
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904886 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 572

Review Paper on Generic N-Point FFT Processor

Implementation Techniques on FPGA

1Ms. Kiran Chide

M.TECH(VLSI)

GHRCE, Nagpur

2Dr. Laxman P.Thakare

Assistant Professor

Department in electronics, GHRCE, Nagpur

Abstract: - The objectives of the project is to come up with the

FPGA based Radix-4 FFT processor using CORDIC. As FFT

take values in time domain and generates equivalent sample

values in frequency domain, values of samples are taken as an

input to the design, which is in time domain and using

Decimation in Time (DIT) method for FFT computation,

output is generated in terms of frequency samples. Due to in-

place computation memory requirements have to reduce and

using CORDIC for complex twiddle factor generation and

multipli- cation the speed of the computation gets improved

with less complexity. So, such kind of processor design using

Radix-4 FFT instead of using Radix-2 FFT is main objective of

this proposed work.

Keywords: - Fast Fourier transforms, FPGA, BIST, twiddle

factor, RAM unit, and field programmable gate array

I. INTRODUCTION

FFT processor is an important building block of any digital

processing circuit. This FFT is extensively used in applications, for

instance, radar development, and Orthogonal Frequency Division

Multiplexing (OFDM) [1]. The aim here is to reduce complexity of

hardware and improve performance of processing, this project

work proposes design of FFT processor using CORDIC algorithm

which will be synthesized on Field Programmable Gate Array. The

purpose of this project is to obtain an area efficient description of

an FFT processor. To achieve this, Radix-4 FFT processor will

develop using CORDIC algorithm. The N-POINT FFT Processor

will be be able to calculate even higher orders FFT. The Processor

Architecture IP is generic which makes it flexible to be integrated
with any DSP Applications.

II. CORDIC ARCHITECTURE

CORDIC works by rotating the coordinate system through

constant angles until the angle is reduces to zero. The angle offsets

are selected such that the operations on X and Y are only shifts and

adds. In this section, consider computation of vector rotation

(rotation means transforming a vector (Xi, Yi) into a new vector

(Xj, Yj)) illustrated in Figure 5.4, which maps vector (Xi, Yi) to

(Xj, Yj) according to the equations

Xj = (Xi cos θ − Yi sin θ)

Y j = (Yi cos θ + Xi sin θ)…………………………….(6)

Where θ is a rotation angle. Note that, four multiplications and two
additions are

Figure 5.4: Rotate vector (Xi, Yi) to (Xj, Yj) by θ degree

needed to compute Xj and Yj provided that the values of cos θ and

sin θ are available. If this is not the case, consider computing them

digitally by series expansion, which is obviously complex. With

some manipulation, this can also be computed with three
multiplications and three additions as follows

Xj = (cos θ − sin θ)Yi + cos θ(Xi − Yi)

Concatenation of rotations:

As a first step towards the CORDIC implementation, we note that

if θ = θa + θb, then first map (Xi, Yi) to (Xk, Yk) using the angle

θa and then map (Xk, Yk) to (Xj, Yj) using the angle θb. So, it is

possible to concatenate mappings for angles θn, where (n = 0, 1, 2,
..., ∞) in order to evaluate the mapping for

……………………………….(8)

In the following, for n rotations are denoted with (Xn, Yn) and

(Xn+1, Yn+1) the input and output to the rotation by :

Xn+1 = (Xn cos θn − Yn sin θn)

Yn+1 = (Yn cos θn + Xn sin θn)……………………..(9)

Applying arithmetic shift and addition:

To proceed, let us assume that −π/2 < θn < π/2 Using tan θ = sin θ/

cos θ, equation (9) can be rewritten as

Xn+1 = cos θn(Xn − Yn tan θn)

Yn+1 = cos θn(Yn + Xn tan θn)………………………..(10)

this suggests the computational structure shown in Figure Note that

cos θn = cos(−θn) and tan θn = tan(−θn), so the mapping for a

http://www.jetir.org/
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:fast%20Fourier%20transforms&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:FPGA&newsearch=true

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904886 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 573

negative angle θn is the same as for θn except the change of signs

in the terms involving the tangent. Multiplication by a power of

two corresponds to the arithmetic shift operation, which is cheap to

implement. The main idea of the CORDIC algorithm is that
multiplication by tan θn can be based on shifting, when

tan θn = ±2−n, n ∈ 1, 2, 3, ...(11)

Under this condition, (10) becomes

Xn+1 = cos θn(Xn − dn ∗ Yn ∗ 2−n)

Yn+1 = cos θn(Yn + dn ∗ Xn ∗ 2−n)………………….(12)

Where,

Figure 5.5: Organizing computations of the transform. For some

specific angles θn, multiplication by tanθn can be replaced by an

arithmetic shift and some sign manipulation.

dn = +1…………fθn > 0

and

dn = -1…………fθn < 0

Thus, substituting dn = (-1) for (+1) corresponds to swapping of

signs of the second terms within parentheses, that is, subtraction

becomes addition and vice versa.

