ODD SUM LABELING OF JOINS OF H GRAPH

${ }^{1}$ S.Sriram, ${ }^{2}$ Dr.R.Govindarajan
${ }^{1}$ Assistant Professor in Mathematics, ${ }^{2}$ Associate Professor and Head [Retd], U.G and P.G Department of Mathematics ${ }^{1}$ Department of Mathematics, Patrician College of Arts and Science, Adyar Chennai, India ${ }^{2}$ Department of Mathematics, D.G.Vaishnav College, Arumbakkam, Chennai, India

Abstract: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with p vertices and q edges. An injective function $f: V(G) \rightarrow\{0,1,2,3 \ldots q\}$ is an odd sum labelling if the induced edge labelling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all uv in $E(G)$ is a bijective function and $f^{*}: E(G) \rightarrow\{1,3,5,7, \ldots 2 q-1\}$. A graph which is odd sum labelling is called odd sum graph. We in this paper investigate on the H_{n} graph for $n \geq 3$ by joining with similar H_{n} graph for $n \geq 3$ and we call the graph to be a join of H graph. We prove that such a graph is odd sum labelling graph and also prove some properties connecting those H_{n} graphs. We have also obtained the sum of the edges joining the H_{n} graph.

Key words: Odd sum labelling, Odd sum graph, H_{n} graph, Joins of H_{n} graph
2000 Mathematics Subject Classification :05C78

I. Introduction

A graph G is a finite nonempty set of objects called vertices and edges. We consider all graphs here as finite, simple and undirected. Gallian[1] has given a dynamic survey of graph labelling. The origin of graph labelings can be attributed to Rosa. Odd sum labelling is one of the kind of labelling techniques in graph theory. Odd sum labelling was introduced by S. Arockiaraj and P. Mahalakshmi ,P.Namasivayam [2,3,4] . Further study was done by R.Gopi on odd sum labelling on tree related graphs[5]. Motivated towards the odd sum labelling of graphs. We wish to study on joins of H_{n} graph and proved that the joins of H_{n} graph is odd sum labelling and further studied on the some properties of such labelling. We also find the sum of edges of joins o H_{n} graph in this paper.

II. PRELIMINARIES

Definition 2.1: The H graph of the path P_{n}, denoted by H_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $u_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ if n is even.
Definition.2.2: An injective function $f: V(G) \rightarrow\{0,1,2,3 \ldots q\}$ is an odd sum labelling if the induced edge labelling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all uv in $E(G)$ is a bijective function and $f^{*}: E(G) \rightarrow\{1,3,5,7, \ldots 2 q-1\}$. A graph which is odd sum labelling is called odd sum graph
We now try to join a H_{n} graph denoted by $H_{n_{1}}$ with a H graph denoted by $H_{n_{2}}$ by an edge where $n_{1}=n_{2}$ and we call it as 1join of H_{n} graph.

Figure.1: 1- Join of H_{3} graph

Similarly we can construct M-joins of H_{n} graph by attaching $H_{n_{1}}$ graph with an edge e_{1} with $H_{n_{2}}$ graph, $H_{n_{2}}$ graph is attached by an edge e_{2} with $H_{n_{3}}$ and so on and $H_{n_{M-1}}$ by an edge e_{M-1} with $H_{n_{M}}$ such that $n_{1}=n_{2}=\ldots=n_{M}$

III MAIN RESULTS.

