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Abstract - Unmanned Aerial Vehicles are becoming 

more and more popular to meet the demands of increased 

population and agriculture. It is also expected that drones 

will take a major role in the connected smart cities of the 

future. They will be delivering goods, merchandise and 

serving as mobile hotspots for broadband wireless access 

and maintaining surveillance and security of smart cities. 

Drones equipped with appropriate cameras, sensors and 

integrating modules will help in achieving easy, efficient, 

precision agriculture. The proposed solutions which 

includes 3D ToF Camera for superior depth mapping and 

semantic segmentation using multispectral imaging to aid 

in SAR Missions.  related to these drones, if integrated with 

various Machine Learning and Internet of Things concepts, 

can help in increasing the scope of further improvement. 

Proposed solutions that can be integrated into the drone 

using various microcontrollers such as raspberry pi. 
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1.INTRODUCTION 
The project aims at designing a drone which is used for 

surveillance systems. The UMAV will have two wireless 

video cameras on it i.e. ToF camera for Depth Mapping 

and High-Resolution Video Camera for Streaming. The 

chopper is controlled using RC remote control.  

RF Communication ranges in between 30 KHz to 300 GHz. 

RF communication works by creating electromagnetic 

waves at a source and being able to pick up those 

electromagnetic waves at a particular destination. These 

electromagnetic waves travel through the air at near the 

speed of light. The wavelength of an electromagnetic 

signal is inversely proportional to the frequency; the 

higher the frequency, the shorter the wavelength. The 

controlling device of the whole system is managed by 

MCU at control center. The MCU gets the input from RF 

receiver which receives the data transmitted by pressing 

control buttons in RF remote. This data is processed and 

acts accordingly on chopper motors. The captured video 

images are transmitted through AV transmitter and are 

received by AV receiver and displayed on PC/ Laptop 

with the help of TV tuner card. We can also see the video 

recording in the PC.  

This project finds its major applications in military while 

we are monitoring larger areas like political canvassing, 

cricket stadiums, international conferences, worship 

places, banking etc. This project assures us with more 

reliable and confident security system 

1.1 Functional Operation: How Do Drones Work? 

One of the most common flying drone designs is the 
quadcopter, is a type of drone that is lifted and propelled 
by four rotors. The concept of quadcopter vehicles is not 
new; manned quadcopters were first experimented with 
in the 1920s, but their effectiveness was hampered by the 
technology available at the time. 

However, with the advancement of electronic technology 
in sensors, batteries, cameras and GPS systems, 
quadcopters have become widely employed over the past 
decade both recreationally and commercially. 

The 4 propellers of a quadcopter are fixed and vertically 
orientated. Each propeller has a variable and 
independent speed which allows a full range of 
movements. Shown below is the different propeller 
combinations that facilitate different drone movements. 

2. BASIC PRINCIPLE 

This is unlike conventional helicopters which are 
controlled by propellers with blades that dynamically 
pitch around the rotor hub. The components required for 
blade pitch are expensive which is one of the reasons 
quadcopters are becoming so common with recreational 
UAV enthusiasts. 

Table -1: Core Components of a Drone 
 

Preparation of Manuscript 

Chassis 1 
Battery 1 

Propeller’s 4/6 Radio Receiver 1 
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Motors 
4/6 RF Video 

Transmitter 

 1 

Electronic Speed 
Controllers 

1 
Main Control Unit 

 1 

Flight Controller 
1 

 
  

 
3. METHODOLOGY 
The initial step would be to create a chassis (frame) 
where raspberry pi, the main component would be 
mounted. Lithium battery will be used as they have the 
best ratio of weight to power. Motors would be used to 
spin the propellers. Using accelerometer and gyroscope, 
Electronic Speed Controller (ESC) unit will control the 
four motors and provide stability to the quadcopter. 
Remote Controller (RC) will provide input to the 
Quadcopter. Quadcopter flight dynamics for controlling 
the altitude a remote controller (RC) is used. When the 
controller of the quadcopter is moved up or down the 
propeller speed is adjusted causing the quadcopter to 
gain or lose altitude. Thrust is a type of force. When a 
system accelerates mass in one direction, the accelerated 
mass will cause a force of equal magnitude but opposite 
direction on that system. The force applied on a surface in 
a perpendicular direction or normal to the surface is 
called thrust. 
 

4. FLIGHT CONTROL OF UAVS 

Each rotor produces both a thrust and torque about its 
center of rotation, as well as a drag force opposite to the 
vehicle's direction of flight. If all rotors are spinning at the 
same angular velocity, with rotors one and three rotating 
clockwise and rotors two and four counterclockwise, the 
net aerodynamic torque, and hence the angular 
acceleration about the yaw axis, is exactly zero, which 
means there is no need for a tail rotor as on conventional 
helicopters. Yaw is induced by mismatching the balance 
in aerodynamic torques (i.e., by offsetting the cumulative 
thrust commands between the counter-rotating blade 
pairs).  
 

