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Abstract :Graph theory is a fundamental and powerful mathematical tool for designing and analyzing interconnection network is a 

graph. This fact has been universally accepted by computer engineers and scientists. In this paper we focus on interconnection 

networks. Some of its well-known topological structure, transmitting problem, fault tolerances of processors and an application to 

transmitting path problem in vibroacoustis.  
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1.INTRODUCTION 

 

The architecture of an interconnection network is always represented by a graph where vertices represent process and edges 

represent links between processors. It is almost impossible to design a network that is optimum from all aspects. One has to design 

a suitable network depending on its properties and requirements. Thus many graph are proposed as possible interconnection 

network topologies. Thus these graph can be referred to as good graphs. For this reason the theory of interconnection network is 

referred to as GOOD GRAPH THEORY. In the design of an interconnection network, one of the most fundamental considerations 

is the reliability of the network, which can be usually characterized by connectivity and edge-connectivity of the topological 

structure of the network. The advent of very large scale integrated circuit technology has enabled the construction of very complex 

and large interconnection networks. Most probably, the next generation of super-computers will achieve its gain by increasing the 

number of processing elements, rather than by using faster processors. The most difficult technical problem in constructing a 

supercomputer will be the design of the interconnection network through which the processor communicate. Selecting an 

appropriate and adequate topological structure of interconnection network will become a critical issue, on which many research 

effects have been made over the past decade. 

 

2. INTRODUCTION TO INTERCONNECTION NETWORKS 

 

The topological structure of an interconnection network can be modeled by a graph. Interconnection networks are designed for 

use at different levels within and across computer system to meet the operational demands of various application areas - high 

performance computing, storage I/O, cluster/workgroup/enterprise system, inter networking and so on. A system following Hayes 

[135], may be defined informally as a collection of objects called components, connected to formal coherent entity with a well-

defined function or purpose. The function performed by the system is determined by those performed by its components and by the 

manner in which the components are interconnected. A connection pattern of the component in a system is called an 

interconnection network, or network for short, of the system. Topologically, an interconnection network can essentially depict 

structural feature of the system. In other words, an interconnection network of a system provides logically a specific way in which 

all components of the system are connected. A graph can also be consider as a topological structure of some interconnection 

network. Topologically, graph and interconnection network are the same thing. 

 

2.1. WELL-KNOWN TOPOLOGICALCAL STRUCTURE OF INTERCONNECTION NETWORKS 

 

2.1.1HYPERCUBE NETWORKS 

 

The hypercube suggested by Sullivan and Bashkow [240] is one of the most popular, versatile and efficient topological structure of 

interconnection networks. The hypercube has many excellent features, and thus becomes the first choice for the topological 

structure of parallel processing and computing systems. 

 

TWO EQUIVAL DEFINITION: 

The topological structure of a hypercube network in the n-dimensional cubes, shortly n-cubes whose graph-theoretical model is an 

undirected graph and denoted by Qn. 

1. DEFINITION USING BINARY SEQUENCE: 

The vertex set V of set Qn consists of all binary sequence of length ‘n’ on the set {0,1}. i.e., V= {𝑥1,𝑥2,…..,𝑥𝑛; 𝑥𝑖∈{0,1},i = 

1,2,...n}. Two vertices x= 𝑥1𝑥2 … … 𝑥𝑛and y= 𝑦1𝑦2 … … 𝑦𝑛 are linked by an edge iff x and y differ exactly in one coordinate i.e. 

∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1 =1. 
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The first cube 𝑄1    The first cube 𝑄2                                                 The first cube 𝑄3 

 

 

 

 

2. DEFINITION USING CARTESIAN PRODUCT 

𝑄𝑛 = 𝑄𝑛−1 × 𝑄1 = 𝑘2 × 𝑘2 × … . .× 𝑘2(n times); where 𝑄1 = 𝑘2. 

 

NOTE: 

Two definition of Qn are equivalent. In other words, the graph defined by the first definition is isomorphic to one defined by the 

second. 

 

2.1.2 HAMMING GRAPH 

  

Hamming graphs are Cartesian product of complete graph and thus generalize the concept of hypercube. 

Hamming graph are natural generalization of hypercube. In fact hypercube can be characterized as bipartate hamming graph if ∃ 

integer ’k’, 𝑛1, 𝑛2, … . , 𝑛𝑘 such that G≅ 𝑘𝑛1 × 𝑘𝑛2 × … .× 𝑘𝑛𝑘. 