Theorem .3.1: 1-Join of H_{n} is odd sum labelling graph
Proof: Consider the graph $G=1-$ Join of H_{n}.
We know the H_{n} graph of the path P_{n}, denoted by H_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $u_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ if n is even We now join a H graph denoted by $H_{n_{1}}$ with a H graph denoted by $H_{n_{2}}$ by an edge where $n_{1}=n_{2}$ which we call it as 1join of H graph. Now the 1-Join of H_{n} graph consists of 4 n vertices and $4 \mathrm{n}-1$ edges.
Now let us define the vertices of 1-Join of H_{n} graph as follows

$$
\begin{aligned}
V(G)= & \left\{u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}\right\} \cup\left\{u_{1}^{1}, u_{2}^{1}, \ldots u_{n}^{1}, v_{1}^{1}, v_{2}^{1}, \ldots v_{n}^{1}\right\} \\
E(G)= & \left\{u_{i} u_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1}, 1 \leq i \leq n-1\right\} \\
& \cup\left\{u_{i}{ }_{i} u_{i+1}^{1}, 1 \leq i \leq n-1\right\} \cup\left\{v_{i}^{1} v^{1}{ }_{i+1}, 1 \leq i \leq n-1\right\} \\
& \cup\left\{u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right\} \cup\left\{u_{\frac{u^{1}}{2}}^{2}, v_{\frac{n+1}{2}}^{1}\right\} \cup\left\{v_{n} u^{1}{ }_{n+1}\right\}, \text { for } \mathrm{n} \text { is odd } \\
E(G)= & \left\{u_{i} u_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1}, 1 \leq i \leq n-1\right\} \\
& \cup\left\{u_{i}^{1} u_{i+1}^{1}, 1 \leq i \leq n-1\right\} \cup\left\{v_{i}^{1} v_{i+1}^{1}, 1 \leq i \leq n-1\right\} \\
& \cup\left\{u_{\frac{n}{2}} v_{\frac{n}{2}}\right\} \cup\left\{u_{\frac{n}{2}}^{1}, v_{\frac{n}{2}}^{1}\right\} \cup\left\{v_{n} u^{1}{ }_{n+1}\right\}, \text { for } \mathrm{n} \text { is even }
\end{aligned}
$$

Now let us label the vertices as follows

$$
f\left(u_{i}\right)=i-1 \text { for } 1 \leq i \leq n
$$

$f\left(v_{i}\right)=i-1$ for $n+1 \leq i \leq 2 n$, where we consider and label $f\left(v_{i}\right)$ from 1 to n
$f\left(u_{i}^{1}\right)=i-1$ for $2 n+1 \leq i \leq 3 n$, where we consider and label $f\left(u_{i}^{1}\right)$ from 1 to n
$f\left(v_{i}^{1}\right)=i-1$ for $3 n+1 \leq i \leq 4 n$, where we consider and label $f\left(v_{i}^{1}\right)$ from 1 to n
Then the induced edge labelling is obtained as

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=f\left(u_{i}\right)+f\left(u_{i+1}\right) \\
& f^{*}\left(v_{i} v_{i+1}\right)=f\left(v_{i}\right)+f\left(v_{i+1}\right) \\
& f^{*}\left(u_{i}^{1} u_{i+1}^{1}\right)=f\left(u_{i}^{1}\right)+f\left(u_{i+1}^{1}\right) \\
& f^{*}\left(v_{i}^{1} v_{i+1}^{1}\right)=f\left(v_{i}^{1}\right)+f\left(v_{i+1}^{1}\right) \\
& f^{*}\left(u_{i} v_{i}\right)=f\left(u_{i}\right)+f\left(v_{i}\right) \text { for } \mathrm{n} \text { is odd and } i=\frac{n+1}{2} \\
& f^{*}\left(u_{i}^{1} v_{i}^{1}\right)=f\left(u_{i}^{1}\right)+f\left(v_{i}^{1}\right) \text { for } \mathrm{n} \text { is odd and } i=\frac{n+1}{2} \\
& f^{*}\left(u_{i} v_{j}\right)=f\left(u_{i}\right)+f\left(v_{j}\right) \text { for } \mathrm{n} \text { is even and } i=\frac{n}{2}, j=\frac{n}{2}+1 \\
& f^{*}\left(u_{i}^{1} v_{j}^{1}\right)=f\left(u_{i}^{1}\right)+f\left(v_{j}^{1}\right) \text { for } \mathrm{n} \text { is even and } i=\frac{n}{2}, j=\frac{n}{2}+1
\end{aligned}
$$

Hence we can find that the induced edge labelling is odd sum labeling and hence 1-Join of H_{n} is odd sum labelling graph. Hence the proof of the theorem.