5. QUADROTOR FLIGHT DYNAMICS 

Schematic of reaction torques on each motor of a 

quadcopter aircraft, due to spinning rotors. Rotors 1 and 

3 spin in one direction, while rotors 2 and 4 spin in the 

opposite direction, yielding opposing torques for control. 

 

 

 

 
 

 

 

 

                         

 

 

 

Flight control of a quadcopter 

Hover Yaw Pitch Roll The two pair of propellers as shown 
in figure1, (1,3) and (2,4) rotates in opposite direction. 
The pair (1,3) rotates clockwise and remaining pair (2,4) 
rotates anticlockwise. This combination of rotation 
produces apposite torque. These results propellers 
generate vertical lifting force upward which raises 
quadrotor body in the air and it can move in hover, yaw, 
pitch, roll, landing and take-off. Pitch and Roll movement 
can be achieved by altering the speed of any one pair of 
motor. While other motor pair speeds remain constant. 
Yaw movement can be achieved by altering the speed of 
both motor pairs in quadrotor. 

 

a. Roll: Rotation around the front-to-back axis is called 
roll. Roll is controlled with the aileron stick, making 
it move left of right, if the aileron stick is moved to the 
left, the quadcopter will fly left, if moved the aileron 
stick to right, the quadcopter will fly right.  

b. Yaw: Rotation around the vertical axis is called yaw. 
Yaw rotates the head of the quadcopter either to left 
or right, yaw can be controlled through the throttle 
stick making it to rotate either to the right or left.  

c. Pitch: Rotation around the side-to-side axis is called 
pitch. Pitch is the movement of quadcopter either 
forward or backward. Forward Pitch is achieved by 
pushing the aileron stick forward, which makes the 
quadcopter tilt and move forward. Backward pitch is 
achieved by moving the aileron stick backwards, 
making the quadcopter, come closer.  

6. PROPOSED SYSTEM 

When it comes to take on rescue operations, it becomes 

difficult for the rescue team to go to a specific place and 

carrying out SAR. To provide a solution to this problem 

Smart Multipurpose Unmanned Aerial Vehicle with 3D 

Depth Mapping & Spectral Imaging can be used. The aim 

is to construct drone equipped with hi-tech 3D ToF and 

High-resolution cameras which will go to places having 

unfavorable conditions where a human cannot go in 

person and provide audio as well as visual aid. This will 

further facilitate rescue missions held in hostile 

territories. 

7. SYSTEM ARCHITECTURE: 

The purpose of the work is to control a quadcopter from 

a distance by using a computer or RC. The quadcopter 
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movement and control will be carried out by the 

raspberry pi. The model consists of two blocks which is 

mentioned below.  

 

 

 

 

 

 

Fig: Block diagram (Quadcopter Side) 

 

Fig: Operational Flowchart  

 

Fig: Framework of UAV system 

The quadcopter is command through the raspberry pi 

from the computer side block. The command signal will 

be transmitted wirelessly from the trans-receiver of 

computer/remote controller side block to the trans-

receiver of the quadcopter side and the quadcopter will 

move accordingly. The quadcopter also includes some 

features like camera, navigation, etc. All these features are 

also controlled by the raspberry pi. 

8. TIME OF FLIGHT: 3D DEPTH SENSING 

A 3D time-of-flight (TOF) camera works by illuminating 
the scene with a modulated light source, and observing 
the reflected light. The phase shift between the 
illumination and the reflection is measured and 
translated to distance. Figure 1 illustrates the basic TOF 
concept. Typically, the illumination is from a solid-state 
laser or a LED operating in the near-infrared range 
(~850nm) invisible to the human eyes. An imaging sensor 
designed to respond to the same spectrum receives the 
light and converts the photonic energy to electrical 
current. Note that the light entering the sensor has an 
ambient component and a reflected component. Distance 
(depth) information is only embedded in the reflected 
component. Therefore, high ambient component reduces 
the signal to noise ratio (SNR). 
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Figure 1: 3D time-of-flight camera operation. 

To detect phase shifts between the illumination and the 
reflection, the light source is pulsed or modulated by a 
continuous-wave (CW), source, typically a sinusoid or square 
wave. Square wave modulation is more common because it can 
be easily realized using digital circuits. 

Pulsed modulation can be achieved by integrating 
photoelectrons from the reflected light, or by starting a 
fast counter at the first detection of the reflection. The 
latter requires a fast photo-detector, usually a single-
photon avalanche diode (SPAD). This counting approach 
necessitates fast electronics, since achieving 1-millimeter 
accuracy requires timing a pulse of 6.6 picoseconds in 
duration. This level of accuracy is nearly impossible to 
achieve in silicon at room temperature. 

 

Figure 2: Two time-of-flight methods: pulsed (top) and 
continuous-wave (bottom). 

