RP-HPLC METHOD DEVELOPMENT, VALIDATION AND FORCED DEGRADATION STUDIES FOR THE QUANTITATIVE ESTIMATION OF SOFOSBUVIR IN API AND PHARMACEUTICAL DOSAGE FORM

R Swetha sri¹, Dr.Mitta Chaitanya², Dr Kalepu Swathi², Koduru Swathi² 1-Asst.Professor 2-Asso.Professor 3- Asso.Professor 4- Asst.Professor 1-Department of Pharmaceutical Analysis 1-RBVRR women's college of Pharmacy,Hyderabad,INDIA.

Abstract : A simple, rapid, precise, accurate and sensitive reverse phase liquid chromatographic method has been developed for the determination of Sofosbuvir in API and pharmaceutical dosage form dosage form. The chromatographic method was standardized using Develosil ODS HG-5 RP C18, 5 μ m, 15cm x 4.6mm i.d. column with UV detection at 264 nm and Methanol : Acetonitrile (55:45) ratio at a flow rate of 1.0 ml/ min. The proposed method was successfully applied to the determination of Sofosbuvir in bulk and pharmaceutical dosage form. The method was linear over the range of 0 μ g/ml to 16 μ g/ml. The recovery was in the range of 98% to 102% and limit of detection was found to be 0.09 μ g/ml and quantification was found to be 0.27 μ g/ml. Different analytical performance parameters such as precision, accuracy, limit of detection, limit of quantification and robustness were determined according to International Conference on Harmonization (ICH) guidelines.

Keywords: RP-HPLC, Sofosbuvir, Method development and validation, ICH Guidelines.

1. INTRODUCTION:

Sofosbuvir (trade name Sovaldi) is a direct acting antiviral medication used as part of combination therapy to treat chronic Hepatitis C, an infectious liver disease caused by infection with Hepatitis C Virus (HCV). HCV is a single-stranded RNA virus that is categorized into nine distinct genotypes, Depending on the genotype, sofosbuvir is often used in combination with other anti-virals such as Ledipasvir, Velpatasvir, Daclatasvir, Simeprevir, Elbasvir, Grazoprevir, Ribavirin, Peginterferon alfa-2a, or Peginterferon alfa-2b with the intent to cure, or achieve a sustained virologic response (SVR), after 12 weeks of daily therapy. SVR and eradication of HCV infection is associated with significant long-term health benefits including reduced liver-related damage, improved quality of life, reduced incidence of Hepatocellular Carcinoma, and reduced all-cause mortality. Treatment with direct acting anti-virals such as sofosbuvir is associated with very minimal side effects, with the most common being headache and fatigue .

The IUPAC Name of Sofosbuvir is propan-2-yl (2S)-2-{[(S)-{[(2R, 3R, 4R, 5R)-5-(2, 4-dioxo-1, 2, 3, 4-tetra hydro Cpyrimidin-1-yl)-4-fluoro-3-hydroxy-4-methyloxolan-2-yl] methoxy} (phenoxy) phosphoryl] amino} propanoate.

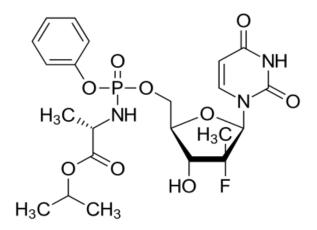


Fig 1: Chemical Structure of Sofosbuvir

2.MATERIALS AND METHODS

2.1 HPLC Instrumentation & Conditions:

The HPLC system employed was HPLC with Empower 2 Software with Isocratic with UV-Visible Detector.

