SEMANTIC SIMILARITY USING WORDNET

K.vinotha ¹M.A. Maria Parimala M.C.A, M.Phil2, Dr.S.Saravanan³

¹M.Phil scholar PG and Research Department of computer science St.Joseph's college of arts and science (Autonomous) cuddalore

²Assistance professor PG and Research Department of computer science St.Joseph's college of arts and science (Autonomous) cuddalore

³Assistant Professor, Department of Computer Science & Engineering, Annamalai University

Abstract: A web service is a software system, It automatically clustering Web Service Description Language (WSDL) files into web. It is used to reduce the search engine for service discovery. In proposed, uses two semantic approaches to cluster semantic similar services. First one Latent Semantic Analysis(LSA) it is also known as retrieval technique applied to the collection of WSDL files and the second semantic approach is based on WordNet to cluster the similar web serviceThe users as to retrieve relevant web services. As a result, the comparison of WordNet accuracy is better than the Latent Semantic Analysis (LSA).

Keywords: WSDL, Latent Semantic Analysis, Semantic Similarity, WordNet.

I INTRODUCTION:

Machine Learning is the branch of artificial Intelligences, is to get the computer to learn task such as discriminating between objects, similar data to dissimilar one from learning experience. These also called as supervised learning, unsupervised learning, and Reinforcement learning[1] Supervised Learning: Learning is supervised by the training data. If there are large number of supervised learning method they are nearest neighbor classifiers, decision tree, rule – based [1][2]. Unsupervised Learning: Learning is unsupervised learning method is learned by without the training data. Clustering and topic modeling are commonly used unsupervised Learning Algorithms [1][2]. Whereas clustering and classification are the two operations performed in text document. In proposed they where two approaches are used Latent Semantic Analysis (LSA) and WordNet. As WordNet shows the better performance. In Semantic representation has the following characteristic:

- 1) More Semantics in the representation.
- 2) Reduce dimensionality

1.1 Web Services:

A web service is a software system that support Machine – to – Machine interaction is in the format of WSDL files. Web services are prescribed by using SOAP, HTTP, and XML.[3] WSDL document look like this:

<definitions> <types> definition of types..... </types> <message> definition of a message.... </message> <portType> <operation> definition of a operation...... </operation> </portType> <binding> definition of a binding.... </binding> <service> definition of a service.... </service> </definitions>

1.2 WordNet:

WordNet is a lexical database for English language and it is created by cognitive science Laboratory of Princeton University under Psychology professor George A. Miller. It grouping a set of words synonyms called synsets. It provides general definition, records the different semantic relation between synonym sets. WordNet is the difference between the nouns, verbs, adjectives and adverbs to follow grammatical rules.[10] The logical structure of WordNet:

Figure 1.1: The Logical structure of WordNet

II Table of Review

S.NO	Торіс	Algorithms	Datasets	Description
1	Classification of	Neural Network	SourceForge.com	The LSI is to classify
	Machine Learning	K-Nearest	Koders.com	Neutral network and K-
	Engines using	Neighborhood and		nearest Neighborhood
	Semantic Indexing	C4.5 algorithm		source code. To find the
				extracting term in source
				code.C4.5 algorithm give
				better classifier compare
				to decision tree.
2	A clustering	K-mean clustering	10,000 news	The WordNet used to get
	techniques of news	W-K-mean	articles from 20	a problem like
	articles using	clustering	major news like	synonymy, ambiguity
	WordNet		bbc.com,cnn.com	and lack of content
			etc.	making clusters. The
				similarity measures in the
				news articles in web. It

				proposes the two work in
				wordNet: bag of words in
				the clustering and label
				generation. Compare to
				the result in k-mean.
3	Latent Semantic			This paper have been
	Indexing: A	-	-	compared with document
	Probabilistic analysis			frequency(DF), term
				contribution(TC), term
				variance quality(TVQ)
				this are called
				unsupervised learning .It
				improve the accuracy of
				document clustering.
4	A modification of Wu	WU and PALMER	Physical sensor in	This method is to
	and Palmer Semantic	Similarity measure	the environment,	improve the web service
	Similarity measure		intelligent	discovery process using
			devices, virtual	Jaccard coefficient to
			sensors, Internet	calculate the similarity
			access.	between web services.
5	Survey of clustering	k-mean clustering	Benchmark	This paper is to survey
	Algorithm	COP-K-mean and	dataset-	the different clustering
		Hierarchical	Mushroom and	algorithm dataset in
		clustering	Benchmark	statistics, computer
			dataset-IRIS	science and machine
				learning in some of
				Benchmark dataset is
				used to cluster the data
				for research works.
6	Comparison of	K-mean clustering		This field of data mining,
	Algorithms for	and support vector		information retrieval
	document clustering	model		have been uses the
				document clustering, and
				to compare the different
				clustering approach, so