The pulsed method is straightforward. The light source 
illuminates for a brief period (âˆ†t), and the reflected 
energy is sampled at every pixel, in parallel, using two 
out-of-phase windows, C1 and C2, with the same âˆ†t. 
Electrical charges accumulated during these samples, Q1 
and Q2, are measured and used to compute distance using 
the formula: 

 

In contrast, the CW method takes multiple samples per 
measurement, with each sample phase-stepped by 90 
degrees, for a total of four samples. Using this technique, 
the phase angle between illumination and reflection, Ï†, 
and the distance, d, can be calculated by 

 

It follows that the measured pixel intensity (A) and offset 
(B) can be computed by: 

 

In all of the equations, c is the speed-of-light constant. 

At first glance, the complexity of the CW method, as 
compared to the pulsed method, may seemed unjustified, 
but a closer look at the CW equations reveals that the 
terms, (Q3 â€ “Q4) and (Q1 â€ “Q2) reduces the effect of 
constant offset from the measurements. Furthermore, the 
quotient in the phase equation reduces the effects of 
constant gains from the distance measurements, such as 
system amplification and attenuation, or the reflected 
intensity. These are desirable properties. 

The reflected amplitude (A) and offset (B) do have an 
impact the depth measurement accuracy. The depth 
measurement variance can be approximated by: 

 

The modulation contrast, ð�‘�ð�‘‘, describes how well 
the TOF sensor separates and collects the photoelectrons. 
The reflected amplitude, ð••´, is a function of the optical 
power. The offset, ð••µ, is a function of the ambient light 
and residual system offset. One may infer from Equation 
6 that high amplitude, high modulation frequency and 
high modulation contrast will increase accuracy; while 
high offset can lead to saturation and reduce accuracy. 

At high frequency, the modulation contrast can begin to 
attenuate due to the physical property of the silicon. This 
puts a practical upper limit on the modulation frequency. 
TOF sensors with high roll-off frequency generally can 
deliver higher accuracy. 
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The fact that the CW measurement is based on phase, 
which wraps around every 2Ï€, means the distance will 
also have an aliasing distance. The distance where 
aliasing occurs is called the ambiguity distance, ô€€ƒamb, 
and is defined as: 

 

Since the distance wraps, ô€€ƒamb is also the maximum 
measurable distance. If one wishes to extend the 
measurable distance, one may reduce the modulation 
frequency, but at the cost of reduced accuracy, as 
according to Equation 6. 

Instead of accepting this compromise, advanced TOF 
systems deploy multi-frequency techniques to extend the 
distance without reducing the modulation frequency. 
Multi-frequency techniques work by adding one or more 
modulation frequencies to the mix. Each modulation 
frequency will have a different ambiguity distance, but 
true location is the one where the different frequencies 
agree. The frequency of when the two modulations agree, 
called the beat frequency, is usually lower, and 
corresponds to a much longer ambiguity distance. The 
dual-frequency concept is illustrated below. 

 

Figure 3: Extending distance using a multi-frequency technique  

3. Point Cloud 

In TOF sensors, distance is measured for every pixel in a 
2D addressable array, resulting in a depth map. A depth 
map is a collection of 3D points (each point also known as 
a voxel). As an example, a QVGA sensor will have a depth 
map of 320 x 240 voxels. 2D representation of a depth 
map is a gray-scale image, as is illustrated by the soda 
cans example in Figure 4â€” the brighter the intensity, the 
closer the voxel. Figure 4 shows the depth map of a group 
of soda cans. 

 

Figure 4: Depth map of soda cans. 

Alternatively, a depth map can be rendered in a three-
dimensional space as a collection of points, or point-
cloud. The 3D points can be mathematically connected to 
form a mesh onto which a texture surface can be mapped. 
If the texture is from a real-time color image of the same 
subject, a life-like 3D rendering of the subject will emerge, 
as is illustrated by the avatar in Figure 5. One may be able 
to rotate the avatar to view different perspectives. 

 

Figure 5: Avatar formed from point-cloud. 
 

Robust 3D vision overcomes many problems of 2D vision, 
as the depth measurement can be used to easily separate 
foreground from background. This is particularly useful 
for scene understanding, where the first step is to 
segment the subject of interest (foreground) from other 
parts of the image (background). 

Gesture recognition, for example, involves scene 
understanding. Using distance as a discriminator, a TOF 
sensor enables separation of the face, hands, and fingers 
from the rest of the image, so gesture recognition can be 
achieved with high confidence. 

 

Figure 7: Advantages of 3D vision over 2D. 