Figure. 2 : Odd sum labelling of 1- join of H_{3} graph

Theorem.3.2: M-Join of H_{n} graph is odd sum labelling graph.
Proof: Consider M-Join of H_{n} graph. From the proof of theorem 3.1 we have seen that 1-join of H_{n} graph is odd sum labelling graph. Now let us prove the theorem by induction on the number of joins of H_{n} graph. Let us assume that the theorem is true for $\mathrm{M}=\mathrm{k}$ i.e the theorem is true for k -join of H_{n} graph. To prove that the theorem is true for $\mathrm{M}=\mathrm{k}+1$. We understand that $\mathrm{M}=\mathrm{k}+1$ joins is the combination of k -joins of H_{n} graph and 1-join of H_{n} graph. We have assumed that k-joins of H_{n} graph is odd sum labelling graph and already we know that 1 -join of H_{n} graph is odd sum labelling graph. Hence $\mathrm{M}=\mathrm{k}+1$ joins of H_{n} graph is also odd sum labelling graph. Hence the proof of the theorem.

Definition :3.4: For a M-join of H_{n} graph let us define the difference of the labels between two vertices u_{i} and v_{i} as $d\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)=f\left(v_{i}\right)-f\left(u_{i}\right)$ for $1 \leq i \leq n$
Theorem.3.5: For a M-join of H_{n} graph, $d\left(f\left(u_{i}^{M}\right), f\left(v_{i}{ }_{i}\right)\right)=n$ for $1 \leq i \leq n$. In Particular $d\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)=n$.
Proof: Consider M-join of H_{n} graph. Following the labelling procedure adopted in theorem.3.1 we find the labels for the vertices that is assigned to the M-join of H_{n} graph.
The difference of the labels between u_{i} and v_{i} is defined as
$d\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)=f\left(v_{i}\right)-f\left(u_{i}\right)$ for $1 \leq i \leq n$. Labels for the vertices u_{i} is defined as $f\left(u_{i}\right)=i-1$ for
$1 \leq i \leq n$ and the labels for the vertices v_{i} is defined as $f\left(v_{i}\right)=i-1$ for $n+1 \leq i \leq 2 n$, where we consider the label for $f\left(v_{i}\right)$ from 1 to n . In general the difference of each labels assigned for u_{i} and v_{i} is n .
Similarly for each of the joins of H_{n} graph the difference between the corresponding vertices u_{i} and v_{i} of joins of H_{n} graph is also found to be n . Hence $d\left(f\left(u^{M}{ }_{i}\right), f\left(v^{M}{ }_{i}\right)\right)=n$. Hence the proof of the theorem.

Theorem.3.6: For a M-Join of H_{n} graph, $1 \leq i \leq n$ we have the following result

$$
\begin{equation*}
f\left(u_{i}^{M}\right)=M\left(f\left(v_{i}\right)+n\right) \tag{1}
\end{equation*}
$$

(2) $\quad f\left(v^{M}{ }_{i}\right)=M\left(f\left(v_{i}\right)+n\right)+n$

Proof: For a M-Join of H_{n} graph, $1 \leq i \leq n$ we prove the result

$$
\begin{equation*}
f\left(u_{i}^{M}\right)=M\left(f\left(v_{i}\right)+n\right) \text { by choosing } \mathrm{M}=1 \text { and } \mathrm{n}=3 \tag{1}
\end{equation*}
$$

By the labelling procedure adopted in theorem.3.1 we find that for 1-Join of H_{3} graph
L.H.S of (1) is $f\left(u_{i}^{1}\right)=i-1$ for $2 n+1 \leq i \leq 3 n$

