
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 486

Smart Multipurpose Unmanned Aerial Vehicle with

3D Depth Mapping & Spectral Imaging

Dr. Syeda Gauhar Fatima1, Abdul Aleem2, Saquib Mohiuddin3, Abdus Samee4

1Professor, ECE Department, DCET, Telangana, India
2Assistant Professor, ECE Department, DCET, Telangana, India

3Student, ECE Department, DCET, Telangana, India
4Student, ECE Department, DCET, Telangana, India

Abstract - Unmanned Aerial Vehicles are becoming

more and more popular to meet the demands of increased

population and agriculture. It is also expected that drones

will take a major role in the connected smart cities of the

future. They will be delivering goods, merchandise and

serving as mobile hotspots for broadband wireless access

and maintaining surveillance and security of smart cities.

Drones equipped with appropriate cameras, sensors and

integrating modules will help in achieving easy, efficient,

precision agriculture. The proposed solutions which

includes 3D ToF Camera for superior depth mapping and

semantic segmentation using multispectral imaging to aid

in SAR Missions. related to these drones, if integrated with

various Machine Learning and Internet of Things concepts,

can help in increasing the scope of further improvement.

Proposed solutions that can be integrated into the drone

using various microcontrollers such as raspberry pi.

Keywords: Unmanned Aerial Vehicle, Image
Processing, MATLAB, 3D TOF Camera, Semantic
Segmentation, Multispectral Imaging, Surveillance,
Depth Mapping of Terrains

1.INTRODUCTION
The project aims at designing a drone which is used for

surveillance systems. The UMAV will have two wireless

video cameras on it i.e. ToF camera for Depth Mapping

and High-Resolution Video Camera for Streaming. The

chopper is controlled using RC remote control.

RF Communication ranges in between 30 KHz to 300 GHz.

RF communication works by creating electromagnetic

waves at a source and being able to pick up those

electromagnetic waves at a particular destination. These

electromagnetic waves travel through the air at near the

speed of light. The wavelength of an electromagnetic

signal is inversely proportional to the frequency; the

higher the frequency, the shorter the wavelength. The

controlling device of the whole system is managed by

MCU at control center. The MCU gets the input from RF

receiver which receives the data transmitted by pressing

control buttons in RF remote. This data is processed and

acts accordingly on chopper motors. The captured video

images are transmitted through AV transmitter and are

received by AV receiver and displayed on PC/ Laptop

with the help of TV tuner card. We can also see the video

recording in the PC.

This project finds its major applications in military while

we are monitoring larger areas like political canvassing,

cricket stadiums, international conferences, worship

places, banking etc. This project assures us with more

reliable and confident security system

1.1 Functional Operation: How Do Drones Work?

One of the most common flying drone designs is the
quadcopter, is a type of drone that is lifted and propelled
by four rotors. The concept of quadcopter vehicles is not
new; manned quadcopters were first experimented with
in the 1920s, but their effectiveness was hampered by the
technology available at the time.

However, with the advancement of electronic technology
in sensors, batteries, cameras and GPS systems,
quadcopters have become widely employed over the past
decade both recreationally and commercially.

The 4 propellers of a quadcopter are fixed and vertically
orientated. Each propeller has a variable and
independent speed which allows a full range of
movements. Shown below is the different propeller
combinations that facilitate different drone movements.

2. BASIC PRINCIPLE

This is unlike conventional helicopters which are
controlled by propellers with blades that dynamically
pitch around the rotor hub. The components required for
blade pitch are expensive which is one of the reasons
quadcopters are becoming so common with recreational
UAV enthusiasts.

Table -1: Core Components of a Drone

Preparation of Manuscript

Chassis 1
Battery 1

Propeller’s 4/6 Radio Receiver 1

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 487

Motors
4/6 RF Video

Transmitter

 1

Electronic Speed
Controllers

1
Main Control Unit

 1

Flight Controller
1

3. METHODOLOGY
The initial step would be to create a chassis (frame)
where raspberry pi, the main component would be
mounted. Lithium battery will be used as they have the
best ratio of weight to power. Motors would be used to
spin the propellers. Using accelerometer and gyroscope,
Electronic Speed Controller (ESC) unit will control the
four motors and provide stability to the quadcopter.
Remote Controller (RC) will provide input to the
Quadcopter. Quadcopter flight dynamics for controlling
the altitude a remote controller (RC) is used. When the
controller of the quadcopter is moved up or down the
propeller speed is adjusted causing the quadcopter to
gain or lose altitude. Thrust is a type of force. When a
system accelerates mass in one direction, the accelerated
mass will cause a force of equal magnitude but opposite
direction on that system. The force applied on a surface in
a perpendicular direction or normal to the surface is
called thrust.

4. FLIGHT CONTROL OF UAVS

Each rotor produces both a thrust and torque about its
center of rotation, as well as a drag force opposite to the
vehicle's direction of flight. If all rotors are spinning at the
same angular velocity, with rotors one and three rotating
clockwise and rotors two and four counterclockwise, the
net aerodynamic torque, and hence the angular
acceleration about the yaw axis, is exactly zero, which
means there is no need for a tail rotor as on conventional
helicopters. Yaw is induced by mismatching the balance
in aerodynamic torques (i.e., by offsetting the cumulative
thrust commands between the counter-rotating blade
pairs).