 

9. MATLAB CODE FOR IMAGE SEGMENTATION 

 % This is a program for extracting objects from 
an image. Written for vehicle number plate 
segmentation and extraction 
% input - give the image file name as input. eg 
:- car3.jpg 
clc; 
clear all; 
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k=input('Enter the file name','s'); % input 
image; color image 
im=imread(k); 
im1=rgb2gray(im); 
im1=medfilt2(im1,[3 3]); %Median filtering the 
image to remove noise% 
BW = edge(im1,'sobel'); %finding edges  
[imx,imy]=size(BW); 
msk=[0 0 0 0 0; 
     0 1 1 1 0; 
     0 1 1 1 0; 
     0 1 1 1 0; 
     0 0 0 0 0;]; 
B=conv2(double(BW),double(msk)); %Smoothing  
image to reduce the number of connected 
components 
L = bwlabel(B,8);% Calculating connected 
components 
mx=max(max(L)) 
% There will be mx connected components. Here U 
can give a value between 1 and mx for L or in a 
loop you can extract all connected components 
% If you are using the attached car image, by 
giving 17,18,19,22,27,28 to L you can extract 
the number plate completely. 
[r,c] = find(L==17);   
rc = [r c]; 
[sx sy]=size(rc); 
n1=zeros(imx,imy);  
for i=1:sx 
    x1=rc(i,1); 
    y1=rc(i,2); 
    n1(x1,y1)=255; 
end % Storing the extracted image in an array 
figure,imshow(im); 
figure,imshow(im1); 
figure,imshow(B); 
figure,imshow(n1,[]); 

10. SEMANTIC SEGMENTATION OF 

MULTISPECTRAL IMAGES USING DEEP 

LEARNING 

Semantic segmentation involves labelling each pixel in an 
image with a class. One application of semantic 
segmentation is tracking deforestation, which is the 
change in forest cover over time. Environmental agencies 
track deforestation to assess and quantify the 
environmental and ecological health of a region. 

Deep-learning-based semantic segmentation can yield a 
precise measurement of vegetation cover from high-
resolution aerial photographs. One challenge is 
differentiating classes with similar visual characteristics, 
such as trying to classify a green pixel as grass, shrubbery, 
or tree. To increase classification accuracy, some data sets 
contain multispectral images that provide additional 
information about each pixel. For example, the Hamlin 
Beach State Park data set supplements the colour images 
with near-infrared channels that provide a clearer 
separation of the classes. 

 

Inspect Training Data 

Load the data set into the workspace. 

load(fullfile(imageDir,'rit18_data','rit18_data.mat')); 
Examine the structure of the data. 

whos train_data val_data test_data 
  Name            Size                      Bytes Class     Attributes 
 
  test_data       7x12446x7654            1333663576 uint16               
  train_data      7x9393x5642              741934284 uint16               
  val_data        7x8833x6918              855493716 uint16               
The multispectral image data is arranged 
as numChannels-by-width-by-height arrays. However, in 
MATLAB®, multichannel images are arranged as width-
by-height-by-numChannelsarrays. To reshape the data so 
that the channels are in the third dimension, use the 
helper function, switchChannelsToThirdPlane. This 
function is attached to the example as a supporting file. 

train_data = switchChannelsToThirdPlane(train_data); 
val_data   = switchChannelsToThirdPlane(val_data); 
test_data  = switchChannelsToThirdPlane(test_data); 
Confirm that the data has the correct structure. 

whos train_data val_data test_data 
  Name                Size                     Bytes  Class     Attributes 
 
  test_data       12446x7654x7            1333663576  uint16               
  train_data       9393x5642x7             741934284  uint16               
  val_data         8833x6918x7             855493716  uint16               
The RGB color channels are the 4th, 5th, and 6th image 
channels. Display the color component of the training, 
validation, and test images as a montage. To make the 
images appear brighter on the screen, equalize their 
histograms by using the histeq function. 

figure 
montage(... 
    {histeq(train_data(:,:,4:6)), ... 
    histeq(val_data(:,:,4:6)), ... 
    histeq(test_data(:,:,4:6))}, ... 
    'BorderSize',10,'BackgroundColor','white') 
title('RGB Component of Training Image (Left), Validation 
Image (Center), and Test Image (Right)') 

http://www.jetir.org/
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Display the first three histogram-equalized channels of 
the training data as a montage. These channels 
correspond to the near-infrared bands and highlight 
different components of the image based on their heat 
signatures. For example, the trees near the center of the 
second channel image show more detail than the trees in 
the other two channels. 

figure 
montage(... 
    {histeq(train_data(:,:,1)), ... 
    histeq(train_data(:,:,2)), ... 
    histeq(train_data(:,:,3))}, ... 
    'BorderSize',10,'BackgroundColor','white') 
title('IR Channels 1 (Left), 2, (Center), and 3 (Right) of 
Training Image') 

 

Channel 7 is a mask that indicates the valid segmentation 
region. Display the mask for the training, validation, and 
test images. 

figure 
montage(... 
    {train_data(:,:,7), ... 
    val_data(:,:,7), ... 
    test_data(:,:,7)}, ... 
    'BorderSize',10,'BackgroundColor','white') 
title('Mask of Training Image (Left), Validation Image 
(Center), and Test Image (Right)') 

