
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904934 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 220

AI LEARNING ON SNAKE PATTERN

Md. Nashiruddin Parvez
1
 Umang Sharma

2
 Sourav Kumar Behera

3
 Geetesh Singh

4
 S. Abinayaa

5

1. SRM Institute Of Science and Technology, Chennai, India

2. SRM Institute Of Science and Technology, Chennai, India

3. SRM Institute Of Science and Technology, Chennai, India

4. SRM Institute Of Science and Technology, Chennai, India

5. SRM Institute Of Science and Technology, Chennai, India

 Abstract - This paper describes the evolution of a genetic

program to optimize a problem featuring task prioritization in

a dynamic, randomly updated environment. The specific

problem approached is the "snake game" in which a snake

confined to a rectangular board attempts to avoid the walls

and its own body while eating pieces of food. The problem is

particularly interesting because as the snake eats the food, its

body grows, causing the space through which the snake can

navigate to become more confined. Furthermore, with each

piece of food eaten, a new piece of food is generated in a

random location in the playing field, adding an element of

uncertainty to the program. This paper will focus on the

development and analysis of a successful function set that will

allow the evolution of a genetic program that causes the snake

to eat the maximum possible pieces of food.

Key Words: AI, Machine Learning, Neural Network, Logical

Reasoning

 I. INTRODUCTION

Artificial intelligence (AI) techniques have been proven

highly successful at the problems of navigation, task

prioritization, and problem avoidance. Traditionally,

humans have encoded rule-based AIs to create the

behaviors necessary to allow an automaton to achieve a

specific task or set of tasks. Genetic programming (GP),

however, has been proven to allow a computer to create

human-competitive results. Specifically, examples such

as the wall-following robot (Koza 1992) and Pac Man(R)

(Koza 1992) demonstrate the effectiveness of GP at

evolving programs capable of navigation and task

prioritization behaviors which are competitive with

human-produced results.

In an original approach to demonstrating the effectiveness

of GP at producing human-competitive results, this paper

describes the evolution of a genetic program that can

successfully achieve the maximum possible score in the

"snake game." The problem posed by the snake game is

of particular interest for two main reasons. First, the size

and shape of the area through which the main game

character, the snake, can move is constantly changing as

the game progresses. Second, as the snake eats the single

available piece of food on the game board, a new piece is

generated in a random location. Because of these two

factors, the snake game presents a unique challenge in the

developing of a function and terminal set to allow GP to

evolve an optimal solution that is generalized for

successive runs of the snake game.

The "Background" section of this paper outlines the rules

and discusses the specific details of the "snake game."

Next, "Statement of the Problem" explains the problem

being addressed by this paper. The "Methods" section

provides the GP specifics of how the problem was

approached. The "Results" section gives numerous

examples of results produced by the GP runs along with a

discussion and analysis of those results. The "Conclusion"

section summarizes the ultimate results achieved by the

paper. The "Future Work" section discusses potential for

further study in line with the work discussed in this paper.

Finally, the "References" section provides a bibliography

for the paper.

II. BACKGROUND PROCESS

The "snake game" has been in existence for over a

decade and seen incarnations on nearly every popular

computing platform. The game begins with a snake

having a fixed number of body segments confined to a

rectangular board. With each time step that passes, the

snake can either change direction to the right or left, or

move forward. Hence the snake is always moving.

Within the game board there is always one piece of food

available. If the snake is able to maneuver its head onto

the food, its tail will then grow by a single body segment

and another piece of food will randomly appear in an

open portion of the game board during the next time step.