5. QUADROTOR FLIGHT DYNAMICS

Schematic of reaction torques on each motor of a

quadcopter aircraft, due to spinning rotors. Rotors 1 and

3 spin in one direction, while rotors 2 and 4 spin in the

opposite direction, yielding opposing torques for control.

Flight control of a quadcopter

Hover Yaw Pitch Roll The two pair of propellers as shown
in figure1, (1,3) and (2,4) rotates in opposite direction.
The pair (1,3) rotates clockwise and remaining pair (2,4)
rotates anticlockwise. This combination of rotation
produces apposite torque. These results propellers
generate vertical lifting force upward which raises
quadrotor body in the air and it can move in hover, yaw,
pitch, roll, landing and take-off. Pitch and Roll movement
can be achieved by altering the speed of any one pair of
motor. While other motor pair speeds remain constant.
Yaw movement can be achieved by altering the speed of
both motor pairs in quadrotor.

a. Roll: Rotation around the front-to-back axis is called
roll. Roll is controlled with the aileron stick, making
it move left of right, if the aileron stick is moved to the
left, the quadcopter will fly left, if moved the aileron
stick to right, the quadcopter will fly right.

b. Yaw: Rotation around the vertical axis is called yaw.
Yaw rotates the head of the quadcopter either to left
or right, yaw can be controlled through the throttle
stick making it to rotate either to the right or left.

c. Pitch: Rotation around the side-to-side axis is called
pitch. Pitch is the movement of quadcopter either
forward or backward. Forward Pitch is achieved by
pushing the aileron stick forward, which makes the
quadcopter tilt and move forward. Backward pitch is
achieved by moving the aileron stick backwards,
making the quadcopter, come closer.

6. PROPOSED SYSTEM

When it comes to take on rescue operations, it becomes

difficult for the rescue team to go to a specific place and

carrying out SAR. To provide a solution to this problem

Smart Multipurpose Unmanned Aerial Vehicle with 3D

Depth Mapping & Spectral Imaging can be used. The aim

is to construct drone equipped with hi-tech 3D ToF and

High-resolution cameras which will go to places having

unfavorable conditions where a human cannot go in

person and provide audio as well as visual aid. This will

further facilitate rescue missions held in hostile

territories.

7. SYSTEM ARCHITECTURE:

The purpose of the work is to control a quadcopter from

a distance by using a computer or RC. The quadcopter

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 488

movement and control will be carried out by the

raspberry pi. The model consists of two blocks which is

mentioned below.

Fig: Block diagram (Quadcopter Side)

Fig: Operational Flowchart

Fig: Framework of UAV system

The quadcopter is command through the raspberry pi

from the computer side block. The command signal will

be transmitted wirelessly from the trans-receiver of

computer/remote controller side block to the trans-

receiver of the quadcopter side and the quadcopter will

move accordingly. The quadcopter also includes some

features like camera, navigation, etc. All these features are

also controlled by the raspberry pi.

8. TIME OF FLIGHT: 3D DEPTH SENSING

A 3D time-of-flight (TOF) camera works by illuminating
the scene with a modulated light source, and observing
the reflected light. The phase shift between the
illumination and the reflection is measured and
translated to distance. Figure 1 illustrates the basic TOF
concept. Typically, the illumination is from a solid-state
laser or a LED operating in the near-infrared range
(~850nm) invisible to the human eyes. An imaging sensor
designed to respond to the same spectrum receives the
light and converts the photonic energy to electrical
current. Note that the light entering the sensor has an
ambient component and a reflected component. Distance
(depth) information is only embedded in the reflected
component. Therefore, high ambient component reduces
the signal to noise ratio (SNR).

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 489

Figure 1: 3D time-of-flight camera operation.

To detect phase shifts between the illumination and the
reflection, the light source is pulsed or modulated by a
continuous-wave (CW), source, typically a sinusoid or square
wave. Square wave modulation is more common because it can
be easily realized using digital circuits.

Pulsed modulation can be achieved by integrating
photoelectrons from the reflected light, or by starting a
fast counter at the first detection of the reflection. The
latter requires a fast photo-detector, usually a single-
photon avalanche diode (SPAD). This counting approach
necessitates fast electronics, since achieving 1-millimeter
accuracy requires timing a pulse of 6.6 picoseconds in
duration. This level of accuracy is nearly impossible to
achieve in silicon at room temperature.

Figure 2: Two time-of-flight methods: pulsed (top) and
continuous-wave (bottom).

The pulsed method is straightforward. The light source
illuminates for a brief period (âˆ†t), and the reflected
energy is sampled at every pixel, in parallel, using two
out-of-phase windows, C1 and C2, with the same âˆ†t.
Electrical charges accumulated during these samples, Q1
and Q2, are measured and used to compute distance using
the formula:

In contrast, the CW method takes multiple samples per
measurement, with each sample phase-stepped by 90
degrees, for a total of four samples. Using this technique,
the phase angle between illumination and reflection, Ï†,
and the distance, d, can be calculated by

It follows that the measured pixel intensity (A) and offset
(B) can be computed by:

In all of the equations, c is the speed-of-light constant.

At first glance, the complexity of the CW method, as
compared to the pulsed method, may seemed unjustified,
but a closer look at the CW equations reveals that the
terms, (Q3 â€ “Q4) and (Q1 â€ “Q2) reduces the effect of
constant offset from the measurements. Furthermore, the
quotient in the phase equation reduces the effects of
constant gains from the distance measurements, such as
system amplification and attenuation, or the reflected
intensity. These are desirable properties.