 

The labeled images contain the ground truth data for the 
segmentation, with each pixel assigned to one of the 18 
classes. Get a list of the classes with their corresponding 
IDs. 

disp(classes) 
0. Other Class/Image Border       
1. Road Markings                  
2. Tree                           
3. Building                       
4. Vehicle (Car, Truck, or Bus)   
5. Person                         
6. Lifeguard Chair                
7. Picnic Table                   
8. Black Wood Panel               
9. White Wood Panel               
10. Orange Landing Pad            
11. Water Buoy                    
12. Rocks                         
13. Other Vegetation              
14. Grass                         
15. Sand                          
16. Water (Lake)                  
17. Water (Pond)                  
18. Asphalt (Parking Lot/Walkway) 
Create a vector of class names. 

classNames = [ 
"RoadMarkings","Tree","Building","Vehicle","Person", ... 
               
"LifeguardChair","PicnicTable","BlackWoodPanel",... 
               
"WhiteWoodPanel","OrangeLandingPad","Buoy","Rocks"
,... 
               
"LowLevelVegetation","Grass_Lawn","Sand_Beach",... 
               "Water_Lake","Water_Pond","Asphalt"];  
Overlay the labels on the histogram-equalized RGB 
training image. Add a colorbar to the image. 

cmap = jet(numel(classNames)); 
B = 
labeloverlay(histeq(train_data(:,:,4:6)),train_labels,'Tran
sparency',0.8,'Colormap',cmap); 
 
figure 
title('Training Labels') 
imshow(B) 
N = numel(classNames); 
ticks = 1/(N*2):1/N:1; 
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'Ti
ckLength',0,'TickLabelInterpreter','none'); 
colormap(cmap) 
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Save the training data as a MAT file and the training labels 
as a PNG file. 

save('train_data.mat','train_data'); 
imwrite(train_labels,'train_labels.png'); 

Create Random Patch Extraction Datastore for 

Training 

Use a random patch extraction datastore to feed the 
training data to the network. This datastore extracts 
multiple corresponding random patches from an image 
datastore and pixel label datastore that contain ground 
truth images and pixel label data. Patching is a common 
technique to prevent running out of memory for large 
images and to effectively increase the amount of available 
training data. 

Begin by storing the training images 
from 'train_data.mat' in an imageDatastore. Because the 
MAT file format is a nonstandard image format, you must 
use a MAT file reader to enable reading the image data. 
You can use the helper MAT file reader, matReader, that 
extracts the first six channels from the training data and 
omits the last channel containing the mask. This function 
is attached to the example as a supporting file. 

imds = 
imageDatastore('train_data.mat','FileExtensions','.mat','
ReadFcn',@matReader); 
Create a pixelLabelDatastore to store the label patches 
containing the 18 labeled regions. 

pixelLabelIds = 1:18; 
pxds = 
pixelLabelDatastore('train_labels.png',classNames,pixelL
abelIds); 
Create a randomPatchExtractionDatastore from the 
image datastore and the pixel label datastore. Each mini-
batch contains 16 patches of size 256-by-256 pixels. One 
thousand mini-batches are extracted at each iteration of 
the epoch. 

dsTrain = 
randomPatchExtractionDatastore(imds,pxds,[256,256],'
PatchesPerImage',16000); 
The random patch extraction datastore dsTrain provides 
mini-batches of data to the network at each iteration of 
the epoch. Preview the datastore to explore the data. 

inputBatch = preview(dsTrain); 
disp(inputBatch) 
        InputImage        ResponsePixelLabelImage 
    __________________    _______________________ 
 
    [256×256×6 uint16]     [256×256 categorical]  
    [256×256×6 uint16]     [256×256 categorical]  
    [256×256×6 uint16]     [256×256 categorical]  
    [256×256×6 uint16]     [256×256 categorical]  
    [256×256×6 uint16]     [256×256 categorical]  
    [256×256×6 uint16]     [256×256 categorical]  
    [256×256×6 uint16]     [256×256 categorical]  
    [256×256×6 uint16]     [256×256 categorical]  

Create U-Net Network Layers 

This example uses a variation of the U-Net network. In U-
Net, the initial series of convolutional layers are 
interspersed with max pooling layers, successively 
decreasing the resolution of the input image. These layers 
are followed by a series of convolutional layers 
interspersed with upsampling operators, successively 
increasing the resolution of the input image [2]. The name 
U-Net comes from the fact that the network can be drawn 
with a symmetric shape like the letter U. 