Gain compensation:

However, (12) contains still multiplications by cos θn and if

several rotations were con- catenated, then there have lots of
multiplications. To solve the problem,first notice that

θn = arctan(2−n), n ∈ 1, 2, 3,(13)

and

Because

Then we divide both sides of (12) by

Which gives

(17)

…………………..(18)

Now, the right hand sides contain just the the shift-and-addition

parts of computation, and get Xn+1 and Yn+1 amplified by the

gain an To see, how to compensate for the gain, let us multiply by

a constant Ai both sides in (17), and let An+1 = anAn. As a result,
get recursive equations

Xn+1 ∗ An+1 = (Xn ∗ An − dn ∗ YnAn ∗ 2−n)

Yn+1 ∗ An+1 = (Yn ∗ An + dn ∗ Xn ∗ An ∗ 2−n) (19)

These equations give the output of a chain of blocks, where just the

shift-add parts of the rotations are computed, and multiplications

by cos θn are neglected. After N such steps, we must multiply the

results by 1/AN to get XN and YN . The value of the gain

AN can be calculated using

……………...(20)

During iterations it would be wasteful and complicated to take the

scale factors into account in computations because the value of AN

does not depend on . Instead, they are usually pre-calculated and

taken into account afterwards. In the table 5.1, see the gain values
tabulated till iteration 10. Notice, that after the 4th iteration the

gain has converged for most applications and is approximately
1.6468 for N ≥ 9.

However, usually do not need to care about the gain as the scale

factor can simply

Table 5.1: The gain values tabulated till iteration 9.

Iteration

n

Gain

AN

Iteration

n

Gain

AN

0 1.4142 5 1.6465

1 1.5811 6 1.6467

2 1.6298 7 1.6467

3 1.6425 8 1.6468

4 1.6457 9 1.6468

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904886 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 574

be considered as one of the components contributing to the gain of

the whole system. Then, it can be taken into account, for example,

in designing the gains of possible digital filters of the application.

If gain compensation is necessary, it can be easily implemented,

for example, by implementing the needed multiplication by using

shift- add type fixed point arithmetics. Determining rotation

directions: The angle θ of a composite rotation is uniquely defined

by the sequence of elementary rotation directions, (d0, d1, dN−1).

To determine this sequence on-the-fly at run-time, need an angle

accumulator, that accumulates the elementary rotation angles, and

tells in which direction the next rotation should be performed to

reduce the angular error. The logic is based on the difference
equation

Zn+1 = (Zn − dn ∗ arctan(2−n))

Where, Zn(n = 1, 1, ...) denotes the remaining rotation before

performing the rotation by θn (Z0 = θ). The decision rule is

dn = −1.....(if : Zn < 0)

dn = +1.......otherwise

Every iteration improves the precision of CORDIC by one bit.

Eight iterations result in the precision of 8 bits. Depending on

implementation, the angular values arctan(2−n) in (21) can be

precomputed and stored into look-up table or one may use a

hardwired solution. Note that if there are small number of fixed

rotation angles, extra accu- mulation/decision component might

not be needed as dn’s can be precomputed and tabulated. In the

table 5.2 shows pre-calculated the first six entries of an arctan(2−n)
look-up table.

III. FFT PROCESSOR PIPELINED ARCHITECTURE

Fig.1. Block Diagram of FFT Architecture

The fundamental architecture of the FFT processor is spoken to in

Fig. 1. It contains four essential units. Control unit, the part of the

FFT processor.Butterfly unit (BU), which has three stage pipelined

structure. Two dual port RAMs are used to store and process data.

Besides this Address Generation Unit (AGU) is also present.

A. Control Unit

Control unit delivers all control signals for the whole structure,

which is responsible for action and control of the processor.

B. Address Generation Unit

AGU is additionally very critical as contrasted and different units.

It is utilized to make 8 read and 8 write addresses.

C. Butterfly Unit

For FFT calculation, the most imperative part is the BUthat figures

the entirety and contrast of two info information, andplays an

amazingly fundamental job in processing the result of

thedifference and twiddle factors. In our plan the twiddlefactor

generator is available inside the Butterfly unit.In our structure we

utilize just 11 twiddle factor and the rest ofthe twiddle factors are

created from these 11 twiddlefactors. These are: The engineering

of BU is appeared in Fig. 2. In this TW_INprovides the 5 bit

contribution for the choice of the best possible twiddlefactor from

the multiplexers. In this two multiplexers are usedone is of 8: 1 and

other 4: 1.

Fig.3. Block Diagram of Butterfly Unit

A. RAM Unit

In our structure 32 bit dual port RAMs are used which are RAMI

and RAM2 independently

III. BUILT IN SELF TEST (BIST)

In this paper BIST is used for on chip testing of the FFT processor.

BIST is a [mite state machine in which state change is control by

the Test Mode (TM) input.

In BIST LFSR is a Linear Feedback Shift Register and MISR is a

Multiple Input Signature Register.

IV. CONCLUSION

In this paper present the audit of Design of FPGA based superior

64bit FFT processor with BIST. To accomplish superior, pipelined

structures have been utilized in the butterfly unit and the double

port RAM. The butterfly unit itself produces the twiddle factor and

performs complex increase because of which age of twiddle factor

independently and getting to it not required. Because of this the

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904886 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 575

quantity of cycles required for complete task of FFT is decreased.

The parallel-pipe lined FFT processor engineering can process

input information at fast and the entire framework execution can be

extraordinarily improved.

REFERENCE

[1] Shyue-Kung Lu, et al," Efficient Built-in Self-Test Techniques

for Memory-Based FFT Processors"Proceedings of the 10th IEEE

Pacific Rim International Symposium on Dependable Computing

2004 (PRDC'04).

 [2] M Swetha et al,"Implementation of Restartable BTST

Controller for Fault Detection in CLB of FPGA," International

Journal of Scientific Engineering and Research, vol. I, pp 24-27,

September 2013.

[3] H. T. Sorokin, et al"A Conflict-free parallel memory access

scheme for FFT processors," international Symposium on Circuits

and Systems, vol. 4, pp. 524-527, May 2003.

[4] Bingrui Wang, et al," Design of Pipelined FFT Processor Based

on FPGA", Second International Conference on Computer

Modeling and Simulation 2010.

http://www.jetir.org/

