ON NUMBER OF UNITARY DIVISORS UNITARILY DIVISIBLE BY PRIME-POWER

${ }^{1}$ P. B. Trivedi, ${ }^{2}$ P. I. Andharia
${ }^{1}$ Government Engineering College, Bhavnagar-364002, Gujarat, India
${ }^{2}$ Department of Mathematics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364002, Gujarat, India

Abstract: A divisor d of n is called unitary divisor if d and n / d are relatively prime. A unitary divisor d of n is said to be unitarily divisible by p^{α} if it is divisible by p^{α} but not by $p^{\alpha+1}$. In this paper, asymptotic formula for the summatory function $T_{p^{\alpha}}^{\# *}(x)=\sum_{n \leq x} t_{p^{\alpha}}^{\# *}(n)$ is derived where $t_{p^{\alpha}}^{\# *}(n)$ denotes the number of unitary divisors of n that are unitarily divisible by p^{α}.

IndexTerms - Unitary divisor, asymptotic formula.

I. Introduction

Let $t(n)$ denote the number of unitary divisors of n. Let $T(x)=\sum_{n \leq x} t(n)$
In 1874, Mertens([3]) proved that

$$
\begin{equation*}
T(x)=\frac{1}{\zeta(2)} x \log x+\frac{1}{\zeta(2)}\left(2 \gamma-1-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}\right) x+O(\sqrt{x} \log x) \tag{1}
\end{equation*}
$$

Where ζ is classical Riemann zeta function, ζ^{\prime} is its derivative and γ is Euler's constant.
Eckford Cohen([1]) gave a different proof of (1). Gioia and Vaidya ([2]) improved the error-term to $O(\sqrt{x})$. That is,

$$
\begin{equation*}
T(x)=\frac{1}{\zeta(2)} x \log x+\frac{1}{\zeta(2)}\left(2 \gamma-1-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}\right) x+O(\sqrt{x}) \tag{2}
\end{equation*}
$$

Throughout this paper p is any fixed prime and α is any fixed positive integer.
In this paper, we find asymptotic formula for $T_{p^{\alpha}}^{\# *}(x)=\sum_{n \leq x} t_{p^{\alpha}}^{\# *}(n)$, where $t_{p^{\alpha}}^{\# *}(n)$ denote the number of unitary divisor of n which are unitarily divisible by p^{α}, using asymptotic formula derived by Modi and Trivedi([5])

In the next section, we shall state the main theorem which we will prove in Section-4. Section-3 is devoted to supporting preliminary results. In the last section, one simple but interesting consequence of the main theorem is derived.

II. MAIN THEOREM

$$
\begin{aligned}
& T_{p^{\alpha}}^{\# *}(x)=\sum_{n \leq x} t_{p^{\alpha}}^{\# *}(n)= \\
& \frac{p-1}{p^{\alpha}(p+1) \zeta(2)} x \log x+\frac{1}{p^{\alpha}(p+1) \zeta(2)}\left(\left(2 \gamma-1-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}\right)(p-1)+\frac{\left(\alpha+2 p-\alpha p^{2}\right) \log p}{p+1}\right)+\mathrm{O}(\sqrt{x})
\end{aligned}
$$

III. PRELIMINARIES

Lemma 3.1. (Modi and Trivedi[5], p-117, Main Theorem)
If $t_{p^{\alpha}}^{\#}(n)$ denote the number of unitary divisor of n which are divisible by p^{α} then

$$
T_{p^{\alpha}}^{\#}(x)=\sum_{n \leq x} t_{p^{\alpha}}^{\#}(n)=\frac{1}{p^{\alpha-1}(p+1) \zeta(2)} x \log x+\frac{1}{p^{\alpha-1}(p+1) \zeta(2)}\left(2 \gamma-1-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}-\frac{(p \alpha+\alpha-1) \log p}{p+1}\right) x+\mathrm{O}(\sqrt{x})
$$

Lemma 3.2.

$T_{p^{\alpha+1}}^{\#}(x)=\sum_{n \leq x} t_{p^{\alpha+1}}^{\#}(n)=\frac{1}{p^{\alpha}(p+1) \zeta(2)} x \log x+\frac{1}{p^{\alpha}(p+1) \zeta(2)}\left(2 \gamma-1-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}-\frac{(p \alpha+p+\alpha) \log p}{p+1}\right) x+\mathrm{O}(\sqrt{x})$.
Proof. It is mere replacement of α by $\alpha+1$ in previous lemma.
Lemma 3.3.
For any natural number $n, t_{p^{\alpha}}^{\# *}(n)=t_{p^{\alpha}}^{\# *}(n)-t_{p^{\alpha+1}}^{\# *}(n)$.