The reflected amplitude (A) and offset (B) do have an
impact the depth measurement accuracy. The depth
measurement variance can be approximated by:

The modulation contrast, ð�‘�ð�‘‘, describes how well
the TOF sensor separates and collects the photoelectrons.
The reflected amplitude, ð••´, is a function of the optical
power. The offset, ð••µ, is a function of the ambient light
and residual system offset. One may infer from Equation
6 that high amplitude, high modulation frequency and
high modulation contrast will increase accuracy; while
high offset can lead to saturation and reduce accuracy.

At high frequency, the modulation contrast can begin to
attenuate due to the physical property of the silicon. This
puts a practical upper limit on the modulation frequency.
TOF sensors with high roll-off frequency generally can
deliver higher accuracy.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 490

The fact that the CW measurement is based on phase,
which wraps around every 2Ï€, means the distance will
also have an aliasing distance. The distance where
aliasing occurs is called the ambiguity distance, ô€€ƒamb,
and is defined as:

Since the distance wraps, ô€€ƒamb is also the maximum
measurable distance. If one wishes to extend the
measurable distance, one may reduce the modulation
frequency, but at the cost of reduced accuracy, as
according to Equation 6.

Instead of accepting this compromise, advanced TOF
systems deploy multi-frequency techniques to extend the
distance without reducing the modulation frequency.
Multi-frequency techniques work by adding one or more
modulation frequencies to the mix. Each modulation
frequency will have a different ambiguity distance, but
true location is the one where the different frequencies
agree. The frequency of when the two modulations agree,
called the beat frequency, is usually lower, and
corresponds to a much longer ambiguity distance. The
dual-frequency concept is illustrated below.

Figure 3: Extending distance using a multi-frequency technique

3. Point Cloud

In TOF sensors, distance is measured for every pixel in a
2D addressable array, resulting in a depth map. A depth
map is a collection of 3D points (each point also known as
a voxel). As an example, a QVGA sensor will have a depth
map of 320 x 240 voxels. 2D representation of a depth
map is a gray-scale image, as is illustrated by the soda
cans example in Figure 4â€” the brighter the intensity, the
closer the voxel. Figure 4 shows the depth map of a group
of soda cans.

Figure 4: Depth map of soda cans.

Alternatively, a depth map can be rendered in a three-
dimensional space as a collection of points, or point-
cloud. The 3D points can be mathematically connected to
form a mesh onto which a texture surface can be mapped.
If the texture is from a real-time color image of the same
subject, a life-like 3D rendering of the subject will emerge,
as is illustrated by the avatar in Figure 5. One may be able
to rotate the avatar to view different perspectives.

Figure 5: Avatar formed from point-cloud.

Robust 3D vision overcomes many problems of 2D vision,
as the depth measurement can be used to easily separate
foreground from background. This is particularly useful
for scene understanding, where the first step is to
segment the subject of interest (foreground) from other
parts of the image (background).

Gesture recognition, for example, involves scene
understanding. Using distance as a discriminator, a TOF
sensor enables separation of the face, hands, and fingers
from the rest of the image, so gesture recognition can be
achieved with high confidence.

Figure 7: Advantages of 3D vision over 2D.

9. MATLAB CODE FOR IMAGE SEGMENTATION

 % This is a program for extracting objects from
an image. Written for vehicle number plate
segmentation and extraction
% input - give the image file name as input. eg
:- car3.jpg
clc;
clear all;

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 491

k=input('Enter the file name','s'); % input
image; color image
im=imread(k);
im1=rgb2gray(im);
im1=medfilt2(im1,[3 3]); %Median filtering the
image to remove noise%
BW = edge(im1,'sobel'); %finding edges
[imx,imy]=size(BW);
msk=[0 0 0 0 0;
 0 1 1 1 0;
 0 1 1 1 0;
 0 1 1 1 0;
 0 0 0 0 0;];
B=conv2(double(BW),double(msk)); %Smoothing
image to reduce the number of connected
components
L = bwlabel(B,8);% Calculating connected
components
mx=max(max(L))
% There will be mx connected components. Here U
can give a value between 1 and mx for L or in a
loop you can extract all connected components
% If you are using the attached car image, by
giving 17,18,19,22,27,28 to L you can extract
the number plate completely.
[r,c] = find(L==17);
rc = [r c];
[sx sy]=size(rc);
n1=zeros(imx,imy);
for i=1:sx
 x1=rc(i,1);
 y1=rc(i,2);
 n1(x1,y1)=255;
end % Storing the extracted image in an array
figure,imshow(im);
figure,imshow(im1);
figure,imshow(B);
figure,imshow(n1,[]);

10. SEMANTIC SEGMENTATION OF

MULTISPECTRAL IMAGES USING DEEP

LEARNING

Semantic segmentation involves labelling each pixel in an
image with a class. One application of semantic
segmentation is tracking deforestation, which is the
change in forest cover over time. Environmental agencies
track deforestation to assess and quantify the
environmental and ecological health of a region.

Deep-learning-based semantic segmentation can yield a
precise measurement of vegetation cover from high-
resolution aerial photographs. One challenge is
differentiating classes with similar visual characteristics,
such as trying to classify a green pixel as grass, shrubbery,
or tree. To increase classification accuracy, some data sets
contain multispectral images that provide additional
information about each pixel. For example, the Hamlin
Beach State Park data set supplements the colour images
with near-infrared channels that provide a clearer
separation of the classes.

