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Abstract:-We all know that Arithmetic is used such operation as addition, subtraction, multiplication 

and division. Many scientific applications require more accuracy in result. For that reason,we have 

explored Floating point unit, have different operations almost all of the algorithms implemented in 

FPGA(Field programmablegate array) kit by use of Xilinx ISE compiler & algorithm are design in 

VHDL language.Main advantage of floating-point representation is that it can support a much wider 

range of values, over fixed-point and integer representation Floatingpoint arithmetic unit with IEEE 

754 Standard has been designed using VHDL code and all operations of addition,subtraction, 

multiplication and division are analyses  on Xilinx. 

Keywords: Floating point arithmetic, algorithm, IEEE754 format,simulation, VHDL, Single 
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1. Introduction:-  

In, now days many fields of science, engineering and finance require manipulating real numbers 

efficiently. Since in the first computers appeared, many different ways of approximating real numbers 

on it have been introduced. In one of them, the floating point arithmetic, is clearly the most efficient 

way of representing real numbers in computers.The main concept of floating-point representation 

consist purely of significant is that over integer fixed-point numbers that expanding it with the 

exponent component achieves the greater range.The  floating point actually refers to that a radix point 

of any number , (decimal point, or, more commonly in computers, binary point) can "float"; meaning 

that it can be laced anywhere in relation to the significant digits of the number.  

In this paper, IEEE754-single precision (32-bit) high speed floating point arithmetic unit is designed 

using VHDL code. Flowcharts and algorithms have been presented and all operations of addition, 

subtraction, multiplication anddivision are tested on Xilinx and verified successfully. Thereafter, the 

new feature of creating test-bench forverification of VHDL code of that 32-bit Floating Point 
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Arithmetic Unit in Xilinx simulator has been explained and be givenoperation results of simulation  are 

demonstrated. 

2. The Standard IEEE 754 

IEEE 754 standard have specifies formats and different methods in order to operate with floating point 

arithmetic. These methods used for computational with floating point numbers will give sameresult 

regardless the processing is done in hardware, software or a combinationfor the two or the 

implementation. 

The standard specifies are given below. 

• Formats for floating point data as binary and decimal for computation and data interchange. 

· Such as different operations as addition, subtraction, multiplication and other operations. 

· There are conversion between integer-floating point formats and the other way around. 

· There are be given different properties to be satisfied when rounding numbers during arithmetic and 

conversions. 

· Floating point exceptions and their handling (NaN, ∞ or zero) 

• IEEE 754 standardshave specifies four different formats to represent the floating point values. 

· Single precision floating (32 bits) 

· Double precision floating (64 bits) 

  

3.IEEE754 standard floating point format 

IEEE 754 standard give format by presents two different floating point formats that are Binary 

interchange format and Decimal interchange format. Where fig.1 shows the IEEE 754 single precision 

binary format representation; it consists of a one bit sign (S), an eight bit exponent (E), and a twenty 

three bit fraction (M or Mantissa). If the exponent is greater than 0 and smaller than 255, and there is 1 

in the MSB of the significant then the number is said to be a normalized number.In this formats real 

number is represented by (1) 

 

Figure1. IEEE 754 single precision format 

Sign: Where 1 bit is wide and used to denote the sign of the number and 0 bit indicate positive number 

and 1 represent negative number. 
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Exponent: In this 8 bit wide and signed exponent in excess-127 representation and exponent field 

represents both positive and negative exponents. 

Mantissa: In this, 23 bits is wide and fractional component. 

The single- precision floating-point number is calculated as (-1) S × 1.F × 2(E-127) 

The classes of floating point single precision numbers are asfollows:  

Normalized numbers: the bias is 28−1  = 127; therange of the exponent is [−126:127], while its binary 

value is in the range [1:254] 

Infinities &NaN: these special representation have abinary value of 28 − 1 = 256-1=255 for the 

exponent.  