The game ends when the snake's head advances into a

game square that is filled with either a snake body

segment, or a section of the wall surrounding the game

board. From a task prioritization standpoint, then, the

snake's primary goal is to avoid running into an occupied

square. To the extent that this first priority is being

achieved, its second priority is to pursue the food.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904934 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 221

The version of the game used for this paper, shown in

figure 1, is a replica of the game as it currently exists on

Nokia cell phones. In this version, which is available for

play online at www.nokia.com/snake, the game board is

made up of 220 total squares, 20 horizontal and 11

vertical, and the food begins in position (11,6) on the

game board, represented by a diamond in the figure. The

snake is initially made up of 9 body segments, occupying

positions (1,11)-(9,11) on the board, with the head in

position (9,11) and the snake moving to the right,

represented by the arrow in the figure. The maximum

number of pieces of food that can be eaten is the size of

the game board minus the initial size of the snake. With

the given parameters, then, this equates to 220-9=211

pieces of food. This is because with each piece of food

eaten, the snake grows by a body segment, reducing the

amount of free space in which it can move. Hence when

it has eaten 211 pieces of food, its body will fill the entire

game board, rendering any further movement impossible.

One critical piece of information is whether or not it is

even possible for the snake to eat the maximum amount

of food. Indeed it is conceivable that after eating a certain

amount of food, the snake will have grown so large that

it restricts itself from access to a portion of the board.

Upon close inspection, however, the reader will note that

by tracing certain patterns repeatedly over the board, it is

possible for the snake to cover every square exactly once

and return to its initial position. One such pattern is

shown in figure 2, which features a snake of 210 body

segments about to eat the final piece of food. Hence by

continually tracing the pattern shown, the snake can eat

the maximum possible pieces of food.

III. HARDWARE SPECIFICATIONS

 Display

 Keyboard

 Hard Disk - 1GB

 RAM - 512MB

 Processor - Any Pentium Version

IV. SOFTWARE SPECIFICATIONS

 Windows Operating System

 Python

 Pytest

 Numpy

 Matplotlib

 Tensorflow

V. MODULE DESCRIPTION

Building of Game: In the Initial phase game

development will take place using java framework.

Building of AI: Artificial intelligence (AI) is an area of

computer science that emphasizes the creation of

intelligent machines that work and react like humans.

Some of the activities computers with artificial

intelligence are designed for include:

Integration of AI With Game: In this phase the AI

will learn to play the game and improves itself game by

game and eventually reach at it’s maximum scoring

efficiency.

VI. METHODS

Terminals: The terminal set chosen for the problem

was right, left, and forward. Each terminal was a macro

that would cause the snake to take the corresponding

action during a time step as follows:

Right: the snake would change its current direction,

making a move to the right.

Left: the snake would change its current direction,

making a move to the left.

Forward: the snake would maintain its current direction,

and move forward. This is the same as a no-op, as the

snake must make a move.

These three terminals represent the minimal terminal set

with which the snake can effectively navigate its

surroundings. While some problems consisting of

navigation in a two-dimensional grid can be successfully

navigated by way of only one direction changing

terminal, that is impractical for the snake game because

the facts that the game board is enclosed and that the

snake has an extended body that is impassible necessitate

the ability for the snake to move in either direction in

order to avoid death. More advance terminals, such as

moving the snake along the shortest path to the food,

were not implemented. Rather, the function set was

constructed in such a manner that the GP could evolve

the necessary capabilities to achieve the maximum score.

http://www.jetir.org/
http://www.nokia.com/snake

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904934 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 222

Functions: Initially the snake was given very limited

functionality. One function gave it information about the

location of the food, three other functions gave it

information about any immediately accessible danger,

and progn2 was provided as connective "glue" to allow a

function tree to make multiple moves in a single pass. All

functions were implemented as macros of arity two, and

therefore would only execute one of their arguments

depending on the current state of the game, except for

progn2, which would execute both of its arguments. Even

though no expressions evolved from this initial function

and terminal set were able to achieve the optimum score

of 211 pieces of food, this set served as a baseline by

which to evaluate progress and determine enhancements

the would lead to the eventual optimal solution.

Following is a description of the initial function set:

ifFoodAhead: If there is food in line with the snake's

current direction, this function will execute its first

argument, otherwise it will execute the second argument.

