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Abstract 

Multisensor fusion is of abundantsignificance in Earth observation related applications. For instance, multispectral images (MSIs) deliverfull spectral data while 

light detection and ranging (LiDAR) data deliverheight information, and using MSI and LiDAR data together can attainimproved classification performance. In 

this work, an unsupervised feature extraction model, calledas N-gram along with classifier called as patch-to-patch convolutional neural network (N-Gram: PToP 

CNN), is proposed for collaborative classification of mutispectral and LiDAR data. Sparse coding, or sparse dictionary learning, is an unsupervised learning 

algorithm, and is skilled of mining features based simply on how well those features can be familiar torebuild the original image. With respect to imagepatches, 

we acquire sparse dictionaries for n-grams, constant sequences of bytes, of various sizes.More specific, a three-tower PToP mapping is first established to find an 

accurate illustration from MSI to LiDAR data, aiming at merging N-gram features between two different images. Then, by combining hidden layers of the 

designed PToP CNN, extracted features are projected to retain deeply fused characteristics. Hence, features from various hidden layers are merged into a stacked 

vector and provide into three fully inter connected layers. To prove the efficiency of the proposed classification structure, experiments are implemented on 

benchmark remote sensing data sets. The experimental results prove that the proposed method offersgreater performance when compared with some state-of-the-

art classifiers, such as two-branch CNN and context CNN. 
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I.INTRODUCTION 

In digital world, content-based analytics are often required to classify 

imagepatches in the lack of otherrecognizingdata. During image recovery, 

for example, thepatches of images on damaged media or memory 

dumpsresults in images that appear corrupted or missing while thedata is 

present [18]. For imagemodel, in order to recreate thecomplete images 

from these patches, analysts must determinewhich patches might go with 

which image. Since the searchspace of where each patch may possiblyfit to 

be solarge, automated tools are necessary in creating this timeconsuming 

process practical. 

Sensortechnology has knowledgeablesignificant advances [1]–

[4] lately, letting us to degree various aspects of the items on the surface of 

Earth. Remotelysensed hyperspectral images (HSIs) delivercomplete 

spectral material to exclusivelycategorize various materialsof interest, 

leading to greater classification of land-coverclasses [5]–[8]. Though, in 

assuredsituations, it maybe essential to resort to different source to 

complement theinfodelivered solely by hyperspectral instrumentsfor 

additionalsuccessful and/or refining classification. For thispurpose, a series 

of methods have been examined inthe literature for merging of data 

together from differentsources [9], [10]. Light detection and ranging 

(LiDAR) data,which deliveraltitude information about the measured 

area,are very useful source for perfecting the informationdelivered solely 

by HSI [11], [12]. Collaborative classificationof HSI and LiDAR has been 

widelydeployed in variousapplications, for example complex area 

classification [13], forestfire management [14], etc., due to its fine 

performance. Severalstudies have specified that classification performance 

can bedeveloped after incorporating HSI and LiDAR data. For example,in 

[15], LiDAR was intended for the scene segmentation andHSI data for 

classifying the segmented regions; in [16],Ghamisi et al. exploited 

morphological extinction-profiles tomine both HSI and LiDAR features; 

and in [17], Rasti et al.developed extinction profiles for joint feature 

extraction, followed by total variation component analysis for 

additionalfusion. 

In compare to hand-engineering features, we suggest anmethod for 

computerized feature extraction from image patchesusing sparse coding, 

also known as sparse dictionary learning(details in Section II-A). This 

method has a number ofbenefits over hand-engineered features. Mostly, the 

features that are extracted over sparse coding are establish in 

anunsupervised manner, as opposed to features that might needto be 

laboriously created to be proper for a specificdomain [19]. Also, because 

the features mined bythis methodologyreduce reconstruction error, they 

capture aimportant amount of information about the domain 

withoutrequiring prior domain knowledge. Additionaladvantages of 

thisapproach, due to the sparsity constraint, is the extraction offocused 

features directed to each particular file type, or evenwithin file types 

comprising more complex internal structure(e.g. doc, pdf, zip) [20]. 