Inspect Training Data

Load the data set into the workspace.

load(fullfile(imageDir,'rit18_data','rit18_data.mat'));
Examine the structure of the data.

whos train_data val_data test_data
 Name Size Bytes Class Attributes

 test_data 7x12446x7654 1333663576 uint16
 train_data 7x9393x5642 741934284 uint16
 val_data 7x8833x6918 855493716 uint16
The multispectral image data is arranged
as numChannels-by-width-by-height arrays. However, in
MATLAB®, multichannel images are arranged as width-
by-height-by-numChannelsarrays. To reshape the data so
that the channels are in the third dimension, use the
helper function, switchChannelsToThirdPlane. This
function is attached to the example as a supporting file.

train_data = switchChannelsToThirdPlane(train_data);
val_data = switchChannelsToThirdPlane(val_data);
test_data = switchChannelsToThirdPlane(test_data);
Confirm that the data has the correct structure.

whos train_data val_data test_data
 Name Size Bytes Class Attributes

 test_data 12446x7654x7 1333663576 uint16
 train_data 9393x5642x7 741934284 uint16
 val_data 8833x6918x7 855493716 uint16
The RGB color channels are the 4th, 5th, and 6th image
channels. Display the color component of the training,
validation, and test images as a montage. To make the
images appear brighter on the screen, equalize their
histograms by using the histeq function.

figure
montage(...
 {histeq(train_data(:,:,4:6)), ...
 histeq(val_data(:,:,4:6)), ...
 histeq(test_data(:,:,4:6))}, ...
 'BorderSize',10,'BackgroundColor','white')
title('RGB Component of Training Image (Left), Validation
Image (Center), and Test Image (Right)')

http://www.jetir.org/
https://www.mathworks.com/help/images/ref/histeq.html

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 492

Display the first three histogram-equalized channels of
the training data as a montage. These channels
correspond to the near-infrared bands and highlight
different components of the image based on their heat
signatures. For example, the trees near the center of the
second channel image show more detail than the trees in
the other two channels.

figure
montage(...
 {histeq(train_data(:,:,1)), ...
 histeq(train_data(:,:,2)), ...
 histeq(train_data(:,:,3))}, ...
 'BorderSize',10,'BackgroundColor','white')
title('IR Channels 1 (Left), 2, (Center), and 3 (Right) of
Training Image')

Channel 7 is a mask that indicates the valid segmentation
region. Display the mask for the training, validation, and
test images.

figure
montage(...
 {train_data(:,:,7), ...
 val_data(:,:,7), ...
 test_data(:,:,7)}, ...
 'BorderSize',10,'BackgroundColor','white')
title('Mask of Training Image (Left), Validation Image
(Center), and Test Image (Right)')

The labeled images contain the ground truth data for the
segmentation, with each pixel assigned to one of the 18
classes. Get a list of the classes with their corresponding
IDs.

disp(classes)
0. Other Class/Image Border
1. Road Markings
2. Tree
3. Building
4. Vehicle (Car, Truck, or Bus)
5. Person
6. Lifeguard Chair
7. Picnic Table
8. Black Wood Panel
9. White Wood Panel
10. Orange Landing Pad
11. Water Buoy
12. Rocks
13. Other Vegetation
14. Grass
15. Sand
16. Water (Lake)
17. Water (Pond)
18. Asphalt (Parking Lot/Walkway)
Create a vector of class names.

classNames = [
"RoadMarkings","Tree","Building","Vehicle","Person", ...

"LifeguardChair","PicnicTable","BlackWoodPanel",...

"WhiteWoodPanel","OrangeLandingPad","Buoy","Rocks"
,...

"LowLevelVegetation","Grass_Lawn","Sand_Beach",...
 "Water_Lake","Water_Pond","Asphalt"];
Overlay the labels on the histogram-equalized RGB
training image. Add a colorbar to the image.

cmap = jet(numel(classNames));
B =
labeloverlay(histeq(train_data(:,:,4:6)),train_labels,'Tran
sparency',0.8,'Colormap',cmap);

figure
title('Training Labels')
imshow(B)
N = numel(classNames);
ticks = 1/(N*2):1/N:1;
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'Ti
ckLength',0,'TickLabelInterpreter','none');
colormap(cmap)

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 493

Save the training data as a MAT file and the training labels
as a PNG file.

save('train_data.mat','train_data');
imwrite(train_labels,'train_labels.png');

Create Random Patch Extraction Datastore for

Training

Use a random patch extraction datastore to feed the
training data to the network. This datastore extracts
multiple corresponding random patches from an image
datastore and pixel label datastore that contain ground
truth images and pixel label data. Patching is a common
technique to prevent running out of memory for large
images and to effectively increase the amount of available
training data.

