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Abstract: - The objectives of the project is to come up with the 

FPGA based Radix-4 FFT processor using CORDIC. As FFT 

take values in time domain and generates equivalent sample 

values in frequency domain, values of samples are taken as an 

input to the design, which is in time domain and using 

Decimation in Time (DIT) method for FFT computation, 

output is generated in terms of frequency samples. Due to in-

place computation memory requirements have to reduce and 

using CORDIC for complex twiddle factor generation and 

multipli- cation the speed of the computation gets improved 

with less complexity. So, such kind of processor design using 

Radix-4 FFT instead of using Radix-2 FFT is main objective of 

this proposed work. 
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I. INTRODUCTION 

FFT processor is an important building block of any digital 

processing circuit. This FFT is extensively used in applications, for 

instance, radar development, and Orthogonal Frequency Division 

Multiplexing (OFDM) [1]. The aim here is to reduce complexity of 

hardware and improve performance of processing, this project 

work proposes design of FFT processor using CORDIC algorithm 

which will be synthesized on Field Programmable Gate Array. The 

purpose of this project is to obtain an area efficient description of 

an FFT processor. To achieve this, Radix-4 FFT processor will 

develop using CORDIC algorithm. The N-POINT FFT Processor 

will be be able to calculate even higher orders FFT. The Processor 

Architecture IP  is generic which makes it flexible to be integrated 
with any DSP Applications. 

II. CORDIC ARCHITECTURE 

CORDIC works by rotating the coordinate system through 

constant angles until the angle is reduces to zero. The angle offsets 

are selected such that the operations on X and Y are only shifts and 

adds. In this section, consider computation of vector rotation 

(rotation means transforming a vector (Xi, Yi) into a new vector 

(Xj, Yj)) illustrated in Figure 5.4, which maps vector (Xi, Yi) to 

(Xj, Yj) according to the equations 

Xj = (Xi cos θ − Yi sin θ) 

Y j = (Yi cos θ + Xi sin θ)…………………………….(6)  

 

Where θ is a rotation angle. Note that, four multiplications and two 
additions are 

 

Figure 5.4: Rotate vector (Xi, Yi) to (Xj, Yj) by θ degree 

needed to compute Xj and Yj provided that the values of cos θ and 

sin θ are available. If this is not the case, consider computing them 

digitally by series expansion, which is obviously complex. With 

some manipulation, this can also be computed with three 
multiplications and three additions as follows  

Xj = (cos θ − sin θ)Yi + cos θ(Xi − Yi) 

Concatenation of rotations: 

As a first step towards the CORDIC implementation, we note that 

if θ = θa + θb, then first map (Xi, Yi) to (Xk, Yk) using the angle 

θa and then map (Xk, Yk) to (Xj, Yj) using the angle θb. So, it is 

possible to concatenate mappings for angles θn, where (n = 0, 1, 2, 
..., ∞) in order to evaluate the mapping for  

……………………………….(8) 

In the following, for n rotations are denoted with (Xn, Yn) and 

(Xn+1, Yn+1) the input and output to the rotation by : 

Xn+1 = (Xn cos θn − Yn sin θn) 

Yn+1 = (Yn cos θn + Xn sin θn)……………………..(9) 

Applying arithmetic shift and addition: 

To proceed, let us assume that −π/2 < θn < π/2 Using tan θ = sin θ/ 

cos θ, equation (9) can be rewritten as 

Xn+1 = cos θn(Xn − Yn tan θn) 

Yn+1 = cos θn(Yn + Xn tan θn)………………………..(10) 

this suggests the computational structure shown in Figure Note that 

cos θn = cos(−θn) and tan θn = tan(−θn), so the mapping for a 
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negative angle θn is the same as for θn except the change of signs 

in the terms involving the tangent. Multiplication by a power of 

two corresponds to the arithmetic shift operation, which is cheap to 

implement. The main idea of the CORDIC algorithm is that 
multiplication by tan θn can be based on shifting, when 

tan θn = ±2−n, n ∈ 1, 2, 3, .............................................(11) 

Under this condition, (10) becomes 

Xn+1 = cos θn(Xn − dn ∗ Yn ∗ 2−n) 

Yn+1 = cos θn(Yn + dn ∗ Xn ∗ 2−n)………………….(12) 

Where, 

 

Figure 5.5: Organizing computations of the transform. For some 

specific angles θn, multiplication by tanθn can be replaced by an 

arithmetic shift and some sign manipulation. 

dn = +1…………fθn > 0 

and  

dn = -1…………fθn < 0 

Thus, substituting dn = (-1) for (+1) corresponds to swapping of 

signs of the second terms within parentheses, that is, subtraction 

becomes addition and vice versa.  