Proof.

$$
\begin{aligned}
& t_{p^{\alpha}}^{\# *}(n) \\
& =\#\left\{d \square n: p^{\alpha} \mid d, p^{\alpha+1}+d\right\} \\
& =\#\left\{d \square n: p^{\alpha} \mid d\right\}-\#\left\{d \square n: p^{\alpha+1} \mid d\right\} \\
& =t_{p^{\alpha}}^{\#}(n)-t_{p^{\alpha+1}}^{\#}(n)
\end{aligned}
$$

IV. PROOF OF MAIN THEOREM

By Lemma 3.3,
$T_{p^{\alpha}}^{\# *}(x)=\sum_{n \leq x} t_{p^{\alpha}}^{\# *}(n)=\sum_{n \leq x}\left(t_{p^{\alpha}}^{\#}(n)-t_{p^{\alpha+1}}^{\#}(n)\right)=\sum_{n \leq x} t_{p^{\alpha}}^{\#}(n)-\sum_{n \leq x} t_{p^{\alpha+1}}^{\#}(n)=T_{p^{\alpha}}^{\#}(x)-T_{p^{\alpha+1}}^{\#}(x)$
Using Lemma 3.1 and Lemma 3.2,
$T_{p^{\alpha}}^{\# *}(x)=T_{p^{\alpha}}^{\#}(x)-T_{p^{\alpha+1}}^{\#}(x)$
$=\left(\frac{1}{p^{\alpha-1}(p+1) \zeta(2)} x \log x+\frac{1}{p^{\alpha-1}(p+1) \zeta(2)}\left(2 \gamma-1-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}-\frac{(p \alpha+\alpha-1) \log p}{p+1}\right) x+\mathrm{O}(\sqrt{x})\right)$
$-\left(\frac{1}{p^{\alpha}(p+1) \zeta(2)} x \log x+\frac{1}{p^{\alpha}(p+1) \zeta(2)}\left(2 \gamma-1-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}-\frac{(p \alpha+p+\alpha) \log p}{p+1}\right) x+\mathrm{O}(\sqrt{x})\right)$
$=\frac{p-1}{p^{\alpha}(p+1) \zeta(2)} x \log x+\frac{1}{p^{\alpha}(p+1) \zeta(2)}\left(\left(2 \gamma-1-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}\right)(p-1)+\frac{\left(\alpha+2 p-\alpha p^{2}\right) \log p}{p+1}\right)+\mathrm{O}(\sqrt{x})$
Hence, the Theorem is established.

V. CONSEQUENCE OF MAIN THEOREM

Corollary 5.1.

If $t_{4,2}(n)$ denotes the number of unitary divisors of n which are of the form $4 k+2$, then

$$
T_{4,2}(x)=\sum_{n \leq x} t_{4,2}(n)=\frac{1}{6 \zeta(2)} x \log x+\frac{1}{6 \zeta(2)}\left(2 \gamma-1-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{\log 2}{3}\right)+\mathrm{O}(\sqrt{x})
$$

Proof. It can be seen that numbers of the form $4 k+2$ are numbers unitarily divisible by 2 i.e. divisible by 2 but not by 4 . Therefore, $t_{4,2}(n)=t_{2^{1}}^{\# *}(n)$ and consequently, $T_{4,2}(x)=T_{2^{1}}^{\# *}(x)$. Taking $p=2$ and $\alpha=1$ in the Main Theorem, we get the desired result.

References

[1] Cohen, E. 1960. The number of Unitary Divisors of an Integer. American Mathematical Monthly, 67: 879-880.
[2] Gioia, A. A. and Vaidya, A. M. 1966. The Number of Square-free Divisors of an Integer. Duke Mathematical Journal, 33: 797-799.
[3] Mertens, F. 1874. Uber einige asymptotische Gesetze der Zahlentheorie. J. Reine Angew. Math., 77: 289-338.
[4] Modi, H. B. 2005. The Number of Even and Odd Unitary Divisors of an Integer. Mathematics Today, 21: 59-62.
[5] Modi, H. B. and Trivedi, P. B. 2010. A Generalization of Unitary Divisor Function. PRAJÑĀ Journal of Pure and Applied Sciences, 18: 117-118.