				the result is hierarchical
				based clustering is more
				efficient than partitioning
				clustering.
	A vector space model	Measure used	424 document are	The VSM is used in the
7	for automatic indexing	Precision and	collected	document retrieval or
		Recall		pattern matching
				(document)is to
				compared with search
				request and the property
				of the customer. These
				approach are space
				density based on
				vocabulary for a
				collection of documents.
8	Clustering of web	Hierarchical	Training dataset:	Semantic of web services
	services based on	clustering and	Phone number	using WSDL file
	semantic similarity	LERS-M algorithm	verification	operation, parameter,
			services, weather	wordnet. Is used to
			by city	similarity in the web
				service and use data
				cluster. The test result is
				used in neighbor
				approach it give an
				accuracy level 70%

III PROPOSED WORK:

The Vector Space Model (VSM) is one of the least complex techniques depends on the accurate coordinating of terms that can be found in archives. The cosine of the point between two vectors is utilized as a rule. The outcome is an estimation of comparability running from 0 to 1, where 1 demonstrates an accurate/high match among terms and 0 shows that there is no match. This implies the higher the estimation of the cosine, the higher the probability that two terms are equivalent.[7]

However, the exact matching of phrases raises problems, which includes synonymy and Polysemy. Synonymy deals with special words having the same that means. For instance, automobile and car are synonyms. Polysemy refers to words having more than one distinct that means. which include —the and —is, and correlating high similarity measures, result in a excessive match, which does no longer represent the real desired end result

OBJECTIVES:

To overcome the limitations of VSM representation of documents, the proposed work uses two semantic approaches using LSA and Wordnet for clustering similar groups in order to retrieve relevant services for the user query. The main objectives of the proposed work are as follows

1. Use more semantics in the representation

- 2. Reduce the dimensionality of the feature vectors formed.
- 3. Improve the cluster quality.
- 4. Retrieve relevant services to satisfy the user request The proposed work contains the following three modules.
 - Module 1:Keyword-based discovery
 - Module 2:LSA- based discovery
 - Module 3:Wordnet-based approach

MODULE1: KEYWORD-BASED DISCOVERY:

Keyword-based methods are extensively used in traditional data retrieval structures. An information requester submits the gadget with a question that consists of some of key phrases to be able to retrieve the favored documents.[10] The retrieval system returns stored files in answer to the records requester based at the similarity among the query and the saved files. Here similarity approaches that the files incorporate particular keywords from the requester's query or those files prove comparable enough to the corresponding the question and people files are returned to the records requester.

MODULE2: LATENT SEMANTIC ANALYSIS (LSA):

Semantic similarity approach uses a LSA is similar to the keyword based technique and service description of semantic extraction. The LSA objective has to handle the poor scalability in web and issues in lacking semantics. To achieve these goals , a big service collection is a set f clusters by using k mean clustering algorithm. After the cluster query, the SVD technique is applied to the cluster .[9]

Figure 1.2 The Logical Structure of LSA

SVD (Singular Value Decomposition):

Is a linear algebraic technique that deals with the transformations and the decomposition of the matrix. In that orthogonal transformations uses SVD, matrix is decomposes the products of three sub matrices in information contained in original matrix. This techniques is mostly used in producing a low rank approximation matrix to the initial matrix, for semantics in Information Retrieval(IR). The word document matrix represented as: $A=U\Sigma V T$

MODULE3: SAMANTIC DISCOVERY USING WORDNET

WordNet is uses to find the similarity between words. WordNet can be divided into two methods, they are path length and information content method. Path length method is calculating number of node in taxonomy. Advantage of path length is independent to corpus statical and word distribution. Some of the path length measures are Leacock-Chodorow, Resnik, and Wu-Palmer. In proposed, Wu-palmer equation is implemented for evaluation.

Similarity between two words using WordNet:

Six measure [11]to obtain similarity between words using WordNet. The following measure is based on information content of the least common subsumer (LCS) concepts.

- Leacock-Chodorow
- Resnik
- Wu-Palmer

Three similarity measures is based on path lengths pair of concepts. The proposed work use Wu and Palmer similarity measure [12].Wu and Palmer's method[13] is to calculates similarity to depths of two concepts in WordNet hierarch, with the lowest super-ordinate:

$$sim_{WP}(c_{1}, c_{2}) = \frac{2 \times depth(lso(c_{1}, c_{2}))}{len(c_{1}, lso(c_{1}, c_{2})) + len(c_{2}, lso(c_{1}, c_{2}) + 2 \times depth(lso(c_{1}, c_{2}))}$$

(1)

 $=\frac{2 \times depth(lso(c_1, c_2))}{depth(c_1) + depth(c_2)}$

Similarity based on web services WordNet:

The web service or WSDL files are characterized by name, description and set of operation into input parameter and returns output parameter. In proposed uses the following WSDL information for compute similarity of web services.