 

2.2.3 GRID AND MESH NETWORK 

  

 The Cartesian product of two path is known as grid or mesh i.e,  𝑃𝑙 × 𝑃𝑚; where 𝑃𝑙and 𝑃𝑚are undirected paths and is denoted by 

G(l,m). Mesh and its variants are more simple and popular interconnection networks in the research community. The mesh 

network G(l,m) is a subgraph of the hypercube Qn, where n = [log2 𝑙] + [log2 𝑚]. The mesh network can be embedded into the 

hypercube with dilation one. 

 

2.2 BASIC PRINCIPLES OF NETWORK DESIGN 

 

As we know that the topological structure of a network is a graph. We use the langue of graph theory to introduce these principles 

only as the topological structure is considered. Following Bermond and Peryrat[29] these principle can be stated as follows:  

 

2.2.1 SMALL AND FIXED DEGREE 
 

The degree of a graph corresponds the number of connections to each component. This number is bounded by the number of the 

interface available for I/O devices attached to each component in the network. An excess of any physical connection will result in 

replacement of the components in the network to increase the number of interfaces. The large degree, the more wiring. More 

wiring not only costs much money, and also is disadvantageous to implementation of VLSI (very large scale integration) layout. 

Thus a small or fixed maximum degree is desirable. 

 

2.2.2 SMALL TRANSMISSION DELAY [i.e, small diameter or average distance] 

 

Since transmission delay or signal degradation for sending a message from one vertex to another is approximately proportional to 

the number of times that a message has to be stored and forwarded by intermediate vertices. Thus a small average distance or 

diameter is desired to obtain a highly efficient interconnection network. In particular, diameter should be bounded by a given 

value for a real-time processing system. 

 

2.2.3MAXIMUN FAULT TOLERENCE 

 

The network must continue to work in case of vertex or edge failures. Different notions of fault tolerance exist, the simplest one 

corresponding to connectivity (or edge connectivity) of the graph, that is the minimum number of vertices (or edges) which must 

be deleted in order to destroy all paths between a pair of vertices. The maximum connectivity is desirable since it corresponds to 

not only the maximum fault tolerance of the network but also the the maximum number of internally (or edge) disjoint paths 

between any two distinct vertices. 
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2.2.4 EASY ROUTING ALGORITHM 
 

The routing is an important function of communication networks. It specifies a fixed route which carries the message from one 

vertex to another. Thus the choice of an easy routing algorithm is important. A routing algorithm strongly depends on the chosen 

topological structure. Thus a network should be designed such that a routing algorithm can be easily obtained. 

 

2.2.5 EMBEDDABILITY OF OTHER TOPOLOGIES 

 

This important issue deals with the ability of a given architecture to match various algorithm that solve different types of 

problems. The network built would enable one to use various algorithm originally designed for another topological structure. In 

other words, when a graph is used as an interconnection network, it should contain certain subgraph structures, since existence of 

these structure has special importance for executing certain algorithm. 

 

2.2.6 SYMMETRY 

 

We can divide that all components behave in the same manner and that they communicate in similar ways. This implies at least 

some regularity and some symmetric properties on the graph. A highly symmetry network is desirable since it is advantage to 

construction and simulation of some algorithm. 

 

2.2.7 EXTENDABILITY 
 

It should be possible to build a network of any given size or at least two build arbitrary large version of the network. Furthermore, 

it would be easy to construct large networks from small ones. When a small network is extended some desirable properties should 

remained and some useful parameters should be calculated easily. 

 

3. HYPERCUBE NETWORKS 

 

In this section we will present desirable structural properties of hypercube networks and its various generalization and 

enhancements. 

 

3.1 HYPERCUBE 
 

As we discussed earlier the topological structure of hypercube network in the dimensional cube is an undirected graph and is 

denoted by Qn. 𝑄𝑛 = 𝑄𝑛−1 × 𝑄1 = 𝑘2 × 𝑘2 × … . .× 𝑘2(n times); where  𝑄1 = 𝑘2. 

 

PROPERTIES 

*Qn is n-regular, has 2𝑛 vertices and 𝑛2𝑛−1 edges.  

*Qn is bipartate.  

*Qn is Hamiltonian if n ≥ 2 and Eulerian if n is even.  