FPU Architecture:- 

  

Fig 2 :FPU Architecture 

Figure 2 gives the architecture of floating point unit for single precision floating point unit. Two pre 

normalization units adjust the fractions. Where one is done for add and subtract operation and other for 

multiply and divide operation.  

4. ALGORITHMS FOR FLOATING POINT ARITHMATIC UNIT 

In the following section the algorithms are written by using flowchart for addition, subtraction, 

multiplication anddivision which are helpful in developing VHDL code for 32 bit single precision 

floating point format. 

4.1. Floating Point Addition / Subtraction 

The flowchart explains the algorithm for addition and subtraction. Depending on the sign of these 

numbers two cases arises.  

In Case I- When both numbers are of same sign 

Steps:-1:- Enter the two numbers in1 and in2 each of 32 bits. expo1, S1 and expo2, S2 indicates 

exponent and significant of in1 and in2 respectively. 
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2:- Check if expo1 or expo2 is zero, if it is zero then set hidden bit of respective input number ‘0’, if 

expo1 and expo2 is not ‘0’ check if expo2>expo1 swap in1 and in2 else keep them as it is.  

3:- Now calculate the difference between expo1 and expo2.let’s say this difference is d,  

d= expo1-expo2. If difference‘d’ is zero then there is no change else left shift significant of in2 which 

is S2 by the amount ‘d’ along with the hiddenbit which us ‘1’ 

4:- Normalize the exponent of in2 by adding the amount d, expo2=expo2 (previous value) + d. now it is 

normalize because expo2 and expo1 are equal. 

5:- Check if in1 and in2 have same sign by checking 32th bit of in1 and in2 which is sign bit. 

6:- In this step add 24 bit significant (1 hidden bit and 23 mantissa) S1 and S2, i.e. S=S1+S2. 

7:- Check for the carry whether carry is generated by significant addition; if it is generated then add ‘1’ 

in either expo1 or updated value of expo2. After that shift right addition of significant ‘S’ by 1 bit drop 

the LSB and make new MSB‘1’.  

8:- If no carry is generated in addition then skip step 7 and previous exponent is final exponent.  

9:- The sign of result is either of in1 or in2 as it is of same sign. 

10:- pack the result in 32 bit format as follow: =sing_f (1) exponent (8) S (23). 

In Case II- When both numbers are of different sign 

Steps1:- Enter the two numbers in1 and in2 each of 32 bits. expo1, S1 and expo2, S2 indicates exponent 

and significant of in1 and in2 respectively. 

2:- Check if expo1 or expo2 is zero, if it is zero then set hidden bit of respective input number ‘0’, if 

expo1 and expo2is not ‘0’ check if expo2>expo1 swap in1 and in2 else keep them as it is.  

3:- Now calculate the difference between expo1 and expo2. Let’s say this difference is d, d= expo1 -

expo2. If difference‘d’ is zero then there is no change else left shift significant of in2 which is S2 by the 

amount ‘d’ along with the hiddenbit which us ‘1’. 

4:- Normalize the exponent of in2 by adding the amount d, expo2=expo2 (previous value) + d. now it is 

normalize because expo2 and expo1 are equal. 

5:- Check if in2 and in1 have different sign, if yes; 

6:- Add 2’s compliment of S2 i.e. not (S2) +’1’ with significant of in1 ‘S1’. 

7:-If carry is generated by addition of significant then discard carry and left shift the result till there is 

‘1’ in MSB and count the number of shifting denoted by ‘z’.  

8:- Final exponent is calculated by subtracting ‘z’ from e ither expo1 or expo2 

 (expo_f = expo1-‘z’) and append ‘z’number of 0’s in LSB part of significant. 

9:- If there is no carry generated in step number 6 converts into 2’s compliment form and in this case 

MSB should be‘1’;. 

10:- Sign of the result i.e. MSB = Sign of the larger number either MSB of N1 or it can be MSB of N2. 

