm add relatively high overhead

compared with the baseline module. However, the

time required for generating the floe rules greater

because it generate the flow by considering the no. of

hops and also the energy consumed by the devices.

5 Conclusion

This paper introduces a Concept of Network security

virtualization (NSV) that can virtualize security

resources/ functions and provide security response

functions to network devices at required time. It

implements a new prototype system NETSEC, to show

the application of NSV. NSV prototype system can be

used in complex networks like cloud. NSV enables the

Administrator a great control over a network

infrastructure. NSV can virtualizes specific network

functions and allow then to run as individual nodes

connecting with other communication and network

services.

References

[1] J. R. Ballard; I Rae, and A. Akella, “Extensible and

Scalable network monitoring using openSAFE” in

Proc. USENIX Internet Netw. Manage Conf. Res.

Enterprise Netw 2010,p.8.

[2] V. Heorhiadi, V. Sekar, and M. K. Reiter, “New

opportunities for load balancing in network-wide

intrusion detection systems,” in Proc. ACM CoNEXT,

2012, pp. 361–372.

[3] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-

based server load balancing gone wild,” in Proc. 11th

Hot-ICE, 2011, p. 12.

[4] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu,

and M. Tyson, “FRESCO: Modular composable

security services for software-defined networks,” in

Proc. 20th Annu. Netw. Distrib. Syst. Secur. Symp.

(NDSS), Feb. 2013, pp. 1–16.

[5] S. Shin, V. Yegneswaran, P. Porras, and G. Gu,

“AVANT-GUARD: Scalable and vigilant switch flow

management in software-defined networks,” in Proc.

20th ACM Conf. Comput. Commun. Secur. (CCS),

2013, pp. 413–424.

[6] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing

network functionality”, in Proc. ACM SIGCOM

workshop Hot Topics Softw.Defined Netw.

{HotSDN), Aug.2012,pp. 73-78.

http://www.jetir.org/