*Qn has diameterd(Qn)-n. 

*Qn has connectivity K(Qn)-n.  

*Qn is a Cayley graph Cr(s) and hence is vertices-transitive where r = 𝑧2 × … .× 𝑧2and  s = {100...00,010....00,…..,00....0}. 

 

3.2 GENERALIZED HYPERCUBES 

 

Mathematically, it is quite natural to generalize hypercubes to more general forms. Here we present there such forms, which 

generalize the hypercube from three distinct aspects. 

 

3.2.1 GENERALIZED HYPERCUBE 

 

Bhuyan and Agarwal [31] generalized Qn to the n-dimensional generalized hypercube denoted by Q(𝑑1, 𝑑2, … , 𝑑𝑛) where di ≥ 2 

is an integer for each i = 1,2,...n.  As a generalization of the first definition of Qn the vertex set of Q(𝑑1, 𝑑2, … , 𝑑𝑛) is the set.  

 V = {𝑥1, 𝑥2, … . 𝑥𝑛: 𝑥𝑖 ∈ (1,2,…..𝑑𝑖−1); i=1,2…n} and two vertices x = 𝑥1𝑥2 … . 𝑥𝑛  and y= 𝑦1𝑦2 … . 𝑦𝑛} are linked by a edge iff 

they differ exactly in one coordinate. As a generalization of the second definition of Qn, Q(𝑑1, 𝑑2, … , 𝑑𝑛) can be defined as the 

cartesian product𝑘𝑑1 × 𝑘𝑑2 × … . .× 𝑘𝑑𝑛 

 

PROPERTIES  

*Q(𝑑1, 𝑑2, … , 𝑑𝑛) is (d1 + d2 + ... + dn −n)-regular.  

*The diameter of Q(𝑑1, 𝑑2, … , 𝑑𝑛) is n.  

*The connectivity of Q(𝑑1, 𝑑2, … , 𝑑𝑛) is 𝑑1 + 𝑑2+ ⋯ + 𝑑𝑛} . 

*Q(𝑑1, 𝑑2, … , 𝑑𝑛)  is a Cayley graph and hence is vertex transitive. 
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3.2.2 UNDIRECTED TOROIDAL MESH  

 

The n-dimensional undirected toroidal mesh denoted by C(𝑑1, 𝑑2, … , 𝑑𝑛)is also considered as a generalization of Qn where  

di≥3 is an integer for each i=1,2,...n.According to the first definition of the vertex set of C(𝑑1, 𝑑2, … , 𝑑𝑛)) is the set 

 V = {𝑥1, 𝑥2, … , 𝑥𝑛 : 𝑥𝑖 ∈{0,1,..,𝑑𝑖−1 },i = 1,2,..,n} and two vertices x = 𝑥1𝑥2 … , 𝑥𝑛 and y= 𝑦1𝑦2 … 𝑦𝑛 are linked by an edge 

iff∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1 = 1. As generalization of second definition of Qn ;C(𝑑1, 𝑑2, … , 𝑑𝑛 )can be defined as the cartesian products 

C𝑑1 × 𝐶𝑑2 × … × 𝐶𝑑𝑛where C𝑑𝑖 is an undirected cycle for each i=1,2,..n. 

 

PROPERTIES 

*C(𝑑1, 𝑑2, … , 𝑑𝑛)is 2n-regular. 

*C(𝑑1, 𝑑2, … , 𝑑𝑛)regular. 

*The diameter of C(𝑑1, 𝑑2, … , 𝑑𝑛)is∑ [
1

2

𝑛
𝑖=1 𝑑𝑖]. 

*The connectivity of C(𝑑1, 𝑑2, … , 𝑑𝑛)is 2n. 

*C(𝑑1, 𝑑2, … , 𝑑𝑛)is a cayley graph and hence is vertex-transitive. 