The rest of the sections of the paper are ordered asfollows: in 

Section II we deliver background on the sparsecoding algorithm as well as 

the patch-to-patch convolutional neural network classifier; in SectionIII we 

define our experiments on how we use our sparsecoding method to extract 

features from imagepatches data andtrain our classifier to differentiate 

among multiple images;in Section IV we deliver and deliberate the results 

from ourexperiments; and in Section V we make concluding remarks. 

II.BACKGROUND 

A. Sparse coding  

Sparse coding, or sparse dictionary learning, is a way of modeling data by 

decomposing it into sparse linear combinations of elements of a given basis 

set [19], [21]. That is, a data vector x Ɛ Rm may be approximated as 

multiplying a dictionary matrix D Ɛ Rm×k with a sparse representation 

vector r ƐRk: x ≈ Dr. Here, a vector is said to be sparse when only a small 
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fraction of the entries are nonzero. Althoughit is called sparse dictionary 

learning, the dictionary D is notnecessarily sparse. 

When dictionary D is known (e.g. a wavelet basis), acommon method for 

finding an associated sparse vector isthrough regression analysis, which 

may be formulated as theL1-regularized optimization problem, 

 

where the cost may be understood as the contributions of thereconstruction 

error and a sparsity penaltyʎ‖𝑟‖1and λ is a 

regularization parameter. This particular formulationis also known as the 

lasso [22]. 

When dictionary D is not known, or it is more desirable tolearn a dictionary 

more representative of the data, an extendedformulation to the above 

optimization problem gives the sparsecoding cost function, 

 

where X = {𝑥1, 𝑥2, … 𝑥𝑛}are the data vectors from which wewant to learn a 

dictionary. Because the optimization occursover both the dictionary D and 

the set of sparse representation vectors R ={𝑟1,… 𝑟𝑛}, most approaches to 

sparsecoding iteratively fix one variable while minimizing the other.For 

learning dictionaries from large input data sets, onlineor streaming methods 

have been developed [23]. Regardinginitialization, a common method for 

initializing the dictionaryD is seeding it with random elements from the 

training set,and the sparse representation vectors Rare initialized as 

zerovectors. 

B. End-to-End Architecture for Image Analysis  

As we see, the most corporate usage of convolutional networks 

is for classification tasks [24], where the output to an image is an only class 

label. Though, in numerous visual tasks, the preferred output should 

contain localization; such as, a class label is made-up to be allocated to 

each pixel. End-to-end designs of existing networks, which expect dense 

outputs from arbitrary-sized inputs, are trained end-to-end and pixel-to-

pixel in image analysis, e.g., semantic segmentation. Both learning and 

suggestion are implemented whole-image-at-a-time by dense feed-forward 

computation and back-propagation. In the end-to-end network, the 

subsampled combining operations allow the learning process, while up-

sampling layers allow pixel-wise expectation [25]. In other words, the end-

to-end architecture for image segmentation normallycontains an encoder 

path for setting capturing and a symmetric decoder path for exact 

localization. Broadly used deep architectures for segmentation have same 

end-to-end structure as illustrated in Fig. 4, butcontrast in the form of the 

encoder–decoder network scheme and training strategy. Such as, Long et 

al. [25] constructed fully convolutional networks that acquired input of 

random size and createdindividually sized output with well-organized 

inference and learning. Furthermore, in [24], an architecture called as U-

Net consisted of an increasing path and andevelopment path, which could 

be trained end-to-end using very few sample images. 

III.PROPOSED WORK  

In above-mentionedapproaches, feature extraction approaches 

withencoder–decoder designexclusivelycontain one type of datasource. 

Clearly, the encoder–decoder structure holds twoqualities: 1) feature 

extraction and 2) classification.Such as, image segmentation tasks always 

map an imagefrom one area to another area. Different from existing single-

source feature extraction techniques, we efforts onencoder–decoder design 

to incorporate two-domain translation during feature extraction process, 

thereforeallowing theseamless fusion of HSI and LiDAR data. 

 

Fig 1 Feature Extractor extraction of N-gram method 

In this section, an unsupervised feature extraction methodfor image data is 

defined in detail,and network training is explained. As shown in Fig. 1, 

theproposed structure includes a three-tower feature extractorcalled N-

Gram: PToPCNN, followed by a classifier that containing fullyconnected 

layers with softmax loss. 