2.2 Standard & sample preparation for UV-spectrophotometer analysis:

25 mg of Sofosbuvir standard was transferred into 25 ml volumetric flask, dissolved & make up to volume with mobile phase. Further dilution was done by transferring 0.2 ml of the above solution into a 10ml volumetric flask and make up to volume with mobile phase. The standard & sample stock solutions were prepared separately by dissolving standard & sample in a solvent in mobile phase diluting with the same solvent. (After optimization of all conditions) for UV analysis. It scanned in the UV spectrum in the range of 200 to 400nm. This has been performed to know the maxima of Sofosbuvir, so that the same wave number can be utilized in HPLC UV detector for estimating the Sofosbuvir. While scanning the Sofosbuvir solution we observed the maxima at 264nm. The UV spectrum has been recorded on ELICO SL-159 make UV – Vis spectrophotometer model UV-2450.

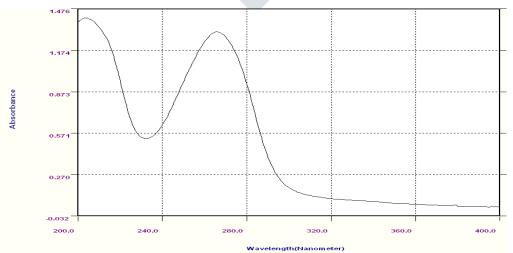


Fig 2: UV Spectrum

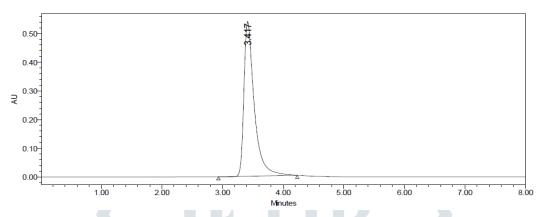
2.3 Optimized Chromatographic Conditions:

Column: Waters ODS (C18) RP Column, 250 mm x 4.6 mm. 5μm. Mobile Phase : Methanol : Acetonitrile (55:45 v/v). Flow Rate : 1.0ml/minute Wave length : 264 nm Injection volume : 20μl Run time : 08 mins. Column Temperature : Ambient Sampler Cooler : Ambient

2.4 MOBILE PHASE PREPARATION

Mobile phase was prepared by taking Methanol: Acetonitrile (55:45 v/v). Mobile phase was filtered through 0.45 μ m membrane filter and degassed under ultrasonic bath prior to use. The mobile phase was pumped through the column at a flow rate of 1.0 ml/min.

2.5 SAMPLE & STANDARD PREPARATION FOR THE ANALYSIS


25 mg of Sofosbuvir standard was transferred into 25 ml volumetric flask, dissolved & make up to volume with mobile phase. Further dilution was done by transferring 0.5 ml of the above solution into a 10ml volumetric flask and make up to volume with mobile phase.

3.RESULT AND DISCUSSION:

Column Used	Mobile Phase	Flow	Wave	Observation	Result
		Rate	length		
Waters ODS (C18) RP	Methanol : Acetonitrile	0.8	264 nm	Broad Peak	Method
Column, 250 mm x 4.6	= 60 : 40	ml/min			rejected
mm. 5µm					
Waters ODS (C18) RP	Acetate Buffer:	1.0	1.0 264 nm Splitting of		Method
Column, 250 mm x 4.6	Acetonitrile	ml/min	peak		rejected
mm. 5µm	= 40 : 60				
Waters ODS (C18) RP	Phosphate Buffer:	1.0	264 nm	Tailing peak	Method
Column, 250 mm x 4.6	Acetonitrile	ml/min			rejected
mm. 5µm	= 30 : 70				
Waters ODS (C18) RP	Phosphate Buffer:	1.0 264 nm Splitting of		Method	
Column, 250 mm x 4.6	Acetonitrile	ml/min		peak	rejected

Table-1: Trials for Method Development

mm. 5µm	= 40 : 60				
Waters ODS (C18) RP	Methanol : Acetonitrile	1.0	264 nm	Good Peak	Method
Column, 250 mm x 4.6	= 55:45	ml/min			accepted
mm. 5µm					

OPTIMIZED CONDITION

Name	Rt	Peak Area	Theoretical Plates	Tailing Factor
Sofosbuvir	3.417	1114246	3265	1.12

Table 2: Peak Results

4.METHOD VALIDATION

4.1 Accuracy: *Recovery study:* The accuracy of the proposed developed method the % recovery studies were carried out by adding different quantities (80%, 100%, and 120%) of pure drug of SOFOSBUVIR was taken and added to the prepared pre-analyzed formulation of concentration 10µg/ml. From that % recovery values were measured. The results were shown in Table-3.

