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Abstract :  A divisor d  of n  is called unitary divisor if d  and /n d  are relatively prime. A unitary divisor d  of n  is said to 

be unitarily divisible by p
 if it is divisible by p

 but not by 
1p 

. In this paper, asymptotic formula for the summatory 

function    # #

p p
n x

T x t n 





  is derived where  #

p
t n


 denotes the number of unitary divisors of n  that are unitarily divisible 

by p
. 

 

IndexTerms - Unitary divisor, asymptotic formula. 

  

I. INTRODUCTION 

Let ( )t n  denote the number of unitary divisors of n . Let   ( )
n x

T x t n


  

In 1874, Mertens([3]) proved that 
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Where   is classical Riemann zeta function,    is its derivative and   is Euler’s constant. 

Eckford Cohen([1]) gave a different proof of (1). Gioia and Vaidya ([2]) improved the error-term to  xO . That is, 
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Throughout this paper p  is any fixed prime and   is any fixed positive integer. 

In this paper, we find asymptotic formula for    # #

p p
n x

T x t n 

 



 , where  #

p
t n


 denote the number of unitary divisor of 

n  which are unitarily divisible by 
p , using asymptotic formula derived by Modi and Trivedi([5]) 

In the next section, we shall state the main theorem which we will prove in Section-4. Section-3 is devoted to supporting 

preliminary results. In the last section, one simple but interesting consequence of the main theorem is derived. 

 

II. MAIN THEOREM 
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III. PRELIMINARIES 

Lemma 3.1. (Modi and Trivedi[5], p-117, Main Theorem) 

If  nt
p

#
  denote the number of unitary divisor of n  which are divisible by 

p  then  
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Lemma 3.2.  
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Proof. It is mere replacement of   by 1   in previous lemma. 

Lemma 3.3.  

For any natural number n ,      1

# # #

p p p
t n t n t n  

    . 

Proof.   
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IV. PROOF OF MAIN THEOREM 

By Lemma 3.3, 
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Using Lemma 3.1 and Lemma 3.2, 
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Hence, the Theorem is established. 

 

V. CONSEQUENCE OF MAIN THEOREM 

Corollary 5.1.  

If  4,2t n  denotes the number of unitary divisors of n  which are of the form 4 2k  , then 
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Proof. It can be seen that numbers of the form 4 2k   are numbers unitarily divisible by 2  i.e. divisible by 2  but not by 4 . 

Therefore,    1

#

4,2 2
t n t n  and consequently,    1

#

4,2 2
T x T x . Taking 2p   and 1   in the Main Theorem, we get 

the desired result. 
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