 

 

3.2.3 DIRECTED TOROIDAL MESH 

 

The n dimensional directed toroidal mesh denoted by 𝐶(d1,d2,…𝑑𝑛) is also thought of as a generalization of Qn where di ≥ 2 is 

an integer for each i=1,2,..n. According to the first definition of Qn the vertex set of *𝐶(d1,d2,…𝑑𝑛) is the set  

V = {𝑥1, 𝑥2, … , 𝑥𝑛: 𝑥𝑖 ∈{0,1,..,𝑑𝑖−1},i = 1,2,..,n} and two vertices x= 𝑥1𝑥2 … , 𝑥𝑛and y= 𝑦1𝑦2 … 𝑦𝑛are linked by a directed edge 

from x to y in 𝐶(d1,d2,…𝑑𝑛)iff∑ (𝑥𝑖 − 𝑦𝑖)𝑛
𝑖=1 =.1 As a generalization of the second definition of Qn, 𝐶(d1,d2,…𝑑𝑛) can be defined 

as the cartesian product C𝑑1 × 𝐶𝑑2 × … × 𝐶𝑑𝑛where Cdi is a directed cycle of length di ≥ 2 for each i=1,2..n.  

 

PROPERTIES  

*𝐶(d1,d2,…𝑑𝑛)  is n-regular 

*The diameter of 𝐶(d1,d2,…𝑑𝑛) is 𝑑1+𝑑2 ++…+𝑑𝑛 − n 

*The connectivity of 𝐶(d1,d2,…𝑑𝑛)  is n 

*𝐶(d1,d2,…𝑑𝑛)  is a cayley graph and hence is vertex-transitive. 

  

3.3 SOME ENHANCEMENT ON HYPERCUBES 

 

We have seen that the hypercubes has many desirable and attractive properties. However, the hypercubes has its own intrinsic 

drawback, such as its diameter is large. As a result of a focused attention several enhancements of hypercubes have been proposed 

to improve some properties such as diameter. 

 

3.3.1 CROSSED CUBES 

 

Two binary x= 𝑥1𝑥2and y= 𝑦1𝑦2are to be pair-related, denoted by x y if and only if (x,y) ∈{(00,00),(10,10),(01,11),(11,01)}. The 

n-dimensional crossed cube, denoted by CQn (n ≥ 2) is such an undirected graph, its vertex set is the same as the vertex set of 

QnQn, two vertices x=𝑥1𝑥2…..𝑥𝑛and y=𝑦1𝑦2 ….𝑦𝑛are linked by an edge iff there exist j(1≤ 𝑗 ≤n) such that, 

a) 𝑥𝑛……𝑥𝑗+1=𝑦𝑛……. 𝑦𝑗+1 

b) 𝑥𝑗≠ 𝑦𝑗 

c) 𝑥𝑗−1 = 𝑦𝑗−1  if j is even 

d) 𝑥2𝑖𝑥2𝑖−1 ~ 𝑦2𝑖𝑦2𝑖−1 for each i=1,2,…,[
1

 2
 j]-1 

 

PROPERTIES  

*CQn is n-regular, has 2𝑛 vertices and n2𝑛−1 edges. 

*CQn has diameter [
1

 2
  (n+1)] and has connectivity n. 

*CQn is vertex transitive  

*CQn contains cycles with any length  l(4≤l≤2𝑛)  

*CQn contains a complete binary tree with height n-1 as its subgraph. 

 

 

3.3.2 FOLDED HYPERCUBE  
 

The n-dimensional folded hypercubes, denoted by FQnis an undirected graph obtained from Qn by adding all complementary 

edges. For two vertices x=𝑥1𝑥2…..𝑥𝑛and y=𝑦1𝑦2 ….𝑦𝑛of FQn  x,y ∈ E(FQn) is a complementary edge iff their bites are the 

complement of each other i.e., 𝑦𝑖=𝑥�̅� for each i=1,2…n 
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PROPERTIES  

*FQn is (n+1)-regular, has 2𝑛 vertices and  (n+1)2𝑛−1 edges 

*FQn has diameter [
𝑛

2
] 

*FQn has connectivity n+1. 

 

 

4. TRANSMITTING PROBLEM AND FAULT TOLERANCE 

 

4.1 TRANSMITTING PROBLEM 

 

Let G= (V,E) be a graph representing the topology for a network. Let V be a special vertex outside G, called a host processor 

which is connected to each vertex G. The host processor is the sender of the message to be transmitted to all of the vertices in G. 

Each time unit. the host may send its message to any single vertex of the graph G, according to its choice. At the same time, each 

processor that has already received the message can send the message to all of its neighbors in one unit of time. The objective is 

to minimize the number of time unit such that all of the vertices in G can receive the message. The minimum number of time units 

for G is the optimal transmitting time for G denoted by t(G). 

Consider the graph C6. 