A.LEARNING DICTIONARIES OF N-GRAM 

In sparse coding, or sparse dictionary learning, the goal is often to obtain an 

overcomplete basis set from the data vectors [26]. From the file fragment 

datasets described above, we learn a dictionary over n-grams similar to that 

of learning a dictionary from image patches or slices of other natural 

signals. Unlike natural signals which contain a great deal of redundancy, 

byte data is often represented in a relatively concise format for efficiency. 

As a result, the ratio of the elements in our learned dictionaries to the size 

of the n-grams is significantly higher than what is more commonly found in 

the sparse coding literature [19]. For example, given an n-gram size of 64 

bytes, a dictionary size of 1024 would give a ratio of 16 : 1. 

For learning the dictionary, only n-grams from file fragments set aside for 

training were used. The dictionaries were learned using the spams sparse 

coding library which provides a scalable online algorithm for dictionary 

learning based on stochastic gradient descent [23]. Learning occurred over 

two epochs (i.e. passes over the training set) and was performed by 

iterating over randomly shuffled and balanced batches of n-grams using a 

sparsity penalty of λ = 0:15 (a default value in spams). For each batch, 25 

files per file type were randomly sampled, for a total of 500 file fragments 

per file type. From each file fragment, 64 randomly sampled n-grams were 

used for dictionary learning, giving a total of 32,000 n-grams per file type, 

or 576,000 n-grams per batch. The sampling of N-grams from file 

fragments was performed without replacement, but allowing for overlap 

between different n-grams. The choice of randomly sampling 64 n-grams, 

as opposed to using all possible (overlapping) n-grams from each fragment, 

was done more as a practical matter to save time during training. 

In total, 15 dictionaries were learned, differentiated by the number of 

elements in the dictionary (1,024, 1,296, and 1,444 elements) as well as the 

size of the n-gram (4, 8, 16, 32, and 64 bytes). A sample learned dictionary 

is shown in figure Fig. 2. Although there are a few elements with 

identifiable patterns, the vast majority of the elements appear to be random. 

This result is not surprising as the dictionary is learned from byte patches 

from files that have both low entropy (e.g. html) and high entropy (e.g. gz) 

with respect to their byte distributions. 

B.N-GRAM FREQUENCIES 
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Once the dictionaries have been learned, we can use the standard lasso 

method to transform the file fragments from a collection of n-grams to a 

collection of sparse feature vectors. Here, unlike when sampling for 

dictionary learning, all n-grams from the file fragment are used. The 

transformed sparse feature vectors may then be averaged together to 

provide an estimate of n-gram frequencies based on the dictionary 

elements, allowing for significantly larger n-gram sizes than are typically 

found in existing methods which suffer from combinatorial explosion. 

Here, instead of representing each possible n-gram combination as a “one-

hot” entry in a 256n feature vector, the n-gram frequencies are 

approximated according to the dictionary elements. This is because the 

sparse feature vectors provide a measure of how much each dictionary 

element contributes to the reconstruction of the n-grams in the file 

fragment.  

 

To construct the feature sets to be used in classification, the n-gram 

frequencies for different n-gram sizes (4, 8, 16, 32, and 64 bytes) were 

concatenated. Instead of examining each possible combination, we 

constructed feature sets according to multiple tiers ordered by maximum n-

gram size. This was done such that each progressively larger tier contained 

a superset of features with respect to the tiers before it (e.g. a feature set 

with n-gram frequencies up to 32 bytes also contained the frequencies for 

n-grams of 4, 8, and 16 bytes). Following this construction, we used three 

different tiers with maximum N-gram size of 16, 32, and 64 bytes. 

C. CLASSIFICATION PROCESS OF PTOP CNN 

For the PToP CNN, training patches are collected by adopting a sliding 

window in an unsupervised way, as depicted in Fig. 1. Both HSI and 

LiDAR patches are collected through the process shown in Fig. 2, and each 

patch-pair of HSILiDAR is acquired over the same area, thus ensuring the 

high correlation between two-source data for further joint feature 

extraction. The value of S (moving step length) is set to 2 with 11 × 11 

window size, and the total number of training samples stands at about 

[(Width×Height)/S2] (Width and Height are the spatial size of the image), 

ensuring sufficient training samples. For the hierarchical fusion stage and 

final classification, a simple but effective data augmentation method is 

utilized, which produces additional data without introducing extra labeling 

costs. Specifically, a random seed is generated for controlling counter-

clockwise rotation angle, 90◦, 180◦, 270◦, and 360◦ in the training phase. 