Begin by storing the training images
from 'train_data.mat' in an imageDatastore. Because the
MAT file format is a nonstandard image format, you must
use a MAT file reader to enable reading the image data.
You can use the helper MAT file reader, matReader, that
extracts the first six channels from the training data and
omits the last channel containing the mask. This function
is attached to the example as a supporting file.

imds =
imageDatastore('train_data.mat','FileExtensions','.mat','
ReadFcn',@matReader);
Create a pixelLabelDatastore to store the label patches
containing the 18 labeled regions.

pixelLabelIds = 1:18;
pxds =
pixelLabelDatastore('train_labels.png',classNames,pixelL
abelIds);
Create a randomPatchExtractionDatastore from the
image datastore and the pixel label datastore. Each mini-
batch contains 16 patches of size 256-by-256 pixels. One
thousand mini-batches are extracted at each iteration of
the epoch.

dsTrain =
randomPatchExtractionDatastore(imds,pxds,[256,256],'
PatchesPerImage',16000);
The random patch extraction datastore dsTrain provides
mini-batches of data to the network at each iteration of
the epoch. Preview the datastore to explore the data.

inputBatch = preview(dsTrain);
disp(inputBatch)
 InputImage ResponsePixelLabelImage
 __________________ _______________________

 [256×256×6 uint16] [256×256 categorical]
 [256×256×6 uint16] [256×256 categorical]
 [256×256×6 uint16] [256×256 categorical]
 [256×256×6 uint16] [256×256 categorical]
 [256×256×6 uint16] [256×256 categorical]
 [256×256×6 uint16] [256×256 categorical]
 [256×256×6 uint16] [256×256 categorical]
 [256×256×6 uint16] [256×256 categorical]

Create U-Net Network Layers

This example uses a variation of the U-Net network. In U-
Net, the initial series of convolutional layers are
interspersed with max pooling layers, successively
decreasing the resolution of the input image. These layers
are followed by a series of convolutional layers
interspersed with upsampling operators, successively
increasing the resolution of the input image [2]. The name
U-Net comes from the fact that the network can be drawn
with a symmetric shape like the letter U.

This example modifies the U-Net to use zero-padding in
the convolutions, so that the input and the output to the
convolutions have the same size. Use the helper
function, createUnet, to create a U-Net with a few
preselected hyperparameters. This function is attached
as a supporting file to the example.

inputTileSize = [256,256,6];
lgraph = createUnet(inputTileSize);
disp(lgraph.Layers)
 58x1 Layer array with layers:

 1 'ImageInputLayer' Image Input
256x256x6 images with 'zerocenter' normalization
 2 'Encoder-Section-1-Conv-1' Convolution
64 3x3x6 convolutions with stride [1 1] and padding [1
1 1 1]
 3 'Encoder-Section-1-ReLU-1' ReLU
ReLU
 4 'Encoder-Section-1-Conv-2' Convolution
64 3x3x64 convolutions with stride [1 1] and padding [1
1 1 1]
 5 'Encoder-Section-1-ReLU-2' ReLU
ReLU
 6 'Encoder-Section-1-MaxPool' Max Pooling
2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 7 'Encoder-Section-2-Conv-1' Convolution
128 3x3x64 convolutions with stride [1 1] and padding
[1 1 1 1]
 8 'Encoder-Section-2-ReLU-1' ReLU
ReLU

http://www.jetir.org/
https://www.mathworks.com/help/matlab/ref/matlab.io.datastore.imagedatastore.html
https://www.mathworks.com/help/vision/ref/pixellabeldatastore.html
https://www.mathworks.com/help/images/ref/randompatchextractiondatastore.html

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 494

 9 'Encoder-Section-2-Conv-2' Convolution
128 3x3x128 convolutions with stride [1 1] and padding
[1 1 1 1]
 10 'Encoder-Section-2-ReLU-2' ReLU
ReLU
 11 'Encoder-Section-2-MaxPool' Max Pooling
2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 12 'Encoder-Section-3-Conv-1' Convolution
256 3x3x128 convolutions with stride [1 1] and padding
[1 1 1 1]
 13 'Encoder-Section-3-ReLU-1' ReLU
ReLU
 14 'Encoder-Section-3-Conv-2' Convolution
256 3x3x256 convolutions with stride [1 1] and padding
[1 1 1 1]
 15 'Encoder-Section-3-ReLU-2' ReLU
ReLU
 16 'Encoder-Section-3-MaxPool' Max Pooling
2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 17 'Encoder-Section-4-Conv-1' Convolution
512 3x3x256 convolutions with stride [1 1] and padding
[1 1 1 1]
 18 'Encoder-Section-4-ReLU-1' ReLU
ReLU
 19 'Encoder-Section-4-Conv-2' Convolution
512 3x3x512 convolutions with stride [1 1] and padding
[1 1 1 1]
 20 'Encoder-Section-4-ReLU-2' ReLU
ReLU
 21 'Encoder-Section-4-DropOut' Dropout
50% dropout
 22 'Encoder-Section-4-MaxPool' Max Pooling
2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 23 'Mid-Conv-1' Convolution 1024
3x3x512 convolutions with stride [1 1] and padding [1 1
1 1]
 24 'Mid-ReLU-1' ReLU ReLU
 25 'Mid-Conv-2' Convolution 1024
3x3x1024 convolutions with stride [1 1] and padding [1
1 1 1]
 26 'Mid-ReLU-2' ReLU ReLU
 27 'Mid-DropOut' Dropout 50%
dropout
 28 'Decoder-Section-1-UpConv' Transposed
Convolution 512 2x2x1024 transposed convolutions
with stride [2 2] and cropping [0 0 0 0]
 29 'Decoder-Section-1-UpReLU' ReLU
ReLU
 30 'Decoder-Section-1-DepthConcatenation' Depth
concatenation Depth concatenation of 2 inputs
 31 'Decoder-Section-1-Conv-1' Convolution
512 3x3x1024 convolutions with stride [1 1] and
padding [1 1 1 1]
 32 'Decoder-Section-1-ReLU-1' ReLU
ReLU
 33 'Decoder-Section-1-Conv-2' Convolution
512 3x3x512 convolutions with stride [1 1] and padding
[1 1 1 1]
 34 'Decoder-Section-1-ReLU-2' ReLU
ReLU