Table-3:	Accuracy	Readings
----------	----------	----------

Sample ID		ntration /ml)		% Recovery of	Statistical Analysis
	Amount	Amount	Peak Area	Pure drug	Statistical mary sis
	Added	Found		i ui c ui ug	
S ₁ :80 %	8	8.105	93435	101.312	Mean= 100.0163%
S ₂ :80 %	8	7.898	91287	98.725	S.D. = 1.293505
S ₃ : 80 %	8	8.001	92356	100.012	% R.S.D.= 1.293294
S4:100 %	10	10.195	115135	101.95	Mean= 101.4033%
S ₅ : 100 %	10	10.152	114687	101.52	S.D. = 0.613379

S ₆ : 100 %	10	10.074	113879	100.74	% R.S.D.= 0.60489
S ₇ : 120 %	12	12.171	135647	101.425	Mean= 100.6053%
S ₈ : 120 %	12	12.044	134324	100.366	S.D. $= 0.730041$
S ₉ : 120 %	12	12.003	133897	100.025	% R.S.D. = 0.725649

4.2 PRECISION :

4.1.1 Repeatability

The precision of each method was ascertained separately from the peak areas & retention times obtained by actual determination of six replicates of a fixed amount of drug. Sofosbuvir (API) the percent relative standard deviations were calculated for Sofosbuvir is presented in the Table-4.

HPLC Injection	Area Under the Curve
Replicates of Sofosbuvir	
Replicate – 1	1013546
Replicate – 2	1025824
Replicate – 3	1012351
Replicate – 4	1036584
Replicate – 5	1015419
Replicate – 6	1008572
Average	1018716
Standard Deviation	10495.73
% RSD	1.03029

Table-4: Repeatability Results of Precision

4.1.2 Intra day & Inter day: The intra & inter day variation of the method was carried out & the high values of mean assay & low values of standard deviation & % RSD (% RSD < 2%) within a day & day to day variations for Sofosbuvir revealed that the proposed method is precise.</p>

Conc. Of	Observed Conc. Of Sofosbuvir (µg/ml) by the proposed method				
Sofosbuvir	Intra	i-Day	Inter-Day		
(API) (µg/ml)	Mean (n=6)	% RSD	Mean (n=6)	% RSD	
8	8.03	0.25	9.95	0.21	
10	10.49	0.36	10.02	0.32	
12	11.14	0.14	12.30	0.19	

Table-5: Results of Intra day & Inter day

4.2 Linearity and Range

Linearity range was found to be $0-16\mu g/ml$ for Sofosbuvir. The correlation coefficient was found to be 0.999, the slope was found to be 10380 and intercept was found to be 9304 for Sofosbuvir.

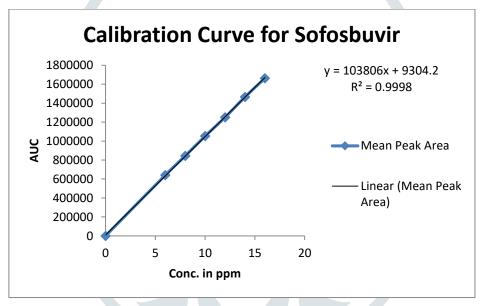
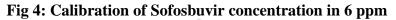



Fig-3: Calibration curve of Sofosbuvir (API)