This example modifies the U-Net to use zero-padding in 
the convolutions, so that the input and the output to the 
convolutions have the same size. Use the helper 
function, createUnet, to create a U-Net with a few 
preselected hyperparameters. This function is attached 
as a supporting file to the example. 

inputTileSize = [256,256,6]; 
lgraph = createUnet(inputTileSize); 
disp(lgraph.Layers) 
  58x1 Layer array with layers: 
 
     1   'ImageInputLayer'                        Image Input                  
256x256x6 images with 'zerocenter' normalization 
     2   'Encoder-Section-1-Conv-1'               Convolution                  
64 3x3x6 convolutions with stride [1  1] and padding [1  
1  1  1] 
     3   'Encoder-Section-1-ReLU-1'               ReLU                         
ReLU 
     4   'Encoder-Section-1-Conv-2'               Convolution                  
64 3x3x64 convolutions with stride [1  1] and padding [1  
1  1  1] 
     5   'Encoder-Section-1-ReLU-2'               ReLU                         
ReLU 
     6   'Encoder-Section-1-MaxPool'              Max Pooling                  
2x2 max pooling with stride [2  2] and padding [0  0  0  0] 
     7   'Encoder-Section-2-Conv-1'               Convolution                  
128 3x3x64 convolutions with stride [1  1] and padding 
[1  1  1  1] 
     8   'Encoder-Section-2-ReLU-1'               ReLU                         
ReLU 
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     9   'Encoder-Section-2-Conv-2'               Convolution                  
128 3x3x128 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    10   'Encoder-Section-2-ReLU-2'               ReLU                         
ReLU 
    11   'Encoder-Section-2-MaxPool'              Max Pooling                  
2x2 max pooling with stride [2  2] and padding [0  0  0  0] 
    12   'Encoder-Section-3-Conv-1'               Convolution                  
256 3x3x128 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    13   'Encoder-Section-3-ReLU-1'               ReLU                         
ReLU 
    14   'Encoder-Section-3-Conv-2'               Convolution                  
256 3x3x256 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    15   'Encoder-Section-3-ReLU-2'               ReLU                         
ReLU 
    16   'Encoder-Section-3-MaxPool'              Max Pooling                  
2x2 max pooling with stride [2  2] and padding [0  0  0  0] 
    17   'Encoder-Section-4-Conv-1'               Convolution                  
512 3x3x256 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    18   'Encoder-Section-4-ReLU-1'               ReLU                         
ReLU 
    19   'Encoder-Section-4-Conv-2'               Convolution                  
512 3x3x512 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    20   'Encoder-Section-4-ReLU-2'               ReLU                         
ReLU 
    21   'Encoder-Section-4-DropOut'              Dropout                      
50% dropout 
    22   'Encoder-Section-4-MaxPool'              Max Pooling                  
2x2 max pooling with stride [2  2] and padding [0  0  0  0] 
    23   'Mid-Conv-1'                             Convolution                  1024 
3x3x512 convolutions with stride [1  1] and padding [1  1  
1  1] 
    24   'Mid-ReLU-1'                             ReLU                         ReLU 
    25   'Mid-Conv-2'                             Convolution                  1024 
3x3x1024 convolutions with stride [1  1] and padding [1  
1  1  1] 
    26   'Mid-ReLU-2'                             ReLU                         ReLU 
    27   'Mid-DropOut'                            Dropout                      50% 
dropout 
    28   'Decoder-Section-1-UpConv'               Transposed 
Convolution       512 2x2x1024 transposed convolutions 
with stride [2  2] and cropping [0  0  0  0] 
    29   'Decoder-Section-1-UpReLU'               ReLU                         
ReLU 
    30   'Decoder-Section-1-DepthConcatenation'   Depth 
concatenation          Depth concatenation of 2 inputs 
    31   'Decoder-Section-1-Conv-1'               Convolution                  
512 3x3x1024 convolutions with stride [1  1] and 
padding [1  1  1  1] 
    32   'Decoder-Section-1-ReLU-1'               ReLU                         
ReLU 
    33   'Decoder-Section-1-Conv-2'               Convolution                  
512 3x3x512 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    34   'Decoder-Section-1-ReLU-2'               ReLU                         
ReLU 