 

Fig 2 Process of constructing training patches from original image 

Then, the training process is divided into three stages as shown in Fig. 1. In 

the first stage, training patches derived from Source I (HSI data) are fed 

into the designed PToP network, and the detailed network configuration is 

depicted in Fig. 4. After that, input samples flow through the PToP network 

to obtain features of different hierarchy (different filter scales, different 

layers). Therefore, the input of “hierarchical fusion module” is acquired, 

where the detailed parameter setting and network structure are shown in 

Fig. 3. The right half of Fig. 3 illustrates one of the branches, a specific 

layer L, including some fixed operation, convolution and batch 

normalization. Since optimizing parameters in 8 branches simultaneously is 

difficult, each branch of hierarchical fusion module is trained separately. 

When the 8 branches are merged, the pre-trained feature extractor extracts 

the corresponding features from input data with their fully connected layer 

and softmax prediction layer being removed. The remaining layers in 8 

branches are fixed or trainable with a small learning rate of SGD rule. All 

the branches are concatenated to generate the final informative feature 

vector.  

 

Fig 3 Architecture of hierarchical fusion module 

During the learning process, all data are normalized to a range of 0-1 for 

accelerating convergence process of the network. Weights and bias of all 

the convolutional layers are initialized with Glorot normalization, and then 

updated with small learning rate. 

 

Fig 4Implementation flow of proposed method 

IV.RESULT AND DISCUSSION 

The entire experimental setup fromsampling imagepatches from 

the dataset to classification wasperformed over 10 independent images. 

From the classificationresults, we evaluated the performance of our 

approach using anumber of metrics. In addition to the raw prediction 

accuracy,we also computed the F1 score, which provides a 

weightedaverage of the precision and recall of the classifier. 

Compared to existing work on file fragment classification as 

well as found during our replication studies, we found that the features 

obtained using our sparse coding approach performed significantly better, 

especially when the features were used in supplement to existing hand-

engineered features. It can be described in Fig 7. 
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Fig 5 Input image 

 

Fig 6 Classified Image 

Fig. 8 further lists the classification performance with different 

numbers of training samples to evaluate the sensitivity of all methods to the 

training-samples size. The percentage of training samples is changed from 

20% to 100%. Obviously, the proposed method consistently outperforms 

other methods.This verifies the proposed framework is robust to small 

training sample sizes. 

 

Fig 7 Performance Comparison based on feature set 

 

Fig 8 Performance Comparison based on classifier 

 

 

 

V.CONCLUSION 

We have proposed an approach for imagepatch classification 

using sparse dictionary learning to estimate n-gram frequencies along with 

PToP CNNclasifierfor a given file fragment. Notably, the dictionaries 

learned using this approach can be used to extend the feature of n-gram 

frequencies without suffering from combinatorial explosion because n-

grams are represented as the reconstruction of sparse vectors as opposed to 

being expressed exactly. Although the features extracted by this approach 

are done so in an unsupervised manner, they are able to capture a 

significant amount of information present in the byte patterns without 

needing prior domain knowledge. In fact, due to the sparsity constraint, the 

approach tends toward the extraction of redundant byte patterns specific to 

individual image types. Experimentally, we found that these features 

yielded significantly better classification results with respect to existing 

methods, especially when the features were used in supplement to existing 

hand-engineered features.  

Although the proposed sparse coding approach achieves competitive image 

patch classification on its own, leveraging domain expertise may yield still 

more accurate classifiers. The PToP CNN model was proposed for N-gram 

feature extraction, to take full advantages of very wealth spectral 

information and spatial/contextual information contained 

in HSI and LiDAR data. Experimental results demonstratedthat thefeature 

extractor N-gram  in conjunction with the hierarchical fusion module could 

simultaneously utilize the information of HSI andLiDAR data to achieve 

excellent collaborative 

classification performance. 
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