S. No.	Conc. (µg/ml)	Mean Peak Area
1	0	0
2	6	641233
3	8	844610
4	10	1052647
5	12	1250435
6	14	1465354
7	16	1662043

Table-6: Linearity Results of Sofosbuvir

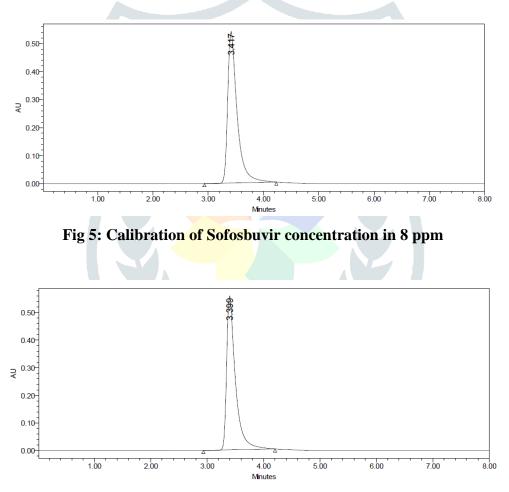


Fig 6: Calibration of Sofosbuvir concentration in 10 ppm

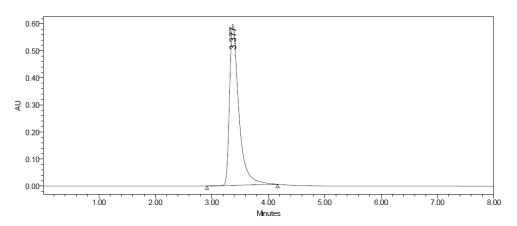


Fig 7: Calibration of Sofosbuvir concentration in 12 ppm

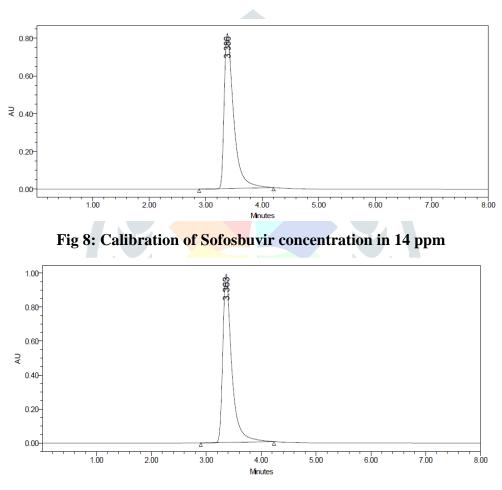
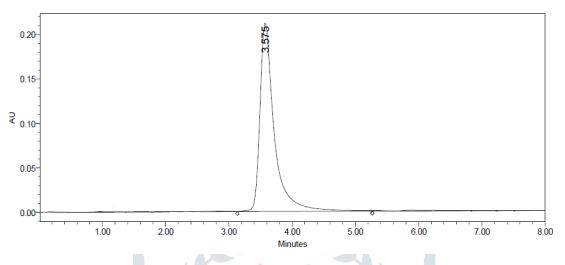


Fig 9: Calibration of Sofosbuvir concentration in 16 ppm


4.3 LOD & LOQ: The Minimum concentration level at which the analyte can be reliable detected (LOD) & quantified (LOQ) were found to be 0.003 & 0.009 μ g/ml respectively.

5 STABILITY STUDIES

5.1 ACID DEGRDATION

A precisely measured 10 mg of unadulterated medication was exchanged to a clean and dry round base jar. 30 ml of 0.1 N HCl was added to it and it was refluxed in a water shower at 600C for 4 hours.

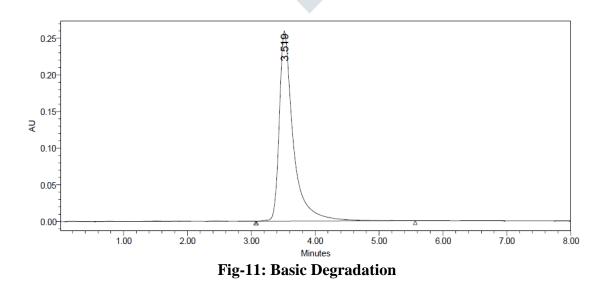

Permitted to cool to room temperature. The sample was then neutralized using dilute NaOH solution & final volume of the sample was made up to 100ml with water to prepare 100 μ g/ml solution. It was injected into the HPLC system against a blank of mobile phase (after optimizing the mobile phase compositions). This experiment was repeated several times using same concentration of HCl (0.1N) and observed its degradation profile. The typical chromatogram shown below is the degradation profile of Sofosbuvir in 0.1N HCl.