This was the only initial function that gave the snake

information beyond its immediate surroundings.

ifDangerAhead: If the game square immediately in front

of the snake is occupied with either a snake body segment

or the wall, this function will execute its first argument,

otherwise it will execute its second argument.

ifDangerRight: If the game square immediately to the

right of the snake is occupied with either a snake body

segment or the wall, this function will execute its first

argument, otherwise it will execute its second argument.

ifDangerLeft: If the game square immediately to the left

of the snake is occupied with either a snake body segment

or the wall, this function will execute its first argument,

otherwise it will execute its second argument.

progn2: This is a connectivity function that will first

execute its right argument, then its left. It is the only

function that allows execution of more than one terminal

in a single parse of the function tree. Although this

function will always execute both of its arguments, it was

necessary to implement it as a macro because of the way

that the software used to make GP runs, Dave's Genetic

Programming in C (DGPC), evaluated functions vs.

macros. To avoid unnecessary modification of DGPC,

implementing progn2 as a macro proved the simplest

 option.

As mentioned previously, no GP runs performed with the

initial function set were able to score greater than 123

hits. In order to increase the probability of evolving a

function tree capable of achieving the maximum number

of hits, the initial function set was enhanced. Functions

were added to extend the snake's capabilities for

detecting food and danger, as well functions that were

conditional on the snake's current movement direction.

Following is a discussion of the additional functions that,

along with the initial function set, make up the final

function set.

Additional Functions, all of arity 2:

ifDangerTwoAhead: If the game square two spaces

immediately in front of the snake is occupied by either

the wall or a segment of the snake's body, this function

will execute the first parameter, otherwise it will execute

the second.

ifFoodUp: If the current piece of food on the board is

closer to the top of the game board than the snake's head,

then the first parameter of this function will be executed,

otherwise the second parameter will be executed.

ifFoodRight: If the current piece of food on the board is

further to the right of the game board than the snake's

head, then the first parameter of this function will be

executed, otherwise the second parameter will be

executed.

ifMovingRight: If the snake is moving right, then the

first parameter of this function will be executed,

otherwise the second parameter will be executed.

ifMovingLeft: If the snake is moving left, then the first

parameter of this function will be executed, otherwise the

second parameter will be executed.

ifMovingUp: If the snake is moving upward, then the

first parameter of this function will be executed,

otherwise the second parameter will be executed.

ifMovingDown: If the snake is moving downward, then

the first parameter of this function will be executed,

otherwise the second parameter will be executed.

 VII. CONCLUSION

This paper has presented the development and

evaluation of a function set capable of evolving an

optimal solution to the snake game. An initial function

set was presented and evaluated, but proved

unsuccessful at evolving an optimal solution. The

initial function set was then expanded upon to create

the successful final function set, and consistently

optimal solutions were generated using primed GP

runs. A comparison was made of the results achieved

by each function set, as well as by the primed GP runs.

Examples of commonly evolved strategies were

presented and evaluated, and a final analysis of a

consistently successful optimal solution was given.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904934 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 223

VIII. FUTURE SCOPE

The work presented in this paper provides innumerable

opportunities for further investigation into the evolution

of a task prioritization scheme within a dynamically

changing, randomly updated environment. Specific to the

snake problem, modifications can be made to create

completely new and interesting problems, such as a non-

rectangular game board, obstacles within the game board,

or multiple pieces of food. Multiple snakes could be co-

evolved to competitively pursue the food. The function

set could be modified to feature enhanced detection

capabilities and more advanced navigational options. The

techniques used for navigating the snake could be

generalized to apply to various other problems of interest.

Possibilities include automated navigation of multiple

robots through a crowded workspace, an automaton for

tracking fleeing police suspects through harsh

environments, or a control scheme for an exploratory

vehicle seeking a particular goal on a harsh alien planet.

The possibilities are only limited by the imagination.

IX. REFERENCES

Koza, John R. 1992. Genetic Programming: On the

Programming of Computers by Means of Natural

Selection. Cambridge, Massachusetts: The MIT Press.

http://www.jetir.org/

