Retrofitting of Existing Building in "Sapar Industrial Area- Rajkot"

Prayag D. Upadhyay, Abhishek J. Padhiyar, Rahul A. Parmar, Vijay P. Chavda, Jaydeep V. Panna, Mayank M. Parekh

BE student, Department of Civil Engineering, AITS- Rajkot, Asst. Prof. of Civil Engineering Department AITS- Rajkot

Abstract- Earthquake is considered as a most vulnerable activity for buildings. In this study, the existing building is considered which was not designed by consideration of earthquake, so as a part of a safety this building will be analysed by considering earthquake load and a new design will be given for retrofitting. The traditional method of seismic retrofitting is reviewed and their weak points are identified. Modern method and philosophies of retrofitting and energy dissipation devices are reviewed. The presentation is illustrated by case studies of actual buildings where traditional and innovative retrofitting methods have been applied. RC Jacketing of structural member is most suitable method for strengthening of building. Retrofitting is used to increase the load carrying capacity, increasing the current structure's stiffness, strength and ductility. The construction would therefore lead in secure and stable structures.

Index terms - Retrofitting, RC-Jacketing, Earthquake Load.

I. INTRODUCTION

- \rightarrow Earthquake creates great devastation in terms of life, money and failures of structures.
- \rightarrow Earthquake Mitigation is an important field of study from a long time now.
- \rightarrow Seismic Retrofitting is a collection mitigation technique for Earthquake Engineering.
- \rightarrow It is of utmost importance for historic monuments, areas prone to severe earthquakes and tall or expensive structures.
- \rightarrow Need of retrofitting: The two circumstances are: -
 - 1. Earthquake damaged buildings, and
 - 2. Earthquake-vulnerable buildings (with no exposure to severe earthquakes)

II. RETROFITTING

- \rightarrow It is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes.
- \rightarrow The retrofit techniques are also applicable for other natural hazards such as tropical cyclones, tornadoes, and severe winds from thunderstorms.
- → Factors that should be considered in selecting the retrofitting method- includes required performance improvements, the viability of execution of the retrofitting work, the impact of the retrofitting work on the surrounding environment, the ease of maintenance after retrofitting, economy and other factors.
- → RC Jacketing: in this method the entire height of the column section is increased and a cage of additional main reinforcement bars with shear stirrups is provided right from the foundation as per the requirement of additional load, etc.

- \rightarrow The enlargement should be bonded to the existing concrete to produce a monolithic member.
- → Cement mortar is used for these enlargements. The section enlargement method is relatively easy to construct and economically effective.

Fig. 1 – Front Elevation of Industrial Building

III. NEED OF RETROFITTING

- \rightarrow If buildings not designed according to IS codes.
- \rightarrow Buildings have been designed according to a seismic code, but the code has been upgraded in later years.
- → Buildings designed to meet the modern seismic codes, but deficiencies exist in the design and/or construction.
- → Essential buildings must be strengthened like hospitals, historical monuments and architectural buildings.
- \rightarrow Important buildings services are essential just after earthquake like hospitals.
- \rightarrow Buildings, the use of which has changed through the years.
- \rightarrow Buildings that are expanded, renovated or rebuilt.

IV. PRINCIPLE OF RETROFITTING

- → Strengthening of individual member versus strengthening of the structural system. Increasing the strength and stiffness.
- \rightarrow Local strengthening versus global strengthening
- \rightarrow Temporary strengthening versus permanent strengthening
- \rightarrow Earthquake demand reduction by base-isolation or supplemental energy dissipation.

V. METHODS OF RETROFITTING

- → Methods to be used for the strengthening of the structure can be decided after the several investigations and evaluations, then suitable method ensuring the safety of the structure and protection from the further deterioration.
- \rightarrow Various methods for the retrofitting of the structure are as follows:
 - ✓ Jacketing of beams
 - ✓ Jacketing of columns
 - ✓ Jacketing of beam-column joints
 - ✓ Strengthening of individual footings
 - ✓ Adding shear walls
 - ✓ Adding infill wall
 - ✓ Adding bracings
 - ✓ Adding wing wall
 - ✓ Wall thickening

VI. LAYOUT OF BUILDING

Fig. 2 – Architectural Plan of Building

VII. PRELIMINARY INFORMATION

- \rightarrow general instructions of work:
- \rightarrow Year of construction: 1994
- \rightarrow Year of Investigation: 2018
- \rightarrow Type of structure: G+1 RCC frame structure
- → Location: Mahindra CIE. Ltd Shapar plot no. 01, 31 to 34, Galaxy industrial estate, kotdasangani, Rajkot, shaper, Gujarat 360024

VIII. VISUAL OBSERVATION

- \rightarrow Corrosion of reinforced bars.
- \rightarrow Concrete reinforcement cover seemed to be not enough.
- \rightarrow At few places the reinforcement is exposed and corroded.
- \rightarrow Many cracks are visible in building.