    35   'Decoder-Section-2-UpConv'               Transposed 
Convolution       256 2x2x512 transposed convolutions 
with stride [2  2] and cropping [0  0  0  0] 
    36   'Decoder-Section-2-UpReLU'               ReLU                         
ReLU 
    37   'Decoder-Section-2-DepthConcatenation'   Depth 
concatenation          Depth concatenation of 2 inputs 
    38   'Decoder-Section-2-Conv-1'               Convolution                  
256 3x3x512 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    39   'Decoder-Section-2-ReLU-1'               ReLU                         
ReLU 
    40   'Decoder-Section-2-Conv-2'               Convolution                  
256 3x3x256 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    41   'Decoder-Section-2-ReLU-2'               ReLU                         
ReLU 
    42   'Decoder-Section-3-UpConv'               Transposed 
Convolution       128 2x2x256 transposed convolutions 
with stride [2  2] and cropping [0  0  0  0] 
    43   'Decoder-Section-3-UpReLU'               ReLU                         
ReLU 
    44   'Decoder-Section-3-DepthConcatenation'   Depth 
concatenation          Depth concatenation of 2 inputs 
    45   'Decoder-Section-3-Conv-1'               Convolution                  
128 3x3x256 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    46   'Decoder-Section-3-ReLU-1'               ReLU                         
ReLU 
    47   'Decoder-Section-3-Conv-2'               Convolution                  
128 3x3x128 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    48   'Decoder-Section-3-ReLU-2'               ReLU                         
ReLU 
    49   'Decoder-Section-4-UpConv'               Transposed 
Convolution       64 2x2x128 transposed convolutions with 
stride [2  2] and cropping [0  0  0  0] 
    50   'Decoder-Section-4-UpReLU'               ReLU                         
ReLU 
    51   'Decoder-Section-4-DepthConcatenation'   Depth 
concatenation          Depth concatenation of 2 inputs 
    52   'Decoder-Section-4-Conv-1'               Convolution                  
64 3x3x128 convolutions with stride [1  1] and padding 
[1  1  1  1] 
    53   'Decoder-Section-4-ReLU-1'               ReLU                         
ReLU 
    54   'Decoder-Section-4-Conv-2'               Convolution                  
64 3x3x64 convolutions with stride [1  1] and padding [1  
1  1  1] 
    55   'Decoder-Section-4-ReLU-2'               ReLU                         
ReLU 
    56   'Final-ConvolutionLayer'                 Convolution                  
18 1x1x64 convolutions with stride [1  1] and padding [0  
0  0  0] 
    57   'Softmax-Layer'                          Softmax                      softmax 
    58   'Segmentation-Layer'                     Pixel Classification 
Layer   Cross-entropy loss  
 

Select Training Options 

Train the network using stochastic gradient descent with 
momentum (SGDM) optimization. Specify the 
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hyperparameter settings for SDGM by using 
the trainingOptions function. 

Training a deep network is time-consuming. Accelerate 
the training by specifying a high learning rate. However, 
this can cause the gradients of the network to explode or 
grow uncontrollably, preventing the network from 
training successfully. To keep the gradients in a 
meaningful range, enable gradient clipping by 
specifying 'GradientThreshold' as 0.05, and 
specify 'GradientThresholdMethod' to use the L2-norm of 
the gradients. 

initialLearningRate = 0.05; 
maxEpochs = 150; 
minibatchSize = 16; 
l2reg = 0.0001; 
 
options = trainingOptions('sgdm',... 
    'InitialLearnRate',initialLearningRate, ... 
    'Momentum',0.9,... 
    'L2Regularization',l2reg,... 
    'MaxEpochs',maxEpochs,... 
    'MiniBatchSize',minibatchSize,... 
    'LearnRateSchedule','piecewise',...     
    'Shuffle','every-epoch',... 
    'GradientThresholdMethod','l2norm',... 
    'GradientThreshold',0.05, ... 
    'Plots','training-progress', ... 
    'VerboseFrequency',20); 

Train the Network 

After configuring the training options and the random 
patch extraction datastore, train the U-Net network by 
using the trainNetwork function. To train the network, 
set the doTraining parameter in the following code 
to true. A CUDA-capable NVIDIA™ GPU with compute 
capability 3.0 or higher is highly recommended for 
training. 

If you keep the doTraining parameter in the following 
code as false, then the example returns a pretrained U-
Net network. 

Note: Training takes about 20 hours on an NVIDIA™ Titan 
X and can take even longer depending on your GPU 
hardware. 

doTraining = false;  
if doTraining 
    modelDateTime = datestr(now,'dd-mmm-yyyy-HH-
MM-SS'); 
    [net,info] = trainNetwork(dsTrain,lgraph,options); 
    save(['multispectralUnet-' modelDateTime '-Epoch-' 
num2str(maxEpochs) '.mat'],'net','options'); 
else  
    
load(fullfile(imageDir,'trainedUnet','multispectralUnet.
mat')); 
end 
You can now use the U-Net to semantically segment the 
multispectral image. 

Predict Results on Test Data 

To perform the forward pass on the trained network, use 
the helper function, segmentImage, with the validation 
data set. This function is attached to the example as a 
supporting file. segmentImage performs segmentation 
on image patches using the semanticseg function. 

predictPatchSize = [1024 1024]; 
segmentedImage = 
segmentImage(val_data,net,predictPatchSize); 
To extract only the valid portion of the segmentation, 
multiply the segmented image by the mask channel of the 
validation data. 

segmentedImage = uint8(val_data(:,:,7)~=0) .* 
segmentedImage; 
 
figure 
imshow(segmentedImage,[]) 
title('Segmented Image') 

 

The output of semantic segmentation is noisy. Perform 
post image processing to remove noise and stray pixels. 
Use the medfilt2 function to remove salt-and-pepper 
noise from the segmentation. Visualize the segmented 
image with the noise removed. 

segmentedImage = medfilt2(segmentedImage,[7,7]); 
imshow(segmentedImage,[]); 
title('Segmented Image  with Noise Removed') 
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Overlay the segmented image on the histogram-equalized 
RGB validation image. 