For $\mathrm{n}=3$
$f\left(u_{i}^{1}\right)=i-1$ For $7 \leq i \leq 9$
Hence the possible labels are $6,7,8$
Similarly R.H.S of (1) is $M\left(f\left(v_{i}\right)+n\right)=1\left(f\left(v_{i}\right)+n\right)=i-1+3=i+2$ for $4 \leq i \leq 6$

Hence the possible labels are $6,7,8$. Hence the result is true. Similarly we can prove for any M-joins and for any value of n that the result (1) $f\left(u^{M}{ }_{i}\right)=M\left(f\left(v_{i}\right)+n\right)$ is true.
Similarly we can prove the result (2) $f\left(v^{M}{ }_{i}\right)=M\left(f\left(v_{i}\right)+n\right)+n$ by fixing $\mathrm{M}=1, \mathrm{n}=3$
L.H.S of (2) $f\left(v_{i}^{1}\right)=i-1$ for $10 \leq i \leq 12$

Hence the possible labels are $9,10,11$
Also R.H.S of (2) is $M\left(f\left(v_{i}\right)+n\right)+n=1\left(f\left(v_{i}\right)+3\right)+3=f\left(v_{i}\right)+6$ for $3 \leq i \leq 5$
Hence the possible labels are $9,10,11$
Hence the result is true. Similarly we can prove for any M-Joins and for any value of n that the result $f\left(v^{M}{ }_{i}\right)=M\left(f\left(v_{i}\right)+n\right)+n$ is true. Hence the proof of the theorem.

Theorem.3.7: For a M-join of $\quad H_{n}$ graph the sum of the edges denoted by $S(n)$ is given by
$S(n)=[((M+1)(2 n))-1]^{2}$
Proof : Given M-Join of H_{n} graph. Now to prove that the sum of the edges as $S(n)=[(M+1)(2 n)-1]^{2}$. Let us choose the number of joins required and the number of vertices of M -joins of H_{n} graph. Let us choose $\mathrm{n}=3$ and $\mathrm{M}=1$. Then we have to prove that sum of the edges $S(3)=[((1+1)(2(3)))-1]^{2}=(11)^{2}=121$. We understand from the labelling procedure adopted in theorem.3.1 for the vertices we have the labels for 1 -join of H_{3} graph as 0 to 11 . The induced edge labelling for the labelled vertices are $1,3,5,7,9,11,13,15,17,19,21$. Whose sum is 121 . Hence the theorem is true for $\mathrm{n}=3$ and $\mathrm{M}=1$.
Following the similar labelling techniques for different values of n and the number of joins M we can obtain the corresponding sum using the formula $S(n)=[((M+1)(2 n))-1]^{2}$. Hence the proof of the theorem.

IV RESULTS

In this paper we have constructed M -joins of H_{n} and proved that it is an odd sum labelling graph and proved some properties connecting M-joins of H_{n} graph and also found the formula for finding the sum of the edges of M-joins of H_{n} graph.

V CONCLUDING REMARKS

We are investigating on some more graphs which can be proved odd sum labelling graph and also we are interested in finding the generalisation of the some more graphs in our future works.

REFERENCES

[1] J.A . Gallian , 2018, A Dynamic Survey of Graph Labeling, Twenty first Edit
[2] S.Arockiaraj and P.Mahalakshmi, 2013,On odd sum graphs, International Journal of Mathematical Cominatorics, 4,58-77
[3] S.Arockiaraj, P.Mahalakshmi and P.Namasivayam,2014, Odd sum labelling of some Sub division graphs, Kragujevac Journal of Mathematics, 38(1)
[4] S.Arockiaraj, P.Mahalakshmi and P.Namasivayam, 2015, Odd sum labelling of graphs obtained by duplicating any edge of some graphs, Electronic Journal of Graph Theory and Applications, 3(2),197-21
[5] R.Gopi, 2016, Odd Sum Labeling of Tree Related Graphs, International Journal of Mathematics And its Applications, Volume 4, Issue 4, 11-16
[6] J.Gross and J.Yellen, 2004 , Handbook of graph theory, CRC Press.