IX. BUILDING MODELLING IN SOFTWARE

Fig. 3 – Building Modelling

X. COLUMN RESULTS

As Per IS 15988-2013	Jacketed Section
Assume Asc = 0.8% of Ac	Provide 8-12 mm dia.
Pu = 0.4 fck Ac + 0.67 fyAsc	Jacketed Section
Ac' = 104953.62 mm2	460 mm X 230 mm
As' = 846.40 mm2	

Fig. 4 – Column Results

XI. SOFTWARE RESULTS

COLUMN NO. 31 DESIGN RESULTS M25 Fe415 (Main) Fe415 (Sec.) LENGTH: 3000.0 mm CROSS SECTION: 230.0 mm X 460.0 mm COVER: 40.0 mm ** GUIDING LOAD CASE: 1 SHORT (Z) /BRACED LONG(Y) REQD. STEEL AREA 846.40 Sq.mm. : REOD. CONCRETE AREA: 104953.62 Sq.mm. 8 - 12 dia. (0.86%, 904.78 Sq.mm.) MAIN REINFORCEMENT : Provide (Equally distributed) TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET) 1444.17 57.37 25.80 Puz : Muz1 : Muy1 : INTERACTION RATIO: 0.29 (as per Cl. 39.6, IS456:2000)

Fig. 4 – Software Results

XII. CONCLUSION

- \rightarrow Here Manual as well as Software results are similar hence software is been validated.
- \rightarrow Modeling of G+1 story building is carried out in STAAD PRO.
- → The existing G+1 design of the building without considering Seismic loads has 6-12mm \emptyset and 6mm \emptyset stirrups @300mm c/c.
- → As per the results obtained from the analysis of the existing design, the building is strengthened using Retrofitting method.
- → In Second Phase we have considered Seismic Effect on Building and also provisions added in Software. Hence we got new design results of G+1 storey building which are 8 -12mmØ, and the equivalent design from STAAD PRO obtained is 8-12mmØ and 8mmØ stirrups @190mm c/c.
- \rightarrow If Retrofitting will be provided to this structure than it can defintly withstand the Seismic Load.

XIII. REFERENCE

- → Agarwal, P. and Shrikhande, M., 2006, Earthquake Resistant Design of Structures, 2nd Edition, Prentice-Hall of India Private Limited, New Delhi.
- → Cardone, D. and Dolce, M., 2003, Seismic Protection of Light Secondary Systems through Different Base Isolation Systems, Journal of Earthquake Engineering, 7 (2), 223-250.
- → Constantine, M.C., Symans, M.D., Tsopelas, P., and Taylor, D.P., 1993, Fluid Viscous Dampers in Applications of Seismic Energy Dissipation and Seismic Isolation, ATC-171, Applied Technology Council, San Francisco.
- → EERI, 1999, Lessons Learnt Over Time Learning from Earthquakes Series: Volume II Innovative Recovery in India, Earthquake Engineering Research Institute, Oakland (CA), USA.
- → Murty, C.V.R., 2004, IITK-BMTPC Earthquake Tip, New Delhi.
- → Duggal, S.K. (2007), "Earthquake Resistant Design of Structures". New Delhi, India: Oxford University Press.
- → Vaghani, M.V., Vasanwala, S.A., Desai, A.K., (2014). "Advanced Retrofitting Techniques for RC Building: A State of an Art Review". International Journal of Current Engineering and Technology, Vol. 4, No. 2, pp. 579-584. Retrieved from <u>http://inpressco.com/category/ijcet</u>.
- → Karayannis, C.G., Chalioris, C.E., Sirkelis, G.M., (2008). "Local retrofit of exterior RC beam-column joints using thin RC jackets- an experimental study". Earthquake Engineering and Structural Dynamics, 37, pp. 727–746.
- → Marlapalle, V.C., Salunke, P.J., Gore, N.G. (2014). "Analysis & Design of R.C.C. Jacketing for Buildings". International Journal of Recent Technology and Engineering, Vol.3, No. 3, pp. 62-63.
- → Indian Standard 159881:(2013). "Seismic Evaluation and Strengthening of Existing Sreinforced Concrete Buildings". Guideline, Bureau of Indian Standards, Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi.
- \rightarrow Minafò, G. (2015). "A practical approach for the strength evaluation of RC