 35 'Decoder-Section-2-UpConv' Transposed
Convolution 256 2x2x512 transposed convolutions
with stride [2 2] and cropping [0 0 0 0]
 36 'Decoder-Section-2-UpReLU' ReLU
ReLU
 37 'Decoder-Section-2-DepthConcatenation' Depth
concatenation Depth concatenation of 2 inputs
 38 'Decoder-Section-2-Conv-1' Convolution
256 3x3x512 convolutions with stride [1 1] and padding
[1 1 1 1]
 39 'Decoder-Section-2-ReLU-1' ReLU
ReLU
 40 'Decoder-Section-2-Conv-2' Convolution
256 3x3x256 convolutions with stride [1 1] and padding
[1 1 1 1]
 41 'Decoder-Section-2-ReLU-2' ReLU
ReLU
 42 'Decoder-Section-3-UpConv' Transposed
Convolution 128 2x2x256 transposed convolutions
with stride [2 2] and cropping [0 0 0 0]
 43 'Decoder-Section-3-UpReLU' ReLU
ReLU
 44 'Decoder-Section-3-DepthConcatenation' Depth
concatenation Depth concatenation of 2 inputs
 45 'Decoder-Section-3-Conv-1' Convolution
128 3x3x256 convolutions with stride [1 1] and padding
[1 1 1 1]
 46 'Decoder-Section-3-ReLU-1' ReLU
ReLU
 47 'Decoder-Section-3-Conv-2' Convolution
128 3x3x128 convolutions with stride [1 1] and padding
[1 1 1 1]
 48 'Decoder-Section-3-ReLU-2' ReLU
ReLU
 49 'Decoder-Section-4-UpConv' Transposed
Convolution 64 2x2x128 transposed convolutions with
stride [2 2] and cropping [0 0 0 0]
 50 'Decoder-Section-4-UpReLU' ReLU
ReLU
 51 'Decoder-Section-4-DepthConcatenation' Depth
concatenation Depth concatenation of 2 inputs
 52 'Decoder-Section-4-Conv-1' Convolution
64 3x3x128 convolutions with stride [1 1] and padding
[1 1 1 1]
 53 'Decoder-Section-4-ReLU-1' ReLU
ReLU
 54 'Decoder-Section-4-Conv-2' Convolution
64 3x3x64 convolutions with stride [1 1] and padding [1
1 1 1]
 55 'Decoder-Section-4-ReLU-2' ReLU
ReLU
 56 'Final-ConvolutionLayer' Convolution
18 1x1x64 convolutions with stride [1 1] and padding [0
0 0 0]
 57 'Softmax-Layer' Softmax softmax
 58 'Segmentation-Layer' Pixel Classification
Layer Cross-entropy loss

Select Training Options

Train the network using stochastic gradient descent with
momentum (SGDM) optimization. Specify the

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 495

hyperparameter settings for SDGM by using
the trainingOptions function.

Training a deep network is time-consuming. Accelerate
the training by specifying a high learning rate. However,
this can cause the gradients of the network to explode or
grow uncontrollably, preventing the network from
training successfully. To keep the gradients in a
meaningful range, enable gradient clipping by
specifying 'GradientThreshold' as 0.05, and
specify 'GradientThresholdMethod' to use the L2-norm of
the gradients.

initialLearningRate = 0.05;
maxEpochs = 150;
minibatchSize = 16;
l2reg = 0.0001;

options = trainingOptions('sgdm',...
 'InitialLearnRate',initialLearningRate, ...
 'Momentum',0.9,...
 'L2Regularization',l2reg,...
 'MaxEpochs',maxEpochs,...
 'MiniBatchSize',minibatchSize,...
 'LearnRateSchedule','piecewise',...
 'Shuffle','every-epoch',...
 'GradientThresholdMethod','l2norm',...
 'GradientThreshold',0.05, ...
 'Plots','training-progress', ...
 'VerboseFrequency',20);

Train the Network

After configuring the training options and the random
patch extraction datastore, train the U-Net network by
using the trainNetwork function. To train the network,
set the doTraining parameter in the following code
to true. A CUDA-capable NVIDIA™ GPU with compute
capability 3.0 or higher is highly recommended for
training.

If you keep the doTraining parameter in the following
code as false, then the example returns a pretrained U-
Net network.

Note: Training takes about 20 hours on an NVIDIA™ Titan
X and can take even longer depending on your GPU
hardware.

doTraining = false;
if doTraining
 modelDateTime = datestr(now,'dd-mmm-yyyy-HH-
MM-SS');
 [net,info] = trainNetwork(dsTrain,lgraph,options);
 save(['multispectralUnet-' modelDateTime '-Epoch-'
num2str(maxEpochs) '.mat'],'net','options');
else

load(fullfile(imageDir,'trainedUnet','multispectralUnet.
mat'));
end
You can now use the U-Net to semantically segment the
multispectral image.