 In the transmitting problem, there must be a host vertex V. 

 
Suppose that in the first unit of time message is passed from v to 1. 

 
In second unit of time the message is automatically passed from 1 to its neighbors 2 and 6. Then from the host processor, a 

message can be transmitted to all at the same time. 

 
In third time all vertices get message. 

We can consider the transmitting problem as a problem to not only determine the optimal transmitting time but also to minimize 

the workload of the host is defined as the number of time units in which the host send the message to processors in G.  
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Thus in the (t,s) transmitting scheme each processor in G receives the message either from the host or from its neighbor within t 

time units. While the workload host is S, t is called feasible transmitting time. The cost of a (t,s) transmitting scheme is the 

ordered pair (t,s). 

 

4.1.1 TRANSMITTING SCHEME IN HYPERCUBES 

 

For n-dimensional hypercube Qn, Alon[8] proves that t(Qn) = [
𝑛

2
 ]+ 1. 

Procedure is very simple. The host vertex will pass the message first to any arbitrary vertex and then to that vertex at hamming 

distance n from that vertex. Afterwards the host just waits. 

 

4.2 MENGER’S THEOREM 

 

Let G be a connected undirected graph or a strongly connected diagraph, x and y be two distinct vertices of G. Then  

a)  ζ(G; x, y) = 𝐾(𝐺; 𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∉ 𝐸(𝐺) 

b)  η(G; x, y) = 𝜆(G; x, y) 

where ζ(G; x, y) is the maximum number of internally disjoint (x,y)-paths in G.η(G;x,y), is the maximum number of edge-disjoint 

(x,y)-paths in G.K(G;x,y) is  maximum cardinality over all (x,y)-vertex cut of G is called (x,y)-connectivity. λ(G;x,y) isthe 

minimum cardinality over all (x,y) edge cuts if G is called (x,y)-edge connectivity. 

 

NOTE 

Menger’s theorem is one of the most fundamental results in graph theory and a foundation of topological structure design and 

analysis of interconnection network as well. 

 

4.3 FAULT TOLERANCE 

 

Fault of some components and/or communication line in a large scale system are inevitable. However the presence of faults gives 

rise to a large number of problems to have to be handled for some applications. Generally speaking, the solutions of these 

problems are difficult as the set of fault is not known in advance. Nevertheless, they have attracted considerable research interest 

the recent decade, and many nice results have been obtained. 

 

4.4 FAULT TOLERANT DIAMETER 

 

The concept of fault tolerant diameter was introduced by Krishnamoorthy M.S and Krishnamurthy.B (1987), who gave an upper 

bound of the faulttolerant diameter of cartesian product graph G1□G2.  

i.e, 𝐷𝑘1+𝑘2(G1□G2) ≤ 𝐷𝑘1(G1) + 𝐷𝑘2(G2) 

 

REMARK 

Xu et al. (2005) pointed out that is this bound is not correct and showed that 𝐷𝑘1+𝑘2(G1□G2) ≤ 𝐷𝑘1 (G1) + 𝐷𝑘2(G2)+ 1 

 

5.VIBROACOUSTICS AND GRAPH THEORY 

 

5.1 VIBROACOUSTICS 

 

Over the last decades, vibroacoustics has become a necessary aspect to consider in many type of industries.The vibroacoustic 

research focusses on the simulation, analysis, monitoring and control of the vibroacoustic behavior of mechanical, mechatronic 

and biomechanical products and process, as typically encocentered in the transportation, the industrial machinery, the energy and 

the health care sector. For instance, in the automotive industry, attention is increasingly paid to improving the passengers comfort. 

This implies reducing the noise and vibration levels in the passenger’s cabin. The same could be applied to trains, planes and 

ships. In the building industry, the standards regarding the admissible noise levels in dwelling have customarily been raised due to 

increasing social awareness. Furthermore, not only noise and vibration issues are a concern to human wellbeing but also they may 

affect the endurance of the operating life of structures, i.e. excessive vibrations can cause damages in the structure itself. In all of 

these situations, it is important to know the behavior of the mechanical systems in order to solve noise and vibration problems. 

The dynamic characteristics of the mechanical system can be obtained by means of a vibroacoustic analysis, which shall be 

conducted experimentally or numerically. The experimental approaches are all based on measurements over the built-up system. 