Fig-10: Acidic Degradation

5.2 BASIC HYDROLYSIS:

A precisely measured 10 mg of unadulterated medication was exchanged to a clean and dry round base carafe. 30 ml of 0.1N NaOH was added to it. & it was refluxed in a water bath at $60^{\circ}C$ for 4 hours. Allowed to cool to room temperature. The sample was than neutralized using 2N HCl solution & final volume of the sample was made up to 100ml to prepare 100 µg/ml solution. It was injected into the HPLC system against a blank of mobile phase after optimizing the mobile phase compositions. This experiment was repeated several times using same concentration of NaOH such as 0.1N to observe its degradation profile. The chromatogram shown below is the degradation profile of Sofosbuvir in 0.1N NaOH.

JETIR1904899 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 655

5.3 WET HEAT DEGRADATION:

Accurately weighed 10 mg of pure drug was transferred to a clean & dry round bottom flask. 30 ml of HPLC water was added to it. Then, it was refluxed in a water bath at 60° C for 6 hours uninterruptedly. After the reflux was over, the drug became soluble and the mixture of drug & water was allowed to cool to room temperature. Final volume was made up to 100 ml with HPLC water to prepare 100 µg/ml solution. It was injected into the HPLC system against a blank of mobile phase.

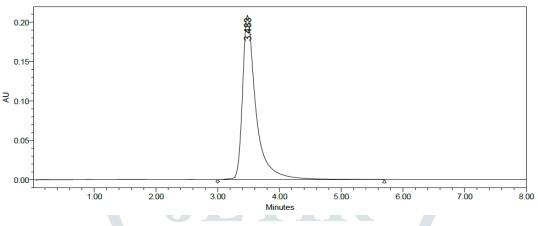
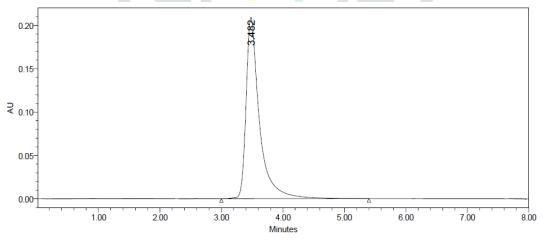
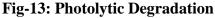




Fig-12: Wet Heat Degradation 5.4 PHOTOLYTIC DEGRADATION:

Approximately 10 mg of pure drug was taken in a clean & dry Petri dish. It was kept in a UV cabinet at 254 nm wavelength for 24 hours without interruption. Accurately weighed 1 mg of the UV exposed drug was transferred to a clean & dry 10 ml volumetric flask. First the UV exposed drug was dissolved in methanol & made up to the mark with mobile phase *to get 100 \mug/ml solution*. Finally this solution was injected into the HPLC system against a blank of mobile phase and *chromatogram was obtained*.

5.5 OXIDATION WITH (3%) H₂O₂:

Accurately weighed 10 mg. of pure drug was taken in a clean & dry 100 ml volumetric flask. 30 ml of 3% H_2O_2 and a little methanol was added to it to make it soluble & then kept as such in dark for 24 hours. Final

volume was made up to 100 ml. using water to prepare 100 μ g/ml solution. The above sample was injected into the HPLC system.

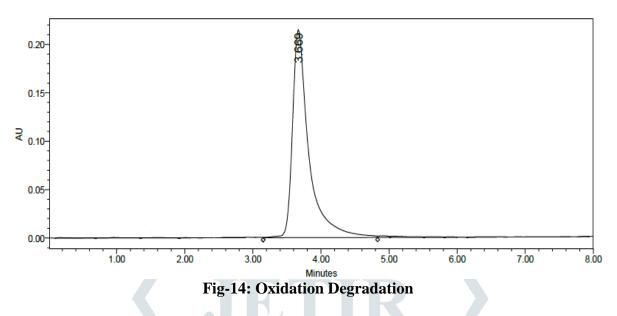


Table-7: Results of forced degradation studies of Sofosbuvir API.