Predict Results on Test Data

To perform the forward pass on the trained network, use
the helper function, segmentImage, with the validation
data set. This function is attached to the example as a
supporting file. segmentImage performs segmentation
on image patches using the semanticseg function.

predictPatchSize = [1024 1024];
segmentedImage =
segmentImage(val_data,net,predictPatchSize);
To extract only the valid portion of the segmentation,
multiply the segmented image by the mask channel of the
validation data.

segmentedImage = uint8(val_data(:,:,7)~=0) .*
segmentedImage;

figure
imshow(segmentedImage,[])
title('Segmented Image')

The output of semantic segmentation is noisy. Perform
post image processing to remove noise and stray pixels.
Use the medfilt2 function to remove salt-and-pepper
noise from the segmentation. Visualize the segmented
image with the noise removed.

segmentedImage = medfilt2(segmentedImage,[7,7]);
imshow(segmentedImage,[]);
title('Segmented Image with Noise Removed')

http://www.jetir.org/
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html
https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html
https://www.mathworks.com/help/vision/ref/semanticseg.html
https://www.mathworks.com/help/images/ref/medfilt2.html

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 496

Overlay the segmented image on the histogram-equalized
RGB validation image.

B =
labeloverlay(histeq(val_data(:,:,4:6)),segmentedImage,'T
ransparency',0.8,'Colormap',cmap);

figure
imshow(B)
title('Labeled Validation Image')
colorbar('TickLabels',cellstr(classNames),'Ticks',ticks,'Ti
ckLength',0,'TickLabelInterpreter','none');
colormap(cmap)

Save the segmented image and ground truth labels as PNG
files. These will be used to compute accuracy metrics.

imwrite(segmentedImage,'results.png');
imwrite(val_labels,'gtruth.png');

Quantify Segmentation Accuracy

Create a pixelLabelDatastore for the segmentation
results and the ground truth labels.

pxdsResults =
pixelLabelDatastore('results.png',classNames,pixelLabel
Ids);
pxdsTruth =
pixelLabelDatastore('gtruth.png',classNames,pixelLabelI
ds);
Measure the global accuracy of the semantic
segmentation by using
the evaluateSemanticSegmentation function.

ssm =
evaluateSemanticSegmentation(pxdsResults,pxdsTruth,'
Metrics','global-accuracy');
Evaluating semantic segmentation results
--
* Selected metrics: global accuracy.
* Processing 1 images...
[===
=======] 100%
Elapsed time: 00:00:31
Estimated time remaining: 00:00:00
* Finalizing... Done.

* Data set metrics:
 GlobalAccuracy
 0.90698
The global accuracy score indicates that just over 90% of
the pixels are classified correctly.

Calculate Extent of Vegetation Cover

The final goal of this example is to calculate the extent of
vegetation cover in the multispectral image.

Find the number of pixels labeled vegetation. The label
IDs 2 ("Trees"), 13 ("LowLevelVegetation"), and 14
("Grass_Lawn") are the vegetation classes. Also find the
total number of valid pixels by summing the pixels in the
ROI of the mask image.

vegetationClassIds = uint8([2,13,14]);
vegetationPixels =
ismember(segmentedImage(:),vegetationClassIds);
validPixels = (segmentedImage~=0);

numVegetationPixels = sum(vegetationPixels(:));
numValidPixels = sum(validPixels(:));
Calculate the percentage of vegetation cover by dividing
the number of vegetation pixels by the number of valid
pixels.

percentVegetationCover =
(numVegetationPixels/numValidPixels)*100;
fprintf('The percentage of vegetation cover is
%3.2f%%.',percentVegetationCover);
The percentage of vegetation cover is 51.72%.

Summary

The above example shows how to create and train a U-Net
network for semantic segmentation of a seven-channel
multispectral image. These are the steps to train the
network:

 Download and reshape the training data.

 Create a randomPatchExtractionDatastore to feed
training data to the network.

 Define the layers of the U-Net network.

 Specify training options.

 Train the network using the trainNetwork function.

After training the U-Net network or loading a pretrained
U-Net network, the example performs semantic
segmentation of the validation data and measures the
segmentation accuracy.

11. APPLICATIONS
 Drones with Collision Avoidance Systems

 Indoor navigation

 Gesture recognition
 Object scanning
 Collision avoidance
 Track objects
 Surveillance of a target zone
 Count objects or people
 Fast precise distance-to-target readings
 Augmented reality / Virtual Reality

http://www.jetir.org/
https://www.mathworks.com/help/vision/ref/pixellabeldatastore.html
https://www.mathworks.com/help/vision/ref/evaluatesemanticsegmentation.html
https://www.mathworks.com/help/images/ref/randompatchextractiondatastore.html
https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904873 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 497

 Estimate size and shape of objects
 Enhanced 3D photography
 Logistics
 Surveillance & security
 Archaeology
 Environment projects

12. CONCLUSION & FUTURE SCOPE

This paper presents an approach which could be used for
developing a Smart Multipurpose Unmanned Aerial
Vehicle with 3D Depth Mapping & Spectral Imaging
which could aid in carrying out Search & Rescue Missions,
3D Depth Mapping of difficult terrains, Analysis of
Location and also provide audio/video aid to the people
in distress. It could also be used as a surveillance system
to increase the security strength especially in the area
where human interference is strictly prohibited. UAV’s
offer advantages for many applications when comparing
with their manned counter parts. They save human pilots
from flying in dangerous and (or) Hazardous conditions
that can be encountered not only in military applications
but also in other scenarios involving operation in bad
weather conditions, Hazardous/Toxic environment or
near to buildings, trees, civil infrastructures, Difficult
Terrains and other obstacles.