Gain compensation: 

However, (12) contains still multiplications by cos θn and if 

several rotations were con- catenated, then there have lots of 
multiplications. To solve the problem,first notice that 

θn = arctan(2−n), n ∈ 1, 2, 3, ......................................(13) 

and 

 

Because 

 

Then we divide both sides of (12) by 

 

Which gives 

 

(17) 

…………………..(18) 

Now, the right hand sides contain just the the shift-and-addition 

parts of computation, and get Xn+1 and Yn+1 amplified by the 

gain an To see, how to compensate for the gain, let us multiply by 

a constant Ai both sides in (17), and let An+1 = anAn. As a result, 
get recursive equations 

Xn+1 ∗ An+1 = (Xn ∗ An − dn ∗ YnAn ∗ 2−n) 

Yn+1 ∗ An+1 = (Yn ∗ An + dn ∗ Xn ∗ An ∗ 2−n) (19) 

These equations give the output of a chain of blocks, where just the 

shift-add parts of the rotations are computed, and multiplications 

by cos θn are neglected. After N such steps, we must multiply the 

results by 1/AN to get XN and YN . The value of the gain 

AN can be calculated using 

……………...(20) 

During iterations it would be wasteful and complicated to take the 

scale factors into account in computations because the value of AN 

does not depend on . Instead, they are usually pre-calculated and 

taken into account afterwards. In the table 5.1, see the gain values 
tabulated till iteration 10.  Notice, that after the 4th iteration the 

gain has converged for most applications and is approximately 
1.6468 for N ≥ 9. 

However, usually do not need to care about the gain as the scale 

factor can simply 

Table 5.1: The gain values tabulated till iteration 9. 

Iteration 

n 

Gain 

AN 

Iteration 

n 

Gain 

AN 

0 1.4142 5 1.6465 

1 1.5811 6 1.6467 

2 1.6298 7 1.6467 

3 1.6425 8 1.6468 

4 1.6457 9 1.6468 
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be considered as one of the components contributing to the gain of 

the whole system. Then, it can be taken into account, for example, 

in designing the gains of possible digital filters of the application. 

If gain compensation is necessary, it can be easily implemented, 

for example, by implementing the needed multiplication by using 

shift- add type fixed point arithmetics. Determining rotation 

directions: The angle θ of a composite rotation is uniquely defined 

by the sequence of elementary rotation directions, (d0, d1, dN−1). 

To determine this sequence on-the-fly at run-time, need an angle 

accumulator, that accumulates the elementary rotation angles, and 

tells in which direction the next rotation should be performed to 

reduce the angular error. The logic is based on the difference 
equation 

Zn+1 = (Zn − dn ∗ arctan(2−n)) 

Where, Zn(n = 1, 1, ...) denotes the remaining rotation before 

performing the rotation by θn (Z0 = θ). The decision rule is 

 

dn = −1.....(if : Zn < 0) 

dn = +1.......otherwise 

Every iteration improves the precision of CORDIC by one bit. 

Eight iterations result in the precision of 8 bits. Depending on 

implementation, the angular values arctan(2−n) in (21) can be 

precomputed and stored into look-up table or one may use a 

hardwired solution. Note that if there are small number of fixed 

rotation angles, extra accu- mulation/decision component might 

not be needed as dn’s can be precomputed and tabulated. In the 

table 5.2 shows pre-calculated the first six entries of an arctan(2−n) 
look-up table. 

III. FFT PROCESSOR PIPELINED ARCHITECTURE 

 

 

Fig.1. Block Diagram of FFT Architecture 

The fundamental architecture of the  FFT processor is spoken to in 

Fig. 1. It contains four essential units. Control unit, the part of the 

FFT processor.Butterfly unit (BU), which has three stage pipelined 

structure. Two dual  port RAMs are used to store and process data. 

Besides this Address Generation Unit (AGU) is also present.  

A. Control Unit  

Control unit delivers all control signals for the whole structure, 

which is responsible for action and control of the processor.  

B. Address Generation Unit  

AGU is additionally very critical as contrasted and different units. 

It is utilized to make 8 read and 8 write addresses.  

C. Butterfly Unit  

For FFT calculation, the most imperative part is the BUthat figures 

the entirety and contrast of two info information, andplays an 

amazingly fundamental job in processing the result of 

thedifference and twiddle factors. In our plan the twiddlefactor 

generator is available inside the Butterfly unit.In our structure we 

utilize just 11 twiddle factor and the rest ofthe twiddle factors are 

created from these 11 twiddlefactors. These are: The engineering 

of BU is appeared in Fig. 2. In this TW_INprovides the 5 bit 

contribution for the choice of the best possible twiddlefactor from 

the multiplexers. In this two multiplexers are usedone is of 8: 1 and 

other 4: 1. 

 

Fig.3. Block Diagram of Butterfly Unit 

A. RAM Unit 

In our structure 32 bit dual port RAMs are used which are RAMI 

and RAM2 independently 

 

III. BUILT IN SELF TEST (BIST)  

 

In this paper BIST is used for on chip testing of the FFT processor. 

BIST is a [mite state machine in which state change is control by 

the Test Mode (TM) input.  

In BIST LFSR is a Linear Feedback Shift Register and MISR is a 

Multiple Input Signature Register.  

 

 

IV. CONCLUSION  

 

In this paper present the audit of Design of FPGA based superior 

64bit FFT processor with BIST. To accomplish superior, pipelined 

structures have been utilized in the butterfly unit and the double 

port RAM. The butterfly unit itself produces the twiddle factor and 

performs complex increase because of which age of twiddle factor 

independently and getting to it not required. Because of this the 
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quantity of cycles required for complete task of FFT is decreased. 

The parallel-pipe lined FFT processor engineering can process 

input information at fast and the entire framework execution can be 

extraordinarily improved. 
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