Stress condition	Time	Assay of active	Assay of degraded	Mass Balance
		substance	products	(%)
Acid Hydrolysis (0.1 M	24Hrs.	<u>85.6</u> 9	14.31	100.0
HCl)				
Basic Hydrolysis (0.I M	24Hrs.	<u>83.4</u> 7	16.53	100.0
NaOH)				
Wet heat	24Hrs.	<mark>79</mark> .86	20.14	100.0
UV (254nm)	24Hrs.	87.92	12.08	100.0
3 % Hydrogen peroxide	24Hrs.	80.81	19.19	100.0

6 CONCLUSION

A delicate and specific, sensitive RP-HPLC strategy has been created and approved for the investigation of Sofosbuvir API.

Facilitate the proposed RP-HPLC strategy has amazing affectability, exactness and reproducibility.

7 REFERENCE:

- 1. Chatwal GR, Anand SK. Instrumental Methods of Chemical Analysis, Himalaya Publishing House, 2005, Pages: 2.634-2.638.
- Connors K.A. A text book of pharmaceutical analysis. 3rd edition Wiley – interscience publication, New York, 1982. pp 638 – 639.

- 3. Chatten LG. Pharmaceutical Chemistry. Vol. II. New York: Marcel Dekker Inc; 1996. p. 23-25.
- Beckett A.H. and Stenlake J.B. Practical Pharmaceutical Chemistry4th edition, CBS publishers and distributors, 1997. pp 162 – 164, 275 – 305.
- Jeffery G.H. Denney R.C., Bassett J., Mendham J., Vogel's Text Book of Quantitative Chemical Analysis, 6th edition, person education 2003. pp 2-7, 216 – 225.
- https://www.google.co.in/search?biw=1008&bih=675&tbm=isch&sa=1&ei=euh7W6CROYrnvgSNhIT gAg&q
- Sharma. B.K., Instrumental methods of chemical analysis 18th edition Krishna Prakashan Media Pvt. Ltd., meerut 1999. pp 10-20.
- 8. Indian Pharmacopoeia, Published by controller of publications, New Delhi, Vol-II. 1996. pp A65 A68.
- McMurry, John (2011). Organic chemistry: with biological applications (2nd ed.). Belmont, CA: Brooks/Cole. p. 395. ISBN 9780495391470.
- 10. https://www.quora.com/What-is-the-principle-of-HPLC.
- 11. 1st ed. Indian Pharmacopoeia, Published by controller of publications, New Delhi, Vol-II. 1996. pp A65 A68.
- Kazakevich Y, Lobrutto R. HPLC for Pharmaceutical Scientist. 4th ed. New York: Wiley & Sons Inc.; 2007. p. 10-14.
- 13. Lindsay S. High Performance Liquid ChromatographyLondon: John Wiley & Sons; 1991. p. 45-75.
- 14. Lough WJ, Wainer IW. High Performance Liquid Chromatography: fundamental principles & practice. Glasgow (UK): Blackie Academic & Professional; 1995. p. 2-28.
- Snyder L.R., and Kirkland J.J., Practical HPLC Method development, Wiley inter science publications, New York. 1997, pp 1-14, 685 – 712.
- 16. United States of Pharmacopeia, 23thed US Pharmacopeia convention, RockVille M.D. 2003 P 1151.
- 17. Validation of analytical procedures / methodology, ICH harmonized triplicate guideline, 1996. pp 1 8.
- Sharma S.K., "Validation of Pharmaceutical products and process", The Eastern Pharmacist, July 2001. Pp 21 -23.
- 19. Chowdary K.P.K., Himabindu G., Validation of analytical methods, Easternpharmacist, May 1999. pp 39-41.