For instance, to obtain the vibration modes of a system, one may perform experimental modal analysis whereas a Transmission 

Path Analysis (TPA) provides information on how the energy is transmitted throughout the system. 

 

 

5.2 INTRODUCTION TO MODELING IN VIBROACOUSTICS 

 

The vibroacoustic behavior of a physical system can be modelled using several numerical methods. The most common criterium 

to classify them is according to the frequency range, i.e. low frequency, mid frequency and high frequency methods. As a first  

approximation, to determine the frequency range, the characteristic physical dimension of the system may be compared to the 
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dominant wavelength in the dynamic response. Therefore, when the wavelength is larger or comparable to the dimensions of the 

system, it is considered a low frequency response. On the contrary, when the wavelength is considerably smaller, the problem is 

set at high frequencies. Finally, the mid frequency range corresponds to two possible situations. First, the intermediate case where 

the wave-length is neither comparable to the system dimensions nor small enough to be considered high frequency. Second, the 

case when some components show low frequency behavior and some others show high frequency behavior. Each frequency range 

has its own characteristics and that is the reason why each method has a limited scope of validity. 

 

5.2.1 LOW AND HIGH FREQUENCY NUMERICAL METHOD 

 

In the low frequency range, deterministic approaches can be used to predict the vibration modes because there are few modes and 

they are well-separated. The most applied techniques are the Finite Element Method (FEM) and the Boundary Element Method 

(BEM). These are element-based methods because they consist in dividing the problem domain or its boundary into a largest of 

small elements. The problem unknowns are approximated by polynomials inside every element. The size of the element is chosen 

to guarantee the accuracy of the approximations, typically, between 6 and 10 elements per wavelength are needed. As the 

frequency increases and hence the wavelength shortens, more elements increasing the matrix system dimensions become 

necessary. As a result, the increase of the computational cost limits the application of these methods to low frequencies. 

In the high frequency range, the opposite situation is found: the modal density and the modal overlap are high. In addition, since 

the wavelength is short, the system behavior becomes more sensitive to smallvariations in the physical parameters. Therefore, 

taking into account that in a real context such variations are unavoidable, determining the response of a single system becomes 

meaningless and average responses shall be computed instead. Consequently, statistical approaches such as the Statistical Energy 

Analysis (SEA) are the most used methods. In SEA, the system is divided into a small group of subsystems and the spatially 

averaged energy level is computed for each of them. The number of degrees of freedom in SEA corresponds to the number of 

subsystems, which makes the computational cost fairly affordable. However, the assumptions that are made to allow ensemble 

averaging are only fulfilled at high frequencies. Consequently, statistical methods are restricted to this frequency range. 

 

5.2.2 THE MID FREQUENCY PROBLEM  

 

As mentioned above, there is a frequency gap where none of the above mentioned methods can be used for the correct description 

of the system response.The mid-frequency methods appear to fill this frequency gap. In recent years, several strategies have been 

followed to tackle the mid-frequency problem. They can be sorted in three groups. The first includes the methods which try to 

extend the applicability of low frequency methods to higher frequencies. For instance, the Wave Based Methods (WBM) which 

adopt exact solutions of the governing partial differential equations as basis functions, instead of the polynomial bases of finite 

elements.The second category is made up of approaches that try to extend the statistical methods to lower frequencies. For 

instance, proposing alternatives to compute the SEA parameters like the Energy Distribution Methods or attempting to relax the 

SEA assumptions which restrict the validity of SEA to a limited number of cases.The last class consists in combining statistical 

and deterministic approaches, to deal with the cases where there is a mix of dynamic behavior, as described before. In such cases, 

hybrid strategies are proposed.One of them is the FE/SEA approaches which uses FE for the deterministic components and SEA 

for the highly random components.In a nut shell, the method goes as follows. FE is used to model the deterministic components 

and SEA is used for the random components, modelling them as SEA subsystems. 

 

5.3 STATISTICAL ENERGY ANALYSIS 

 

The Statistical Energy Analysis was developed in the early 1960s partly motivated by the need to predict the vibrational response 

of satellite launch vehicles and their payloads. These are really huge systems formed by many components each of which has 

different characteristics and a high amount of vibration modes in the frequency range of study. Thus, at that time and for the 

reasons stated before, an alternative had to be proposed. The first works considered as the origins of SEA were made 

independently by R.H. Lyon and P. W. Smith, Jr [Lyon and DeJong, 1998]. 