Operation name: The web services name is describes by operations performed by a web service.

Message name: The message name describes the input and output parameters for the operation.

Service name: The service name describes the web service.

The Architecture describes the work flow of the proposed system. The WordNet based clustering

The collection of 228 real world WSDL files are collected publicly available web services by crawling web services information from www.SOA.Trader.com.

Text preprocessing:

First the service name, operation name, message name, port type name, and port name .The text preprocessing is the first stage it helps to remove unwanted words in filtering process. The following are the steps in process

Procedure of the preprocessing .

Tokenization: In English words, this step is used to remove the white space and non-alphanumeric character.

Compact word Cleavage: The services, is named in Pascal or Camel form of important information of services. Its need to be cleaved. For example:"RealTimeMarketData" it split into "real time marker data".

Stop word filtering: The repeated words are filtered in this step like "a","the","an" it should improve the precision.

Stemming: It is used to in removing term suffixes and reducing all forms in stemmed form is useful for recall.

Similarity measures used in WordNet: The similarities between two strings are calculated based on the cosine similarity measure. The formula [14] for cosine similarity,

$$SIM_{cosine}(X,Y) = \frac{A.B}{\|A\| \|B\|}$$

where X, Y are the two service names; A, B are the tokens of the service names X and Y respectively.

IV EXPERIMENTAL VERIFICATION

Dataset analysis: In excel format:

) 🖬 🤊 • (° • 📰					five	features - M	icrosoft Exc	el										×
C	Home Insert	Page Layout Formulas Data	Review	View														0	- • ×
Pi	Cut	Calibri • 11 • A A		»-) ;	Wrap Text	Ge	neral	▼ 0.0.00	Conditional	Format	Cell	Linsert	Delete	Format	Σ AutoSum •	Sort &	Find &		
	Oliphoard	Eont G		Alignment	-	6	Number	5	Formatting *	as Table * St Styles	yles *	*	Cells	*	∠ Clear ▼ Ed	Filter * : iting	Select *		
	A7 -	f f marketing																	¥
	A	В	С	D	E	F	G	н		J	к		L	М	N	0	P	(2
			operatio	operatio	porttype		documen	message	message	servicena									
1	label	metadata_file	nname1	nname2	name	port1	tation1	name3	name4	me									
2	marketing	AccountServiceService.xml	addAcco unt	addMone v	AccountS ervice	AccountS ervice	?	ApiFault	Security	AccountS erviceSer vice									
2	communication		addAdGr	addAdGr	AdGroup	AdGroup	2	AniFault	Security	AdGroup ServiceS									
4	utilities	AdGroupServiceService1.xml	addAdGr	addAdGr	AdGroup	AdGroup	?	ApiFault	Security	AdGroup ServiceS ervice									
5	wheather	AdminService.xml	AdminSe rvice	?	Admin	AdminSe rvice	?	AdminSe rviceReq uest	AdminSe rviceRes ponse	AdminSe rvice									
			AdminSe	_		AdminSe	_	AdminSe rviceReq	AdminSe rviceRes	AdminSe									
0	Internet	Adminservice1.xmi	rvice	r	Admin	AdServic	r	uest	ponse	AdServic									
7	marketing	AdServiceService.xml	addAd	addAds	e	e	?	ApiFault	Security	eService									
							A web service used to insert advertise												
н	Sheet1 Shee	t2 / Sheet3 / 🖏 /							I	4				III.					

Latent semantic Analysis(LSA)

Accuracy of LSA:

accuracy: 39.47%	accuracy: 39.47%								
	true marketing	true communication	true utilities	true weather	true internet	true business	class precision		
pred. marketing	10	0	15	0	4	2	32.26%		
pred. communicatio	0	10	0	0	0	0	100.00%		
pred. utilities	0	10	9	0	0	0	47.37%		
pred. weather	13	32	42	45	2	11	31.03%		
pred. internet	0	0	0	0	15	0	100.00%		
pred. business	0	0	7	0	0	1	12.50%		
class recall	43.48%	19.23%	12.33%	100.00%	71.43%	7.14%			

WordNet:

Accuracy of WordNet:

Result Overview	/ 🐹 🗍 📳 ExampleSet	(Process Docume	nts from Data) 🛛 🏹	S Performance\	/ector (Performance)	X				
Table / Plot View	Text View O Annotatio	ons						🐹 🕼 🦂 🕶		
Criterion Selector	Multiclass Class	ification Performan	ce O Annotations					🛛 🗶 🖬 🤞 📲		
kappa	Table View	Table View Plot View								
	accuracy: 53.95%									
		true marketing	true communication	true utilities	true weather	true internet	true business	class precision		
	pred. marketing	0	4	6	0	0	0	0.00%		
	pred. communicatio	0	19	0	0	0	0	100.00%		
	pred. utilities	23	23	59	16	6	13	42.14%		
	pred. weather	0	0	0	29	0	0	100.00%		
	pred. internet	0	0	0	0	15	0	100.00%		
	pred. business	0	6	8	0	0	1	6.67%		
	class recall	0.00%	36.54%	80.82%	64.44%	71.43%	7.14%			

V RESULT AND DISCUSSION

Proposed work uses two evaluation criteria performance, they are Precision and Recall. Precision can been display the accurate term and Recall is completeness of the term[31]and Precision and Recall values can be used in information retrieval system[32]In proposed is based on comparison of two semantic approaches :

- Latent semantic Analysis
- WordNet

Result:

- 1. Comparison between keyword based and wordNet
- 2. Comparison between keyword based ,LSA and WordNet

Comparison between keyword based and wordNet:

1 Clustering Quality:

The table shows the Average F-measure value for Keyword-based and wordnet to cluster the services. Both of them compared , while WordNet gives the better results,

			Approaches		F-measure				
			Keyword-bas	ed	32.42				
			WordNet		36.28				
			Clustering qualit	ty					
	37 -								
	36 -				—				
au	35 -			_					
re val	34 -								
neasu	33 -								
E-J	32 -								
	31 -								
	30 -	Keywor	rd-based	Wordnet					

Fig: Comparison of Keyword-based and wordnet

Comparison between keyword based, LSA and WordNet:

Clustering Quality

Comparison between keyword based, LSA and WordNet: The comparison between three approaches for clustering purpose has been implemented, the WordNet gives the better results

Approaches	F-measure
Keyword-based	32.42
LSA	35.06
WordNet	36.28

Quality of clustering

Quality of Clustering graph

VI CONCLUSION:

Clustering web services is used to group similar text to reduce the search space .three different approaches are used, keyword based approach it uses the similarity measure, it does not hidden concepts. To reduce the drawback of this techniques,LSA shows better performance compared to keyword based approach.LSA approach uses decomposition techniques, but it does not shows semantic relation between concept. For clustering, WordNet give better performance compare to keyword based approach and LSA.

VII FUTURE WORK

In Future it can be extended to using PLSA(Probabilistic Latent Semantic Analysis) Which as more semantic similarity in document representation.

VIII REFERENCE

[1] Mehdi Allahyari, Seyedamin Pouriyeh and Mehdi Assefi, "A Brief survey of Text Mining:Classification, Clustering and Extraction Techniques", no.02919, 2017.

[2] Ms.K.Mouthami,Ms.K.Nirmala Devi and Dr.V.Murali Bhaskaran "Sentiment Analysis and classification Based on Textual Reviews"

[3] Aparna Konduri "Clustering of Web Services based on semantic similarity", 2018.

[4] P. Liang, "Opinion Mining on Social Media Data," pp. 91–96, 2013.

[5] V. Dhanalakshmi and D. Bino, "supervised learning algorithms," pp. 1–5, 2016

[6] C. Networks and M. Gupta, "COMPARISION OF ALGORITHMS FOR CLUSTERING," pp. 542–546, 2014.

[7] G. Salton, A. Wong, and C. S. Yang, "A Vector Space Model for Automatic Indexing," vol. 18, no. 11, 1975

[8] R. Xu, S. Member, and D. W. Ii, "Survey of Clustering Algorithms," vol. 16, no. 3, pp. 645–678, 2005.

[9] [1]Y. Yusof, T. Alhersh, M. Mahmuddin, and A. M. Din, "Classification of Machine Learning Engines using Latent Semantic Indexing," no. July, pp. 4–6, 2012.

[10] C. Bouras and V. Tsogkas, "Knowledge-Based Systems A clustering technique for news articles using WordNet," *KNOWLEDGE-BASED Syst.*, 2012.

[11]. Pedersen, Ted, Siddharth Patwardhan & Jason Michelizzi (2004),

"WordNet::Similarity -- Measuring the relatedness of concepts", Demonstrations of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, Boston, Mass., 2--7 May 2004, pp. 267-

-270. Available online at http://www.cs.utah.edu/~sidd/papers/PedersenPM04b.pdf

[12]. Simpson, Troy and Dao, Thanh (2005), WordNet-based semantic similarity

measurement, Retrieved 5/25/07 from

http://www.codeproject.com/cs/library/semanticsimilarityWordNet.asp

[13].Wu & Palmer similarity measure, Retrieved 6/1/07 from http://search.cpan.org/src/SID/WordNet-Similarity-

1.04/lib/WordNet/Similarity/wup.pm