11:- pack the result in 32 bit format by excluding hidden bit as follow:- 

 sing_f (1bit) exponent (8bits) S(23bits). 
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4.2. Floating point Multiplication. 

The figure 4 shows the flowchart of multiplication algorithm of multiplication is demonstrated by 

flowchart. In1 and in2 are two numbers sign1, expo1, S1 and sign2, expo2, S2 are sign bit, exponent 

and significant of in1 and in2 respectively. 

Steps for multiplication are as follows. 

1:- calculate sign bit. sign_f= sign1 XOR sign2, sign_f is sign of final result.  

2:- add the exponents and subtract 127 to make adjustment in exponent (expo1+127+expo2+127)-127. 

3:- Multiply the significant. S=S1*S2. 

4:- check for overflow and underflow and special flag. When the value of biased exponent is less than 1 

it shows occurrence of underflow, if exponent is greater than 254 then it shows overflow of floating 

point operation. 

5:- Take the first 23 bits of ‘S’ and from left side and discard remaining bits. 

6:- Arrange the results in 32 bit format. 1 sign bit followed by eight bits exponent followed by 23 bits  

mantissa. 

4.3. Floating point division. 

The figure 5 shows the flowchart of division, algorithm for division is explained through this flowchart. 

In1 and in2 are two numbers sign1, expo1, S1 and sign2, expo2, S2 are sign bit, exponent and 

significant of in1 and in2 respectively. It is assumed that in1 and in2 are in normalized form. 

Steps for floating point division are as follows. 

1:- calculate sign bit. sign_f= sign1 XOR sign2, sign_f is sign of final result.  

2:- divide the significant S1 by S2 for division binary division method is used. 

• Expand divisor and dividend to double of their size 

- Expanded divisor = divisor (24 bits MSB) zeroes (24 bits LSB) 

- Expanded dividend = zeroes (24 bits MSB) dividend (32 bits, LSB) 

• For each step, determine if divisor is smaller than dividend 

- Subtract divisor from dividend look at sign 

- If result is greater than or equal to ‘0’: dividend/divisor>=1, mark quotient as “1”. 

- If result is negative: divisor larger than dividend; make in quotient as “0”  

• Shift quotient left and divisor right to cover next power of two. 

3:- Subtract the expo2 from expo1. 

4:- check for overflow and underflow flags 

 

 

5. FLOWCHART FOR ALGORITHM 
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Figure 3. Flowchart for ADDITION/SUBTRACTION 

                                               

 

                 

        Figure 4. Flowchart for MULTIPLICATION 

 
 

Figure 5. Flowchart for DIVISION 

 

 

6. VERIFICATION OF RESULT 
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The floating point arithmetic unit is coded in VHDL, synthesized and simulated on Xilinx Vivado 

2014.4 in virtex-7 simulator. The maximum combinational path delay of floating point multiplier is 

25.494 ns .the various results of arithmetic operation and utilization report as shown below.  

 

 

7. EXPERIMENTAL RESULTS 

 

 

Simulation result of addition of two 32 bit floating 

point number. The round mode is 00 and the 

operation mode is 000 

 

Simulation result of subtraction of two 32 bit 

floating point number. The round mode is 10 and 

the operation mode is 001 
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Simulation result of multiplication of two 32 bit 

floating point number. The round mode is 01 and 

the operation mode is 010 

 

Simulation result of division of two 32 bit floating 

point number. The round mode is 00 and the 

operation mode is 011 

 

         8. CONCLUSION 
This FPU has action as addition, subtraction multiplication, and division. Addition, subtraction and 

division have been implemented by conventional technique. The design of FPU has done using VHDL 

on Xilinx VIVADO 2014.4 and has implemented on Virtex-7 xc7v585tffg1157-3.We have proved that 

this FPU have requisite less memory but still we have a huge amount of work that can be set on this 

FPU to further make up the efficiency of the FPU by using other Vedic sutra.  
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