 

5.3.1 PRINCIPLES AND VALIDITY SCOPES OF STATISTICAL ENERGY ANALYSIS 
 

Statistical Energy Analysis is used to predict the vibroacoustic behavior of a mechanical system at high frequencies. The system 

consists of a group of coupled elements, normally, structures, cavities or ducts. To model it with SEA, it is divided in several 

subsystems which correspond to groups of vibration modes with similar characteristics.In order to make this definition of the 

system which consists in dividing it in subsystems and establishing the power flows, SEA lays on the following principles. 

1) The power flow between two subsystems is proportional to the difference of their energy densities or modal energies. 

This is known as the Coupling Power Proportionality (CPP) condition. 

2) The energy is stored in resonance modes. Thus, the amount of energy a subsystem is able to keep is proportional to the 

number of modes it has.  

3) The energy always flows from the subsystem with higher energy to the one with lower energy. 

4) The injected power in a subsystem is either transferred to other subsystems or dissipated in the same subsystem. 

5) From a wave approach point of view, every point in a subsystem has the same average energy level, in other words, the 

energy density is homogeneous and isotropic all over the subsystem. This is known as the diffuse field assumption. From 

a modal pointof view, it is equivalent to state that modal energy equipartition exists, which means that the subsystem 
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energy is uniformlyshared amongst the modes. In other words, that the average modal energy is equal for all the modes 

in a subsystem.                                             

In addition, to simplify the formulation and the development of the models, it is also assumed that: 

6) The excitation forces are uncorrelated white noises to ensure that all the modes in the subsystem are equally excited. 

Typically, for the plates a rain-on-the-roof excitation is used. 

7) The energy can only be input in the subsystems, never in the couplings between subsystems. Usually, the couplings will 

be considered conservative. However, more complex approaches deal with the inclusion of non-conservative couplings 

in the system. 

8) All the modes in the same subsystem and the same frequency band have the same damping loss factor. 

9) There is no coupling between the modes of the same subsystem. 

As seen, SEA is a statistical method and it deals with average values of energy.  

All in all, SEA is a useful method to work with high frequency models but the system must fulfill some conditions which in some 

cases may be quite restrictive. 

 

5.3.2 FORMULATION OF STATISTICAL ENERGY ANALYSIS 

 

The SEA model can be buit once the condition of validity of SEA are guaranteed in the system. The parameter needed at each 

frequency band of stand are the loss factors. There are three types of loss factors. 

1. COUPLING LOSS FACTOR: The coupling loss factor (CLF). ηij is the ratio of energy transferred from, subsystem i to 

subsystem j in a radian cycle. 

2. INTERNAL LOSS FACTOR: The internal or damping loss factor (ILF) ηid is the ratio of energy lost as heat in subsystem i in 

a radian cycle. 

3. TOTAL LOSS FACTOR: The total loss factor (TLF) ηi is the total energy lost in subsystem i in a radian cycle, 

ηi=ηid+∑ 𝜂𝑖𝑗𝑁
𝑗,𝑗≠𝑖 , where N is the total number of subsystems. 

 

5.4 ENERGY DISTRIBUTION MODEL 

 

The energy distribution (ED) models aim at giving a general description of the dynamic behavior of a system in terms of 

vibroacoustic energy. To that end, the system is split into a set of subsystems and the so called Energy Influence Coefficients 

(EIC) are computed to characterize the energy sharing between them. The main purpose is to obtain the frequency averaged 

subsystem energies when some part of the system is submitted to a broadband excitation. The EICs can be computed either from 

theoretical modal developments, numerical approaches using the finite element method or scaling procedure or by resorting to 

experimental procedures relying on the power injection method. 