13. RESEARCH FOR FUTURE STUDY

 The future research can be carried out to
implement and design SWARM technology so
that a fleet of drones can be sent that
communicate with each other and perform
various operations.

 Performance Enhancements can also be made
and could be equipped with Combat capability

14. ACKNOWLEDGEMENT
The satisfaction and euphoria that accompany the

successful completion of any task would be incomplete

without the mentioning of the people whose constant

guidance and encouragement made it possible. We take

pleasure in presenting before you, our paper, which is

result of studied blend of both research and knowledge.

We (Abdus Samee, Saquib Mohiuddin, Abeer Arif & Sania

Fatima) take this opportunity to express our gratitude

and sincere thanks to Dr. Mohammed Abdul Nayeem,

Professor & Head of Electronics and Communication

Engineering Department - DCET, for providing guidance

and the necessary facilities for completion of paper. He

also provided us with Mentor, Dr. Syeda Gauhar Fatima,

Professor ECE, DCET, who organized, coordinated, and

mentored us throughout.

15. REFERENCES

I. Kemker, R., C. Salvaggio, and C. Kanan. "High-
Resolution Multispectral Dataset for Semantic
Segmentation." CoRR, abs/1703.01918. 2017.

II. Ronneberger, O., P. Fischer, and T. Brox. "U-Net:
Convolutional Networks for Biomedical Image
Segmentation." CoRR, abs/1505.04597. 2015.

III. Dhriti Raj Borah et al., “A review on Quadcopter
Surveillance and Control”, ADBU-Journal of
Engineering Technology, 4(1), 2016, 116-119

IV. Prof.A.V.Javir, Ketan Pawar, Santosh Dhudum, et al.,
“Design, Analysis and Fabrication of Quadcopter”,
Journal of The International Association of Advanced
Technology and Science, vol. 16, 2015

V. Yiwen Luo, Meng Joo Er, et al., “Intelligent Control and

Navigation of an Indoor Quad-copter”, IEEE, 2014,
1700-1705.

VI. Gordon Ononiwu, Arinze Okoye, et al., “Design and

Implementation of a Real Time Wireless Quadcopter
for Rescue Operations”, American Journal of
Engineering Research, 5(9), 2016, 130-138.

VII. Prabhjot Singh Sandhu, “DEVELOPMENT OF ISR FOR

QUADCOPTER”, International Journal of Research in
Engineering and Technology, 03(4), 2014, 181-189

A. Samba Siva, B. Prudhviraj kumar, et al.,
“Development of Mini Unmanned Aerial
Vehicle”, IOSR Journal of

VIII. Mechanical and Civil Engineering, 12(2), 2015, 16-19

IX. Vimal Raj , Sriram, Ram Mohan , Manoj Austin , “Design
and fabrication of inclined arm miniature sized
quadcopter UAV”, IOSR Journal of Mechanical and Civil
Engineering,13(5), 2016, 73-76

X. It Nun Thiang, Dr.LuMaw, Hla Myo Tun, “Vision-
Based Object Tracking Algorithm With AR. Drone”,

XI. INTERNATIONAL JOURNAL OF SCIENTIFIC &
TECHNOLOGY RESEARCH, 5(6), 2016, 135-139

XII. Ramamoorthy Luxman, Xiao Liu, “Implementation of

back-stepping integral controller for a gesture driven
quad-copter with human detection and auto follow
feature”, IEEE, 2015, 134-138

XIII. Mr. B. Vinoth Kumar, S. Kalaiyarasan, et al.,

“Quadcopter Based Gas Detection System”, IOSR
Journal of Electronics and Communication Engineering,
11(1), 2016, 64-68

XIV. Alex G. Kendall, Nishaad N. Salvapantula, Karl A. Stol,

“On-Board Object Tracking Control of a Quadcopter
with

XV. Monocular Vision”, International Conference on

Unmanned Aircraft Systems, 2014, 404-411

XVI. https://www.mathworks.com/help/images/multispe

ctral-semantic-segmentation-using-deep-
learning.html

XVII. https://www.allaboutcircuits.com/industry-
articles/capturing-3d-images-with-tof-camera-
technology/

XVIII. https://www.mouser.in/applications/time-of-flight-
robotics/

http://www.jetir.org/
https://www.mathworks.com/help/images/multispectral-semantic-segmentation-using-deep-learning.html
https://www.mathworks.com/help/images/multispectral-semantic-segmentation-using-deep-learning.html
https://www.mathworks.com/help/images/multispectral-semantic-segmentation-using-deep-learning.html
https://www.allaboutcircuits.com/industry-articles/capturing-3d-images-with-tof-camera-technology/
https://www.allaboutcircuits.com/industry-articles/capturing-3d-images-with-tof-camera-technology/
https://www.allaboutcircuits.com/industry-articles/capturing-3d-images-with-tof-camera-technology/
https://www.mouser.in/applications/time-of-flight-robotics/
https://www.mouser.in/applications/time-of-flight-robotics/