B = 
labeloverlay(histeq(val_data(:,:,4:6)),segmentedImage,'T
ransparency',0.8,'Colormap',cmap); 
 
figure 
imshow(B) 
title('Labeled Validation Image') 
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'Ti
ckLength',0,'TickLabelInterpreter','none'); 
colormap(cmap) 

 

Save the segmented image and ground truth labels as PNG 
files. These will be used to compute accuracy metrics. 

imwrite(segmentedImage,'results.png'); 
imwrite(val_labels,'gtruth.png'); 

Quantify Segmentation Accuracy 

Create a pixelLabelDatastore for the segmentation 
results and the ground truth labels. 

pxdsResults = 
pixelLabelDatastore('results.png',classNames,pixelLabel
Ids); 
pxdsTruth = 
pixelLabelDatastore('gtruth.png',classNames,pixelLabelI
ds); 
Measure the global accuracy of the semantic 
segmentation by using 
the evaluateSemanticSegmentation function. 

ssm = 
evaluateSemanticSegmentation(pxdsResults,pxdsTruth,'
Metrics','global-accuracy'); 
Evaluating semantic segmentation results 
---------------------------------------- 
* Selected metrics: global accuracy. 
* Processing 1 images... 
[===========================================
=======] 100% 
Elapsed time: 00:00:31 
Estimated time remaining: 00:00:00 
* Finalizing... Done. 

* Data set metrics: 
    GlobalAccuracy 
       0.90698     
The global accuracy score indicates that just over 90% of 
the pixels are classified correctly. 

Calculate Extent of Vegetation Cover 

The final goal of this example is to calculate the extent of 
vegetation cover in the multispectral image. 

Find the number of pixels labeled vegetation. The label 
IDs 2 ("Trees"), 13 ("LowLevelVegetation"), and 14 
("Grass_Lawn") are the vegetation classes. Also find the 
total number of valid pixels by summing the pixels in the 
ROI of the mask image. 

vegetationClassIds = uint8([2,13,14]); 
vegetationPixels = 
ismember(segmentedImage(:),vegetationClassIds); 
validPixels = (segmentedImage~=0); 
 
numVegetationPixels = sum(vegetationPixels(:)); 
numValidPixels = sum(validPixels(:)); 
Calculate the percentage of vegetation cover by dividing 
the number of vegetation pixels by the number of valid 
pixels. 

percentVegetationCover = 
(numVegetationPixels/numValidPixels)*100; 
fprintf('The percentage of vegetation cover is 
%3.2f%%.',percentVegetationCover); 
The percentage of vegetation cover is 51.72%. 

Summary 

The above example shows how to create and train a U-Net 
network for semantic segmentation of a seven-channel 
multispectral image. These are the steps to train the 
network: 

 Download and reshape the training data. 

 Create a randomPatchExtractionDatastore to feed 
training data to the network. 

 Define the layers of the U-Net network. 

 Specify training options. 

 Train the network using the trainNetwork function. 

After training the U-Net network or loading a pretrained 
U-Net network, the example performs semantic 
segmentation of the validation data and measures the 
segmentation accuracy. 

11. APPLICATIONS 
 Drones with Collision Avoidance Systems 

 Indoor navigation 

 Gesture recognition 
 Object scanning 
 Collision avoidance 
 Track objects 
 Surveillance of a target zone 
 Count objects or people 
 Fast precise distance-to-target readings 
 Augmented reality / Virtual Reality 
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 Estimate size and shape of objects 
 Enhanced 3D photography 
 Logistics 
 Surveillance & security 
 Archaeology 
 Environment projects 

 

12. CONCLUSION & FUTURE SCOPE 

This paper presents an approach which could be used for 
developing a Smart Multipurpose Unmanned Aerial 
Vehicle with 3D Depth Mapping & Spectral Imaging 
which could aid in carrying out Search & Rescue Missions, 
3D Depth Mapping of difficult terrains, Analysis of 
Location and also provide audio/video aid to the people 
in distress. It could also be used as a surveillance system 
to increase the security strength especially in the area 
where human interference is strictly prohibited. UAV’s 
offer advantages for many applications when comparing 
with their manned counter parts. They save human pilots 
from flying in dangerous and (or) Hazardous conditions 
that can be encountered not only in military applications 
but also in other scenarios involving operation in bad 
weather conditions, Hazardous/Toxic environment or 
near to buildings, trees, civil infrastructures, Difficult 
Terrains and other obstacles. 

13. RESEARCH FOR FUTURE STUDY 

 The future research can be carried out to 
implement and design SWARM technology so 
that a fleet of drones can be sent that 
communicate with each other and perform 
various operations. 

 Performance Enhancements can also be made 
and could be equipped with Combat capability  
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