 

5.5 STSTISTICAL MODEL ENERGY DISTRIBUTION ANALYSIS 

 

Statistical modal Energy distribution Analysis (SmEdA), originally proposed in, can be envisaged as a particular case of ED 

method, in which SEA hypotheses are relaxed to extend its range of applicability to mid frequencies. However, SmEdA has a 

clear distinctive feature with respect to most ED methods in the sense that power balance equations are not established between 

subsystems but rather between the resonant modes of different subsystems. These modes can be extracted from the modal bases of 

uncoupled subsystems, which can be computed using FEM, thanks to the dual modal formulation (DMF). This offers the 

possibility of considering subsystems with complex geometries and varying properties. Moreover, circumventing SEA energy 

equipartition allows one to deal with locally excited subsystems with low modal overlap, as well as to evaluate the spatial 

distribution of energy density within subsystems. Recently, SmEdA has been extended to incorporate the contribution of non-

resonant transmission through condensation of the DMF equations. This has resulted in the appearance of indirect coupling 

between modes in non-physically connected subsystems, standard non-resonant paths in SEA being recovered as a particular case 

 

5.6 TRANSMISSION PATH ANALYSIS 

 

Vibroacoustic analysis may be used to solve noise and vibration problems. Generally, these situations consist of a vibroacoustic 

source that generates an excessive energy level in another part of the system, normally termed target or receiver.Consider for 

instance, a car where the vibrations produced by the engine generate an uncomfortable noise in the passenger compartment. 

Therefore, some parts of the system will have to be modified to reduce the energy level at the target up to an acceptable value.A 

different way to tackle the problem is by determining how energy is transmitted from the vibroacoustic sources to the targets. In 

other terms, to identify the energy transmission paths. The experimental methods that traditionally have followed this approach 

are known as Transmission Path Analysis (TPA) techniques. 

The TPA methods can be classified into 1-step processes or 2-step processes.  

› The 1-step methods, only use operational data and thus, just one phase is needed. 

› The 2-step methods consist of two steps of measurements. In the first step, the system is characterized in its static state 

whereas in the second one, the measurements are carried out under operational conditions. 

The problem with 1-step methods is the separation of partially correlated sources. For this reason, in the 1980’s, the 2-step TPA 

approaches appeared. The most relevant is a 2-step method commonly known as classical TPA. The aim of this method is 

knowing how the operational loads acting on a system influence the response of some selected degrees of freedom of the system.  
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Let us describe in detail how the contribution of an energy transmission path is computed. Consider the plate system (fig A). The 

SEA model is built considering only flexural waves. The source set at Plate 1 and the target at Plate 6. The energy contribution to 

the target subsystem of the path starting at Plate 1 followed by Plate 2 and ending at Plate 6 will be computed step by step, 

following the same procedure we can create the SEA diagram corresponding to this system where the path to be computed is 

marked in yellow. First, it is supposed that energy in subsystem 4 is only input from subsystem 1. Note that this assumption is 

equivalent to assume that, except for 1 and 4, all the subsystems are blocked, so their energy is null. This description coincides 

with the concept of direct transmissibility which has also been used to compute transmission path analysis in SEA systems. 

 

 
                                          Fig A: Plate SEA system                                  Fig B: Energy transmission path 

 

5.7 USE OF GRAPH THEORY TO OBTAIN THE ENERGY TRANSMISSION IN A SEA MODEL 

 

 

In Section 5.6, the worth of obtaining the energy transmission paths in a vibroacoustic system has been proved. Besides a review 

of some experimental procedures, the analytical definition of an energy transmission path in a SEA system has been given. 

However, a direct method to obtain such paths and to work with them is still missing. 

The graph represented the SEA system is called SEA graph and is defined as follows: 

 A SEA graph, 𝐺SEA = {𝑈SEA, 𝐸SEA} is a simple diagraph such that every node ui in 𝑈SEA corresponding to a SEA subsystem and 

such that directed arcs (ui,uj), (uj,ui) ∈ ESEA exist between subsystem ui and uj, whenever they are coupled in the SEA model. 

 

 
                                                                                          Fig: C 

Thus, the SEA graph that corresponds to the SEA system in Fig:A is the one depicted in Fig:C. 

 

 

6. CONCLUSION 

 

In this paper, we had discussed about interconnection networks and graphs. Graphs are considered as the topological structure of 

interconnection networks. Here we discussed some well-known topological structures of interconnection networks. We also 

discussed transmitting problem and fault tolerences of processors. Interconnection networks has many application in real world. 

In this paper, an overview of the numerical methods used to solve vibroacoustic problems is given. First,the numerical methods 

used in vibroacoustics are reviewed. Special emphasis is given to Statistical Energy Analysis, Energy Distribution Analysis and 

Statistical modal Energy distribution Analysis. Then,the potential of TPA is introduced. Finally, the first link between graph 

theory and vibroacoustic models, in this case SEA models, is established by defining a SEA graph.  
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